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Abstract. Using our multi-user model, a community of users provides
feedback in a pay-as-you-go fashion to the ontology matching process by
validating the mappings found by automatic methods, with the following
advantages over having a single user: the effort required from each user is
reduced, user errors are corrected, and consensus is reached. We propose
strategies that dynamically determine the order in which the candidate
mappings are presented to the users for validation. These strategies are
based on mapping quality measures that we define. Further, we use a
propagation method to leverage the validation of one mapping to other
mappings. We use an extension of the AgreementMaker ontology match-
ing system and the Ontology Alignment Evaluation Initiative (OAEI)
Benchmarks track to evaluate our approach. Our results show how F-
measure and robustness vary as a function of the number of user valida-
tions. We consider different user error and revalidation rates (the latter
measures the number of times that the same mapping is validated). Our
results highlight complex trade-offs and point to the benefits of dynam-
ically adjusting the revalidation rate.

1 Introduction
The ontology matching problem consists of mapping concepts in a source on-
tology to semantically related concepts in a target ontology. The resulting set
of mappings is called an alignment [1], which is a subset of the set of all possi-
ble mappings, which we call the mapping space. As ontologies increase in size,
automatic matching methods, which we call matchers, become necessary. The
matching process also requires feedback provided by users: in real-world scenar-
ios, and even in the systematic ontology matching benchmarks of the Ontology
Alignment Evaluation Initiative (OAEI), alignments are neither correct nor ex-
haustive when compared against a gold standard , also called reference alignment .
An important consideration is that domain experts such as those with whom we
collaborated in the geospatial domain [2], require the ability to verify the cor-
rectness of a subset of the mappings. In this paper we propose a semi-automatic
ontology matching strategy that supports feedback provided by multiple domain
experts to match two ontologies. Our strategy first computes an alignment using
automatic matching methods and then allows for the domain experts to request



a mapping to validate. In the rest of the paper, the term users refers to the
domain experts, not to casual users often called workers in crowdsourcing ter-
minology. The fact that our users are domain experts will influence some of our
assumptions.

Our approach works in the following way: once a user posts a request, one
of the candidate mappings is selected and presented to the user who can la-
bel the mapping as correct or incorrect. Our strategy assumes that mappings
labeled as correct (resp. incorrect) by a majority of users are correct (resp. in-
correct), thus allowing for mislabeling by users. The result of this validation can
be propagated to “similar” mappings thus saving users’ effort while ensuring, if
such propagation is effectively performed, the quality of the resulting alignment.
The matching process continues iteratively by selecting new candidate mappings
and presenting them to users for validation. Our method is designed in such a
way that at each iteration the mapping that is perceived to be of less quality
is the one selected for validation. Therefore, our quality ranking functions are
intrinsically dynamic as the quality-based ranking of the mappings changes from
iteration to iteration, to take into account each user-provided validation. This
approach, which not only allows for the system to quickly adjust, is also devised
to run in a pay-as-you-go fashion, where we may stop the iterative process at
any stage. Our pay-as-you-go strategy is in opposition to first collecting a pre-
determined number of validations n for each mapping, considering the majority
vote after that, and only then propagating the user-provided feedback. During
those n iterations, we would only be progressing on a single mapping. Following
our approach, during n iterations we will be making progress on as many as n
mappings and propagating the user-provided feedback at each iteration.

Previous approaches to ontology matching assume that feedback is given by
individual users or that users always validate a mapping correctly [3–5]. How-
ever, errors must be taken into account in feedback mechanisms for information
integration systems [6]. Therefore, we want to show that a high-quality alignment
can be attained by involving multiple users so as to reduce the effort required by
each individual user while allowing for user error. To this end, we need to ensure
coverage of the mapping space, while not demanding that each user validate all
the mappings. Because of user errors, some mappings may need to be validated
several times.

We consider two important rates: one measures the errors made by the users,
which we call the error rate, and the other measures the proportion of mappings
presented to the users for validation that have been already validated in previous
iterations, which we call the revalidation rate. We conduct experiments with the
OAEI Benchmarks track to evaluate the gain in quality (measured in terms
of F-measure) and the robustness (defined as the ratio between the quality of
the alignment for a given error rate and the quality of the alignment when no
errors are made) as a function of the number of validations for different error
and revalidation rates. Our results highlight complex trade-offs and point to the
benefits of adjusting the revalidation rate.

In Section 2, we describe the architecture of the multi-user feedback ontology
matching system and give an overview of the combined automatic and manual



process. In Section 3, we describe the key elements of the proposed approach: a
model for the evaluation of the quality of the mappings, the ranking functions
used for candidate mapping selection, and the method used for feedback prop-
agation. In Section 4, we present the results of our experiments conducted on
the OAEI Benchmarks track. In Section 5, we describe related work. Finally, in
Section 6, we draw some conclusions and describe future work.

2 Assumptions and Approach Overview
We assume that as members of a community, domain users are committed to an
ontology matching task and are reliable. Therefore we do not deal with problems
such as the engagement of users or the assessment of their reliability, which have
been investigated in crowdsourcing approaches [7]. Even if we consider possible
errors in validating mappings, thus causing inconsistency among users, we as-
sume consistency for the same user, thus we do not present the same mapping
more than once to the same user. We also do not distinguish among users al-
though some users may make fewer errors than others. Instead we consider an
overall error rate associated with a sequence of validated mappings. We assume
that given a group of users whose reliability is known (or can be estimated), we
can determine the corresponding error rate.

The validation of a mapping m by a user assigns a label l to that mapping.
We define the homonymous function label , such that label(m) has value 1 or 0 de-
pending on whether the user considers that m is or is not part of the alignment,
respectively. When more than one user is involved, we use a consensus-based ap-
proach to decide whether a mapping belongs to an alignment. Consensus models
include a simple majority vote, a sophisticated weighted majority vote, or more
complex models such as tournament selection [8]. In this paper, we consider a
simple majority vote, where Val is an odd number of validations considered suf-
ficient to decide by majority (we do not require that all the users vote on each
mapping); thus, minimum consensus, MinCon = b(Val/2) + 1c, is the minimum
number of similar labels that is needed to make a correct decision on a mapping.

We restrict our focus to equivalence mappings. Differently from other inter-
active techniques for ontology matching [9], our approach is independent from
the cardinality of the alignment, because the desired cardinality can be set at
the end of feedback loop.

The architecture of our multi-user ontology matching strategy can be built
around any ontology matching system. In our case we use AgreementMaker [10,
11]. We list the steps of the feedback loop workflow:

Step 1: Initial Matching. During the first iteration, before feedback is pro-
vided, all data structures are created. A set of k matchers is run, each one
creating a local similarity matrix where the value of each element (i, j) is the
similarity score associated with mapping mi,j of element i of the source ontol-
ogy to element j of the target ontology. For each mapping we can then define a
signature vector with the k similarity scores computed for that mapping by the
k individual matchers [5]. The results of the individual matchers are combined
into a global similarity matrix where the value of each element represents the
similarity between two concepts, which is computed by aggregating the scores of



individual matchers into a final score [10]. An optimization algorithm is run to
select the final alignment so as to maximize the overall similarity [11] and satisfy
the mapping cardinality.

Step 2: Validation Request. A user asks for a mapping to validate, triggering
the feedback loop.

Step 3: Candidate Selection. For each user who requests a mapping to val-
idate, a mapping is chosen using two different candidate selection strategies
combined by one meta-strategy (explained in detail in Section 3.2). Each strat-
egy uses quality criteria to rank the mappings. The highest ranked mappings are
those mappings that are estimated to have lowest quality, the expectation being
that they are the more likely to be incorrect. The mapping quality is assessed at
each iteration. When a user requests a mapping for validation, the meta-strategy
selects one candidate selection strategy and presents the highest-ranked mapping
to the user. Our approach is inspired by active learning methods and aims to
present to the users those mappings that are most informative for the ontol-
ogy matching problem. Mappings that are wrongly classified by the system at
a current iteration are considered to be informative, because the result can be
improved as long as the error is corrected [4, 5].

Step 4: User Validation. The selected mapping is validated by the user. The
user can label a mapping as being correct or incorrect but can also skip that
particular mapping when unsure of the label to assign to the mapping.

Step 5: Feedback Aggregation. A feedback aggregation matrix keeps track
of the feedback collected for each mapping and of the users who provided that
feedback. The data in this matrix are used to compute mapping quality measures
in the candidate selection and feedback propagation steps.

Step 6: Feedback Propagation. This method updates the global similarity
matrix by changing the similarity score for the validated mapping and for the
mappings whose signature vector is close to the signature vector of the mapping
that was just validated, according to a distance measure.

Step 7: Alignment Selection. An optimization algorithm [11] used in Step
1, is run on the updated similarity matrix as input, and a refined alignment is
selected. At the end of this step, we loop through the same steps, starting from
Step 2.

3 Quality-Based Multi-User Feedback
In this section we describe the Candidate Selection and Feedback Propagation
steps, which play a major role in our model. First, we explain the Mapping
Quality Model, which is used by both steps.

3.1 Mapping Quality Model

We use a mapping quality model to estimate the quality of the candidate map-
ping, which uses five different mapping quality measures:

Automatic Matcher Agreement (AMA). This measure ranks mappings in
increasing order of quality. It measures the agreement of the similarity scores as-
signed to a mapping by different automatic matchers and is defined as AMA(m) =
1−DIS(m), where DIS(m) is the Disagreement associated with mapping m. It



is defined as the variance of the similarity scores in the signature vector and is
normalized to the range [0.0, 1.0] [5].
Cross Sum Quality (CSQ). This measure ranks mappings in increasing order
of quality. Given a source ontology with n concepts, a target ontology with p
concepts, and a matrix Σ of the similarity scores between the two ontologies, for
each mapping mi,j the cross sum quality (1) sums all the similarity scores σij in
the same ith row and jth column of Σ. The sum is normalized by the maximum
sum of the scores per column and row in the whole matrix.

CSQ(mij) = 1−
∑p
v=1 σiv +

∑n
k=1 σkj

MaxRowSum(Σ) + MaxColumnSum(Σ)
(1)

This measure assigns a higher quality score to a mapping that does not
conflict with other mappings, a conflict occurring when there exists another
mapping for the same source or target concept. This measure takes into account
the similarity score of the mappings, assigning a lower quality to mappings that
conflict with mappings of higher similarity.

@
@@i

j
0 1 2 3 4 5

0 0.45 0.70

1 0.30

2 0.60

3 0.50 0.90

4 0.80

5 0.40 0.10 0.90

Table 1: An example of a similarity
matrix. Empty cells have value 0.

Mapping Corr(mi) Inc(mi) CON(mi) PI(mi)

m1 1 1 0.00 1.00

m2 1 0 0.33 0.66

m3 2 1 0.33 0.5

Table 2: Examples for the Consensus (CON)
and Propagation Impact (PI) quality mea-
sures with MinCon = 3.

For the matrix of Table 1, the values of CSQ(m3,4) and CSQ(m2,2) are:

CSQ(m3,4) = 1− 1.2 + 1.4

1.4 + 1.6
= 0.13 CSQ(m2,2) = 1− 0.6 + 0.7

1.4 + 1.6
= 0.57

Mapping m2,2 has higher quality than m3,4 because m2,2 has only one conflict
with m5,2 while m3,4 has two conflicts, m1,4 and m3,1. Also, the conflicting
mapping m5,2 has lower similarity than the conflicting mappings m1,4 and m3,1,
further contributing to the difference in quality between m3,4 and m2,2.
Similarity Score Definiteness (SSD). This measure ranks mappings in in-
creasing order of quality. It evaluates how close the similarity σm associated with
a mapping m is to the similarity scores’ upper and lower bounds (respectively
1.0 and 0.0) using the following formula:

SSD(m) = |σm − 0.5| ∗ 2

SSD will assign higher quality to the mappings considered more definite in their
similarity score. The least definite similarity score is 0.5.



Consensus (CON). This measure ranks mappings in increasing order of qual-
ity. In the multi-user ontology matching scenario, a candidate mapping may be
labeled as correct by some users and as incorrect by others. In our approach we
assume that the majority of users are able to make the correct decision. The con-
sensus (CON) quality measure uses the concept of minimum consensus MinCon,
as defined in Section 2 to capture the user consensus gathered on a mapping at
a given iteration. Given a mapping m, CON(m) is maximum when the mapping
is labeled at least MinCon times as correct, denoted by Corr(m), or as incorrect,
denoted by Inc(m):

CON(m) =

{
1 if Corr(m) ≥ MinCon or Inc(m) ≥ MinCon
|Corr(m)−Inc(m)|

MinCon otherwise

Three examples of CON quality evaluation are shown in Table 2. According
to the consensus gathered among the users, the quality of mappings m2 and m3

is higher than the quality of mapping m1.

Propagation Impact (PI). This measure ranks mappings in decreasing order
of quality. Given the current set of user validations received by the system at
some iteration, PI estimates the impact of future user validations on the similar-
ity evaluation in the feedback propagation step of the loop. Using the concept of
minimum consensus (MinCon), PI tries to identify the mappings for which a new
validation will bring more information into the system. Intuitively, the mappings
that will introduce more information when validated are the ones that have the
same number of correct and incorrect validations. Because of the “tie” in user val-
idations, we have the least information about these mappings, thus by breaking
that tie the system makes a decision. Defining ∆Corr(m) = MinCon−Corr(m)
and ∆Inc(m) = MinCon− Inc(m), then:

PI(m) =

{
0 if Corr(m) = MinCon or Inc(m) = MinCon
min(∆Corr(m),∆Inc(m))
max(∆Corr(m),∆Inc(m)) otherwise

Considering the examples in Table 2, mapping m3 has the lowest PI score
(highest quality) because the number of times it was labeled as correct is close
to MinCon. Mapping m1 has the highest PI score (lowest quality) because we
are in a tie situation and new feedback on that mapping is required. Mapping
m2 has medium PI because one validation has been propagated but because it
is potentially incorrect, another validation is needed to improve the confidence
of the system about this mapping.

As can be seen from the example in Table 2, the intuition captured by
PI is slightly different from the one captured by CON. While CON(m2) =
CON(m3) = 1/3, m2 and m3 have different PI scores.

3.2 Quality-Based Candidate Selection
Every measure in our mapping quality model returns a quality score in the range
[0.0, 1.0]. In AMA, CSQ, SSD, and CON, a higher score represents a higher
mapping quality. Because we want to select the lowest quality, we subtract each



of these quality measures from 1. This quantity is represented using a − super-
script. We combine these quantities using well-known aggregation functions, e.g.,
maximum or average, to define different candidate selection strategies. We fur-
ther combine individual candidate selection strategies into a candidate selection
meta-strategy, which combines two candidate selection strategies: Disagreement
and Indefiniteness Average (DIA), which is used to select unlabeled mappings
(mappings that have not been validated by any user in previous iterations) and
Revalidation (REV), which is used to select already labeled mappings (mappings
that have been validated in previous iterations). Both strategies use quality mea-
sures that change over time and rank mappings at each iteration.

The DIA strategy uses the function DIA(m) = AVG(DIS(m),SSD−(m)).
It favors mappings that are at the same time the most disagreed upon by the
automatic matchers and have the most indefinite similarity values. The two
measures CON and PI cannot be used in this strategy because they consider
previous validations. After an experimental evaluation of different combinations
of the other quality measures, we found that the combination of DIS and SSD
(without CSQ) is the best combination of measures to find those mappings
that were misclassified by the automatic matchers. The limited effectiveness of
CSQ for ranking labeled mappings can be explained by the limited number
of mappings that are misclassified due to conflicts with other mappings. Our
mapping selection algorithm uses the similarity values generated by automatic
matchers to solve many of these potential conflicts in a correct way [11].

The second strategy, Revalidation (REV), ranks mappings using the function:

REV(m) = AVG(CSQ
−

(m),CON−(m),PI(m))

This strategy favors mappings with lower consensus and that could have changed
significantly, and harmfully, the quality of the current alignment. The analysis of
the users’ activity, which is explicitly captured by CON and PI, is crucial to this
strategy. In addition, since several mappings might have similar CON and PI
in the first iterations, REV favors also mappings with potential conflicts with
other mappings leveraging the CSQ measure. In this strategy, CSQ is preferred
to DIS and DSS because: i) to rank already labeled mappings, disagreement
among users, measured with CON and PI, is more informative than disagree-
ment among automatic matchers, measured by DIS, ii) labeled mappings will
have very definite similarity scores, and, therefore, very similar DSS scores, and
iii) more potential conflicts can emerge as more feedback is collected.

This meta-strategy uses two probabilities, pDIA and pREV, such that pDIA +
pREV = 1, which are associated respectively to the DIA and REV strategies. The
parameter pREV is called revalidation rate and is used to specify the proportion of
mappings presented to the users for validation that have been already validated
in previous iterations. We consider a constant revalidation rate, because we do
not have empirical data that shows whether the users make more (or fewer)
errors as the matching process unfolds. If such evidence is found, the revalidation
rate can be changed accordingly. The meta-strategy verifies also that the same
mapping (chosen from the REV list) is not presented for validation to the same
user more than once.



3.3 Quality-Based Feedback Propagation

When the selected mapping is validated by a user, the feedback is propagated by
updating a subset of the Similarity Matrix. We experimentally evaluated several
feedback propagation methods, including a method used in our previous work [5],
a method based on learning similarity scores with a logistic regression model,
and a method based on our user quality measures. For our experiments, we use
this last method, which we call Quality Agreement (QA) Propagation, because
it achieves the best trade-off between speed and robustness.

In QA Propagation, the similarity of the validated mapping is set to 1 or 0
depending on the label assigned by the user. To propagate the similarity to other
mappings, we compute the Euclidean distance between the signature vectors of
the validated mapping, denoted by mv, and the signature vectors of all the
mappings for which consensus has not been reached. A distance threshold thP
is used to identify the class of mappings most similar to the mapping labeled
by the user. The mappings in this class have their similarity increased if the
validated mapping is labeled as correct, and decreased otherwise. The change is
proportional to: 1) the quality of the labeled mapping and of the mappings in
the similarity class, measured respectively by two quality measures Q and Q′,
and 2) a propagation gain defined by a constant g such that 0 ≤ g ≤ 1, which
regulates the magnitude of the update. This constant will determine how much
the quality of the labeled mapping will affect the quality of the mappings in the
similarity class. After the propagation of a validation label(mv), the similarity
σt(mc) of a mapping mc in the similarity class at an iteration t is defined by:

σt(mc) =

{
σt−1(mc) +min (Q(mv) ∗Q′(mc) ∗ g, 1− σt−1(mc)) if label(mv) = 1

σt−1(mc)−min (Q(mv) ∗Q′(mc) ∗ g, σt−1(mc)) if label(mv) = 0

We adopt a conservative approach to propagation to make the system more
robust to erroneous feedback. We define Q(mv) = CON(mv) and Q′(mc) =
AVG(AMA(mc),SSD(mc)). Thus, the similarity of the mappings in this class is
increased/decreased proportionally to: i) the consensus on the labeled mapping,
and ii) the quality of the mappings in the similarity class. For example, for
CON(mv) = 0, the similarity of other mappings in the class is not updated. In
addition, when g = 0, the propagation function changes the similarity of the
validated mapping but not the similarity of other mappings in the class.

4 Experiments
Experimental Setup. Our experiments are conducted using four matching
tasks in the Benchmarks track of OAEI 2010, which consist of real-world bibli-
ographic reference ontologies that include BibTeX/MIT, BibTeX/UMBC, Karl-
sruhe and INRIA, and their reference alignments. We chose these ontologies
because they have been used in related studies [3–5, 7]. In the evaluation we use
two measures based on F-Measure:

Gain at iteration t, ∆F-Measure(t), is the difference between the F-Measure at
iteration t as evaluated after the Candidate Selection Step and the F-Measure
at the Initial Matching Step (see Section 2).
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Fig. 1: Each chart presents the results obtained with a different revalidation rate
(RR): (a) RR = 0.0; (b) RR = 0.1; (c) RR = 0.2; (d) RR = 0.3; (e) RR = 0.4;
(f) RR = 0.5. The dashed lines represent a propagation gain equal to zero.

Robustness at iteration t, Robustness(t), is the ratio at iteration t of the F-
Measure obtained under error rate er, FMER=er(t), and the F-Measure obtained
with zero error rate, FMER=0(t), for the same configuration. A robustness of 1.0
means that the system is impervious to error.

We conduct our experiments by simulating the feedback provided by the
users. Our focus is on the evaluation of methods that minimize the users’ overall
effort and make the system robust against users’ errors. This kind of simulation
is needed to comparatively assess the effectiveness of different candidate selection
and propagation methods before performing experiments with real users, where
presentation issues play a major role. We consider a community of 10 users, and
simulate their validation at each iteration using the reference alignment. We note
that we have made two assumptions that can be revised as they do not alter the
substance of the method. The first reflects the fact that we do not distinguish
among users as mentioned in Section 2 and therefore consider a constant error
rate for each sequence of validated mappings. The study of a community of
users might uncover an appropriate probability distribution function for the
error (e.g., Gaussian). The second assumption is related to the choice of Val,
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Fig. 2: Each chart presents the results obtained with a different revalidation rate
(RR): (a) RR = 0.0; (b) RR = 0.1; (c) RR = 0.2; (d) RR = 0.3; (e) RR = 0.4;
(f) RR = 0.5. Dashed lines represent a propagation gain equal to zero.

which following Section 2 we set to 5, and therefore MinCon = 3. Studying the
users could lead to setting Val so as to guarantee a desired upper bound for
the error rate. Without this knowledge, we considered several error rates while
keeping Val constant.

In the Initial Matching Step we use a configuration of AgreementMaker that
runs five lexical matchers in parallel. The LWC matcher [11] is used to combine
the results of five lexical matchers, and two structural matchers are used to
propagate the similarity scores. The similarity scores returned by these matchers
are used to compute the signature vectors. In our experiments we compute the
gain and robustness at every iteration t from 1 to 100, with four different error
rates (ER) (0.05, 0.1, 0.15, 0.2) and twelve different system configurations. The
configurations stem from six different revalidation rates (RR) (0.0, 0.1, 0.2, 0.3,
0.4, 0.5) used in the candidate selection strategy, and two different feedback
propagation gains, g = 0 and g = 0.5. When g = 0, the propagation step affects
only the mapping validated by the user, that is, it does not change the similarity
of other mappings. We set the threshold used for cluster selection at thP = 0.03.
This value is half the average Euclidean distance between the signature vectors
of the first 100 validated mappings and the remaining mappings with a non-
zero signature vector. Remarkably, this value was found to be approximately



the same for all matching tasks, thus being a good choice. In the Alignment
Selection Step we set the cardinality of the alignment to 1:1. The evaluation
randomly simulates the labels assigned by the users according to different error
rates. Every experiment is therefore repeated twenty times to eliminate the bias
intrinsic in the randomization of error generation. In the analysis of the results
we will report the average of the values obtained in each run of the experiments.

We also want to compare the results obtained with our model, which propa-
gates the user feedback at each iteration in a pay-as-you-go fashion, with a model
that adopts an Optimally Robust Feedback Loop (ORFL) workflow, inspired by
CrowdMap, a crowdsourcing approach to ontology matching [7]. In their ap-
proach, similarity is updated only when consensus is reached on a mapping,
which happens after five iterations when Val = 5. To simulate their approach we
modify our feedback loop in such a way that a correct validation is generated
every five iterations (it is our assumption that the majority decision is correct).
CrowdMap does not use a candidate selection strategy because all the mappings
are sent in parallel to the users. We therefore use our candidate selection strat-
egy with RR = 0 to define the priority with which mappings are validated and
do not propagate the similarity to other mappings.
Result Analysis. We ran our first experiment on two of the OAEI Benchmarks
ontologies, 101 and 303. We chose these ontologies because their matching pro-
duced the lowest initial F-Measure (0.73) when compared with the results for the
other matching tasks 101-301 (0.92), 101-302 (0.86) and 101-304 (0.93). Thus
we expect to see a higher gain for 101-303 than for the others. Table 3 shows
for each matching task the number of correct mappings, false positives, false
negatives, and the initial F-Measure.

Matching Task # Correct Mappings # False Positives # False Negatives F-Measure

101-301 50 6 2 92.31

101-302 36 5 5 86.11

101-303 40 23 4 72.73

101-304 74 9 2 92.90

Table 3: Results after the Initial Matching Step.

Figure 1 shows the gain in F-Measure after several iterations using differ-
ent configurations of our model and the ORFL approach. Each chart presents
results for a candidate selection strategy that uses a specific revalidation rate
(RR). Solid lines represent configurations with propagation gain g = 0.5, while
dashed lines represent configurations with zero propagation gain. Different colors
are associated with different error rates. The dotted line represent the results
obtained with the ORFL approach. In the charts, the steeper a curve segment
between two iterations, the faster the F-measure gain between those iterations.
It can be observed that our approach is capable of improving the quality of
the alignment over time. However, it is also the case that as time increases the
quality can decrease especially for lower revalidation rates, that is, primarily for
charts (a), (b), (c) of Figure 1. As the revalidation rate increases, ∆F-Measure(t)
always increases when the propagation gain is different from zero.



Figure 2 shows the robustness of different configurations evaluated at dif-
ferent iterations, varying both the error and the revalidation rates. Each chart
presents results for a candidate selection strategy that uses a specific revalidation
rate (RR). Solid lines represent configurations with propagation gain g = 0.5,
while dashed lines represent configurations with zero propagation gain. Different
colors represent results obtained with different error rates. Robustness decreases
as time increases and error rate increases, more noticeably for low revalidation
rates and for zero propagation gain. However, as revalidation rates increase, we
see a sharp increase in robustness.

We ran further experiments with three other matching tasks of the OAEI
2010 Benchmarks track. Table 4 contains the results for the three other tasks
(101-301, 101-302, 101-304) and shows ∆F-Measure(t) at different iterations
under two different error rates (0.0 and 0.1), two different revalidation rates (0.2
and 0.3), in different configurations with or without gain (Gain or NoGain),
for our pay-as-you-go workflow, together with a comparison with ORFL. We
discuss the results for an error rate up to 0.1 because the initial F-Measure in
these matching tasks is high (0.92, 0.86, and 0.93, respectively), therefore we
do not expect that users will make more errors than automatic matchers. In
the absence of error, our model always improves the quality of the alignment
for the three tasks faster than ORFL (except for iteration 100 of 101-304 where
both methods have the same gain of 0.05). For an error rate of 0.1, our model
performs better than ORFL for t = 10 for every matching task, and for t = 25
in two of them. For t = 50 it performs worse than ORFL for two of the tasks
and better for one of the tasks. For t = 100, ORFL always performs better.

ER RR CONF 101-301(0.92) 101-302(0.86) 101-304(0.92)

@10 @25 @50 @100 @10 @25 @50 @100 @10 @25 @50 @100

0.0 0.2 NoGain 0.03 0.05 0.05 0.05 0.03 0.05 0.06 0.08 0.0 0.05 0.05 0.05
0.0 0.2 Gain 0.03 0.04 0.04 0.05 0.03 0.06 0.06 0.08 0.0 0.05 0.05 0.05
0.0 0.3 NoGain 0.02 0.05 0.05 0.05 0.03 0.05 0.06 0.08 0.0 0.04 0.05 0.05
0.0 0.3 Gain 0.02 0.04 0.04 0.05 0.03 0.05 0.06 0.08 0.0 0.03 0.05 0.05

0.1 0.2 NoGain 0.03 0.04 0.01 -0.01 0.02 0.01 0.0 -0.02 0.0 0.03 0.03 0.0
0.1 0.2 Gain 0.03 0.03 0.01 0.0 0.02 0.03 0.01 0.01 0.0 0.03 0.03 0.00
0.1 0.3 NoGain 0.02 0.04 0.02 0.0 0.03 0.02 0.00 0.01 0.0 0.03 0.04 0.02
0.1 0.3 Gain 0.02 0.03 0.01 0.0 0.03 0.03 0.01 0.01 0.0 0.03 0.04 0.01

- 0.0 ORFL 0.0 0.02 0.04 0.05 0.01 0.03 0.05 0.05 0.0 0.0 0.0 0.05

Table 4: ∆F-Measure(t) for the matching tasks with higher initial F-Measure.

Finally, we establish a comparison between our multi-user approach, which
relies heavily on a quality model, and the single user approach of Shi et al. [4].
We want to determine which quality model performs better in our feedback loop
workflow. The candidate selection strategy used by Shi et al. uses three measures,
Contention Point, Multi-Matcher Confidence, and Similarity Distance, whose
intent is close to that of our quality measures CSC, AMA, and SSD. We ran an
experiment with the same ontologies, 101-303, that were used in Section 4 in an
error-free setting (like the one considered by Shi et al.), comparing two candidate



selection strategies with no propagation gain: one uses the best combination of
their three measures, while the other uses our approach with revalidation rate
equal to zero, as shown in Table 5. For the candidate selection strategy that uses
our measures, we obtain a ∆F-Measure(50) that is on average 3.8 times higher
than the ∆F-Measure(50) obtained with their measures.

Quality Measures F-Measure(0) @10 @20 @30 @40 @50 @100 F-Measure(100)

Active Learning [4] 0.73 0.01 0.02 0.05 0.08 0.12 0.15 0.88

AV G(DIS, SSD−) 0.73 0.05 0.12 0.14 0.16 0.19 0.26 0.99

Table 5: Comparison with selection strategy of Shi et al. [4], showing F-
measure(0), F-measure(100), and ∆F-Measure(t), for t = 10, 20, 30, 40, 50, 100.

Conclusions. From our experiments with four different matching tasks charac-
terized by different initial F-Measure values, we draw the following conclusions:

1. When users do not make errors, our method improves the quality of the align-
ment much faster in every matching task than an optimally robust feedback
loop (ORFL) method that labels a mapping only after having collected from
the users every validation needed to reach consensus.

2. An increasing error rate can be counteracted by an increasing revalidation
rate, still obtaining very good results for an error rate as high as 0.2 and a
revalidation rate of 0.5.

3. In the presence of errors, our approach is particularly effective when the
initial alignment has lower quality and includes a higher number of false
positives (see Table 3). In the matching task with lower initial F-Measure,
every configuration of our method improves the quality of the alignment
much faster than the optimally robust feedback loop method, even when
error rates are as high as 0.2. Propagating the feedback to mappings other
than the mapping labeled by the user at the current iteration shows a higher
gain in F-Measure in several of the experiments.

4. In the presence of errors, the F-Measure gain decreases after a certain number
of iterations, unless a high revalidation rate is used. The number of iterations
after which the gain in F-Measure decreases, which is clearly correlated with
the error rate, appears to also be correlated with the quality of the initial
alignment and, in particular, with the number of false positives (see Table 3).
For example, using a revalidation rate of 0.3 and an error rate of 0.1, the F-
Measure gain starts to decrease after 25 iterations in matching tasks with at
most six false positives in the initial alignment (101-301, 101-302), and does
not decrease before the 50th iteration in matching tasks where the initial
alignment contains at least nine false positives (101-303, 101-304).

5. When the error rate is unknown, a revalidation rate equal to 0.3 achieves a
good trade-off between F-measure gain and robustness because of the “sta-
bility” of the results as displayed in the (d) charts of Figures 1 and 2. We
note that propagation leads to better results for the F-measure gain than
for robustness.

6. Propagation leads in general to better results (F-measure gain and robust-
ness) than no propagation. There are however, a few exceptions. The most



notorious is for ER=0.2 and RR=0.2. In this case, it appears that errors get
propagated, without being sufficiently counteracted by revalidation. When
revalidation increases to RR=0.3 then the results with propagation and with-
out propagation are very close but propagation wins for RR=0.4 and 0.5.

7. According to our results, the revalidation rate should be changed over time,
starting with a lower revalidation rate and then switching to a higher reval-
idation rate. The higher the error, the sooner the switch should occur.

5 Related Work

Leveraging the contribution of multiple users has been recognized as a fundamen-
tal step in making user feedback a first class-citizen in data integration systems,
such as those for schema and ontology matching [6, 7]. Ontology matching ap-
proaches relying on the feedback provided by a single user are a precursor to
multi-user systems. They include the work of Shi et al. [4], Duan et al. [3], and
Cruz et al. [5]. Shi et al. use an active learning approach to determine an optimal
threshold for mapping selection and propagate the user feedback using a graph-
based structural propagation algorithm. Duan et al. use a supervised method to
learn an optimal combination of both lexical and structural similarity metrics.
Cruz et al. use signature vectors that identify the mappings for which the system
is less confident and propagate the validated mappings based on the similarity of
signature vectors; the overall goal is to reduce the uncertainty of the mappings.
Shi et al. and Cruz et al. use a (static) candidate selection strategy.

In multi-user scenarios, several opportunities arise, such as the possibility of
gathering consensus on mappings, as well as challenges, such as the need to deal
with noisy feedback [6, 7]. Many multi-user scenarios use crowdsourcing on a web
platform: for example, CrowdMap [7] for ontology matching and ZenCrowd [12]
for data linking. As in our multi-user feedback approach, both CrowdMap and
ZenCrowd engage multiple workers to solve a semantic-based matching task and
use revalidation. However, CrowdMap does not integrate automatic matching
methods with user feedback and does not investigate methods for candidate
mapping selection nor feedback propagation.

Workers may not have specific skills nor a specific interest in the task that
they perform other than the monetary reward that they get. Therefore, strate-
gies are needed to assess their performance. For example, McCann et al. [13]
classify workers as trusted or untrusted. Another example is provided by Osorno-
Gutierrez et al. [14], who investigate the use of crowdsourcing for mapping
database tuples. They address the workers’ reliability, identifying both workers
whose answers may contradict their own or others’. Meilicke et al. [9] propose
a reasoning approach to identify the inconsistencies after manual mapping revi-
sion by human experts. One of their strategies is to remove some mappings from
the search space based on the cardinality of the alignment (e.g., using the 1:1
cardinality assumption). Our feedback model works prominently on the similar-
ity matrix: a desired cardinality constraint can be specified by configuring the
alignment selection algorithm (Step 7).



Similarly to some single-user feedback strategies, the recent crowdsourcing
approach of Zhang et al., aims to reduce the uncertainty of database schema
matching [15] measured in terms of the entropy computed using the probabilities
associated with sets of tuple correspondences, called matchings. They proposed
two algorithms that generate questions to the crowd. Best candidates are those
that can obtain highest certainty with lowest cost. In comparison with our ap-
proach, they do not obtain consensus on a mapping and each mapping is only
validated once.

6 Conclusions and Future Work
A multi-user approach needs to manage inconsistent user validations dynamically
and continuously throughout the matching task, while aiming to reduce the
number of mapping validations so as to minimize user effort. In this paper, we
presented a mapping model that uses quality measures in the two main steps
of the system: the Candidate Mapping Selection and the Feedback Propagation
steps. In the first step, a dynamic mechanism ranks the candidate mappings
according to those quality measures so that the mappings with lower quality
are the first to be presented for validation, thus accelerating the gain in quality.
In the second step similarity among mappings is used to validate mappings
automatically without direct user feedback, so as to cover the mapping space
faster.

Our experiments brought clarity on the trade-offs among error and revalida-
tion rates required to minimize time and maximize robustness and F-measure.
Our strategies show under which circumstances we can afford to be “aggressive”
by propagating results from the very first iterations, instead of waiting for a
consensus to be built.

Future work may consider user profiling, so that there is a weight associated
with the user validations and how they are propagated depending on the feedback
quality. In this paper we tested different constant error rates to model a variety
of users’ behavior as an aggregate. Other models may take into account the
possibility that users’ engagement decreases along time due to the repetitiveness
of the validation task, thus leading to an increasing error rate, or that in certain
situations users learn with experience and make fewer errors, thus leading to
a decreasing error rate. We therefore plan to perform studies to determine the
impact of users’ behavior along time on the error distribution so as to change
the candidate selection meta-strategy accordingly. Our overall strategy could also
be modified to present one mapping together with several mapping alternatives.
In this case, the visualization of the context for those alternatives could prove
beneficial. This visualization can be included in a visual analytics strategy for
ontology matching [5] modified for multiple users.

Acknowledgments

This work was supported in part by NSF Awards CCF-1331800, IIS-1213013,
IIS-1143926, and IIS-0812258, by a UIC-IPCE Civic Engagement Research Fund
Award, and by the EU FP7-ICT-611358 COMSODE Project.



References
1. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag, Heidelberg (DE)

(2007)
2. Cruz, I.F., Sunna, W.: Structural Alignment Methods with Applications to Geospa-

tial Ontologies. Transactions in GIS, Special Issue on Semantic Similarity Mea-
surement and Geospatial Applications 12(6) (December 2008) 683–711

3. Duan, S., Fokoue, A., Srinivas, K.: One Size Does Not Fit All: Customizing Ontol-
ogy Alignment Using User Feedback. In: International Semantic Web Conference
(ISWC). Volume 6496 of Lecture Notes in Computer Science., Springer (2010)
177–192

4. Shi, F., Li, J., Tang, J., Xie, G., Li, H.: Actively Learning Ontology Matching
via User Interaction. In: International Semantic Web Conference (ISWC). Volume
5823 of Lecture Notes in Computer Science., Springer (2009) 585–600

5. Cruz, I.F., Stroe, C., Palmonari, M.: Interactive User Feedback in Ontology Match-
ing Using Signature Vectors. In: IEEE International Conference on Data Engineer-
ing (ICDE), IEEE (2012) 1321–1324

6. Belhajjame, K., Paton, N.W., Fernandes, A.A.A., Hedeler, C., Embury, S.M.: User
Feedback as a First Class Citizen in Information Integration Systems. In: Confer-
ence on Innovative Data Systems Research (CIDR). (2011) 175–183

7. Sarasua, C., Simperl, E., Noy, N.F.: CrowdMap: Crowdsourcing Ontology Align-
ment with Microtasks. In: International Semantic Web Conference (ISWC). Vol-
ume 7649 of Lecture Notes in Computer Science., Springer (2012) 525–541

8. Bourdaillet, J., Roy, S., Jung, G., Sun, Y.A.: Crowdsourcing Translation by Lever-
aging Tournament Selection and Lattice-Based String Alignment. In: AAAI Con-
ference on Human Computation and Crowdsourcing (HCOMP). Volume WS-13-
18., AAAI (2013)

9. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Supporting Manual Mapping Re-
vision Using Logical Reasoning. In: National Conference on Artificial Intelligence
(AAAI), AAAI Press (2008) 1213–1218

10. Cruz, I.F., Palandri Antonelli, F., Stroe, C.: AgreementMaker: Efficient Matching
for Large Real-World Schemas and Ontologies. PVLDB 2(2) (2009) 1586–1589

11. Cruz, I.F., Palandri Antonelli, F., Stroe, C.: Efficient Selection of Mappings and
Automatic Quality-driven Combination of Matching Methods. In: ISWC Interna-
tional Workshop on Ontology Matching (OM). Volume 551 of CEUR Workshop
Proceedings. (2009) 49–60
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