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Abstract The creation of links between schemas of published datasets is a key part of the
Linked Open Data (LOD) paradigm. The ability to discover these links “on the go” requires
that ontology matching techniques achieve good precision and recall within acceptable exe-
cution times. In this paper, we add similarity-based and mediator-based ontology matching
methods to the AgreementMaker ontology matching system, which aim to efficiently dis-
cover high precision subclass mappings between LOD ontologies. Similarity-based matching
methods discover subclass mappings by extrapolating them from a set of high quality equiv-
alence mappings and from the interpretation of compound concept names. Mediator-based
matching methods discover subclass mappings by comparing polysemic lexical annotations
of ontology concepts and by considering external web ontologies. Experiments show that
when compared with a leading LOD approach, AgreementMaker achieves considerably
higher precision and F-measure, at the cost of a slight decrease in recall.
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1 Introduction

The linked data paradigm identifies a set of best practices to publish and share datasets on the
web (Bizer et al. 2009). To integrate information, it is crucial to establish correct links among
data, in what constitutes the Linking Open Data (LOD) cloud. The problem of establishing
links between datasets (Volz et al. 2009; Bizer et al. 2009) is closely related to the problem
of ontology matching that has been investigated in the semantic web and in the database
communities (Euzenat and Shvaiko 2007; Rahm and Bernstein 2001).

The nature of the LOD cloud is changing due to the publication of semantic sensor data
(Le-Phuoc et al. 2010), for example for traffic or environment monitoring (Valle et al. 2011;
Gray et al. 2011). These are large and rapid evolving datasets, which will need efficient
ontology matching strategies. In the LOD domain, tools like DBpedia Spotlight (Mendes
et al. 2011) extract entities from unstructured documents at runtime. However, these tools
consider only a single dataset and are not able to link the extracted data to other datasets
and ontologies. Outside of the LOD domain, an “on the go” approach establishes a transi-
tory agreement between parts of the agents’ ontologies (Besana and Robertson 2005), for
example, by modifying an existing ontology matching method, it can dynamically emphasize
some mappings over others, so as to improve efficiency. A major difficulty in the creation
of “on the go” strategies is that existing ontology matching systems do not yet meet the
requirements of accuracy and of efficiency that are needed for the processing of large linked
datasets. Therefore, the focus of this paper is on LOD ontology matching.

When performing ontology matching in the LOD setting, challenges include poor textual
descriptions, a flat structure, cross-domain coverage, and concepts imported from external
ontologies. Another challenge is that many ontology matching systems are better tailored to
the discovery of equivalence relations. This is clearly a drawback in matching LOD ontolo-
gies because only a few equivalence relations can be found among concepts in highly heter-
ogeneous ontologies. Therefore, the capability to discover other relations, such as subclass
relations, is crucial.

Prior work in LOD ontology matching has been performed by the BLOOMS system (Jain
et al. 2010). This work has introduced a new matching approach based on searching Wiki-
pedia pages related to the ontology terms: the categories extracted from these pages are then
organized into graphs and used to match the ontology terms. In the LOD setting, BLOOMS
performs better than systems that have been designed to work in “classic” ontology matching
settings based on equivalence mappings, such as those in the Ontology Alignment Evaluation
Initiative (OAEI) (Euzenat et al. 2009, 2010, 2011). In contrast, those systems outperform
BLOOMS in the “classic” setting (Euzenat et al. 2011). Therefore, none of these systems is
a top performer in both “classic” and LOD settings.

In this paper, we extend the AgreementMaker ontology matching system,1 (Cruz et al.
2009a,b), which has obtained some of the best results in the OAEI (Cruz et al. 2009c, 2010,
2011b), with the objective of testing its viability in the LOD domain. In this paper we address
the following two questions: (1) How can a top performing system like AgreementMaker be
extended to handle mappings other than equivalence mappings? (2) Can AgreementMaker
achieve top accuracy and efficiency in the LOD domain?

1 http://www.agreementmaker.org.
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To address the first question, we develop four new ontology matching methods. A first cat-
egory of matching methods compares directly a source and a target ontologies and includes:
(i) the Equivalence Mappings Extension method, which uses a set of equivalence mappings
discovered with high confidence to infer subclass and superclass mappings, and (ii) the
Compound Noun Analysis method, which discovers subclass and superclass mappings by
analyzing compound names that are often used to identify ontology concepts. A second
category of matching methods exploit third party ontologies that are used as mediators and
includes: (i) the Distance-based Polysemic Lexical Comparison method, which automatically
annotates ontology concepts with lexical concepts taken from a background terminology and
then compares these lexical annotations to discover subclass and superclass mappings, and
(ii) the Global Matching method that infers subclass and superclass mappings by looking at
how the concepts are used in popular web ontologies.

As for the second question, we show that our approach achieves results in LOD ontol-
ogy matching that are considerably better than other ontology matching systems in terms
of precision and F-measure. In terms of recall, our approach is the second best, just slightly
below that of the BLOOMS system. In addition, our approach is more efficient in terms of
execution time than BLOOMS and has the advantage that it consists of methods that can
be integrated with an existing ontology matching system. To the best of our knowledge,
AgreementMaker is currently the only system that achieves top performance both in the
“classic” and LOD domains.

In comparison with the preliminary version of this paper (Cruz et al. 2011a), we have
introduced the following modifications:

– we have four specialized matching methods, which replace the two previous methods
– we improve the capability to discover subclass mappings by analyzing compound nouns,

using a stand-alone method
– we extend the use of a background terminology by exploiting polysemic lexical annota-

tions and the distance between concepts in the terminology hierarchy
– we extend the experimental evaluation providing an in-depth analysis of the results

achieved by each method

The paper is organized as follows. The proposed methods to improve ontology matching
in the LOD domain are described in Sects. 2, 3, and 4. The experimental evaluation of the
proposed approach, based on previously proposed reference alignments (Jain et al. 2010) is
discussed in Sect. 5. Related work is discussed in Sect. 6. Finally, concluding remarks end
the paper in Sect. 7.

2 Matching LOD ontologies: approach overview

Given a source ontology S and a target ontology T , a mapping is a triple 〈cS, cT , r〉 where cS

and cT are concepts in S and T , respectively, and r is a semantic relation that holds between
cS and cT .

A set of mappings is called an alignment. A reference alignment or gold standard is an
alignment found by experts, against which the accuracy of other alignments, as measured
in terms of precision and recall, can be determined. In ontology matching one attempts
to find as many accurate mappings as possible using matching algorithms, which we call
matchers.

We consider three types of semantic relations: subclass of (�), superclass of (�), and
equivalence (≡), all interpreted according to their usual semantics in OWL (Staab and
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Table 1 Categorization of our matching algorithms

Matcher Acr Cat Rel Lex

Equivalence mappings extension EME dir �,�, ≡
Compound noun analysis CNA dir �,� �
Distance-based polysemic lexical comparison DPLC med �,� �
Global matching GM med �,�

Studer 2004). Given these relations, we can define three types of mappings: 〈cS, cT ,�〉,
meaning that cS is a subclass of cT , 〈cS, cT ,�〉 meaning that cS is a superclass of cT , and
〈cS, cT ,≡〉, if, and only if, 〈cS, cT ,�〉 and 〈cS, cT ,�〉. In this case, cS and cT are equivalent
classes.

Our approach to matching LOD ontologies integrates four methods grouped into two
main categories. Each method has been implemented in a matcher and addresses a particular
matching pattern as explained below.

Direct mapping discovery. These methods discover mappings between the source
and target ontologies by directly comparing their concepts using a similarity metric. The
first method, called Equivalence Mappings Extension (EME), uses a similarity metric to
discover a set of equivalence mappings, from which two sets of subclass and superclass
mappings are inferred. The second method, called Compound Noun Analysis (CNA), dis-
covers subclass and superclass mappings by analyzing the compound names that are used
as local names in several concepts (e.g., SportsEvent is mapped to Event by a subclass
relation).

Mediator-based mapping discovery. These methods make use of third-party ontolo-
gies playing the role of mediators to discover subclass and superclass mappings between
the source and target ontologies. The first method, called Distance-based Polysemic Lexical
Comparison (DPLC), is based on the lexical annotation of ontology concepts with termi-
nology concepts organized in a hierarchy. Subclass and superclass mappings between ontol-
ogy concepts are discovered by comparing their lexical annotations. This method adopts an
approximate matching technique that handles polysemic annotations of ontology concepts,
which associate more than one terminology concept to each ontology concept. The distance
between the terminology concepts in the hierarchy is also considered. The second method,
called Global Matching (GM), discovers subclass and superclass mappings that involve con-
cepts defined in external ontologies by looking at how these concepts are used in other popular
web ontologies.

The four proposed matchers and their main features are summarized in Table 1. In the
acronym (Acr) column, the acronyms used in the paper for each matcher are listed. In the
category (Cat) column, we report if a matcher follows a direct (dir) or mediator-based (med)
matching approach. In the relations (Rel) column, we report the kind of semantic relations
considered. Finally, in the lexical (Lex) column, we report which matchers use lexical analysis
as their main component.

The alignment Alignment (S, T ) between a source ontology S and a target ontology T is
defined as the union of the sets of mappings determined by the four matchers, EME, CNA,
DPLC, and GM.

In the rest of the paper, we will use the following notation. Given a matcher M, Mr denotes
the mappings discovered by M whose relation is r (as an example, E M E� denotes the set
of subclass mappings discovered by EME).
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3 Similarity-based mapping discovery

Equivalence mappings are discovered by evaluating a similarity value in the interval [0,1]
between every pair 〈cS, cT 〉 of source and target concepts, denoted sim(cS, cT ). The sim-
ilarity value is a measure of the confidence with which we believe that the two concepts
are semantically equivalent. We use the Advanced Similarity Matcher (ASM) to compute the
similarity sim(cS, cT ) between two concepts cS and cT . ASM is a very efficient matcher that
evaluates the string-based similarity between two concepts using their local names and their
labels (Cruz et al. 2010). Two concepts are considered equivalent when their similarity is
higher than a threshold th≡.

We slightly modified ASM to detect different spellings of the same word, for example
(Organization, Organisation) and (T heater, T heatre). These apparently small differ-
ences are not always captured by string similarity algorithms, but simple linguistic rules like
this one significantly improve the capability to discover equivalence mappings.

3.1 Equivalence Mappings Extension

The Equivalence Mappings Extension (EME) matcher computes the similarity values
between all the possible pairs of concepts and stores the results in a similarity matrix. For each
pair of concepts and a threshold th≡, such that sim(cS, cT ) ≥ th≡, the mapping 〈cS, cT ,≡〉
is included in the set of equivalence mappings EME≡.

Starting with EME≡, we build EME� and EME� by considering subclasses and super-
classes of the concepts cS and cT that appear in the mappings 〈cS, cT ,≡〉 ∈ EME≡. We add
to the set EME� (respectively, EME�) all the triples 〈xS, cT ,�〉 (respectively, 〈cS, xT ,�〉)
such that xS is a subclass of cS (respectively, cT is a subclass of xT ).

The selection of the equivalence mappings must be even more accurate in the LOD domain
than what is required in traditional ontology matching scenarios (Euzenat et al. 2011); this
is a consequence of the importance of subclass and superclass mappings. When equivalence
mappings are used to infer subclass mappings, a wrongly determined equivalence mapping
can propagate an error to all the derived mappings. For this reason, in the LOD domain we
set a very high threshold, e.g., 0.95, while in several other domains thresholds in the range
[0.6, 0.8] are usually adopted (Cruz et al. 2010).

3.2 Compound Noun Analysis

When the names of the concepts in the ontologies are compound, that is, when they are formed
by multiple words, matchers such as ASM, which is highly specialized for the equivalence
relation, are not able to capture other relations that are implicitly specified in the compound.
For example, SportsEvent denotes a narrower concept than Event, thus a subclass relation
should be directly inferred from their names (under the assumption that the two concepts
share the same meaning for the term Event).

An exhaustive classification of compounds in English has been proposed and is shown in
Fig. 1 (Plag 2003). The majority of the compounds has a modifier-head structure, where the
head, the most important unit, usually determines the gender, part-of-speech, and the general
meaning. This general meaning is then modified by the other terms, restricting the meaning
of the compound to a more specific concept. In the previous example, Event is the head and
Sports is a modifier.

When the names of the concepts to be matched are compound, we use a best effort
approach that produces good results in practice. We consider only endocentric compounds,
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Fig. 1 Classification of compounds (i.e., compound words) in English (Plag 2003)

which are compounds with the head occurring in the compound itself (e.g., Sports Event),
because they are the vast majority in English and cover up to 78% of the compounds used
in schema and ontology concept names according to a recent study (Sorrentino et al. 2010).
For these compounds, we are interested in detecting the head, as it provides meaningful
information for inferring subclass relations. It has been observed that, in English, the heads
of endocentric compounds always occur on their right-hand side (Williams 1981). We use
this knowledge to extract the heads and then attempt to find correspondences between these
main nouns and the names of the concepts using ASM. Based on these correspondences,
we extrapolate subclass and superclass mappings. In particular, let head(c) be the head of a
compound denoting the concept c. If sim(head(cS), cT )) ≥ th≡, then 〈cS, cT ,�〉 ∈ CNA�;
if sim(cS, head(cT )) ≥ th≡, then 〈cS, cT ,�〉 ∈ CNA�.

4 Mediator-based mapping discovery

In this paper, we consider two different types of mediators, namely background terminologies
and web ontologies. Web ontologies are ontologies represented in a semantic web language
(e.g., RDFS or OWL (Staab and Studer 2004)) and available on the web.

A background terminology is any knowledge structure organized in a concept hierarchy.
It can be represented by a triple OT = (C, T,	), where C is a set of terminology concepts,
T is a set of terms (also called labels) and 	 is a hyponymy relation defined by a partial order
over C . Given two terminology concepts w1 and w2, the relation w1 	 w2 means that w1 is
more specific than w2. In this case, w1 is a hyponym of w2, and, conversely, w2 is a hypernym
of w1. Each concept is associated with a set of synonymous terms (synonyms). Conversely,
a term can be associated with one or more concepts (polysemy).

Background terminologies encompass knowledge structures such as lexicons and other
taxonomies where multiple labels are associated with a concept. In this paper, we use WordNet
as background terminology, whose concepts are called synsets, each one usually associated
with more than one term (synonym).

Although background terminologies and web ontologies share a similar hierarchical struc-
ture, the semantics of the relations on which their respective hierarchies are based is different:
while in a web ontology c1 � c2 means that c1 is subclass of c2, that is, every instance of c1

is also an instance of c2, in a terminology the hyponym relation cannot be assumed to have
such formal semantics. In other words, it can be the case that w1 	 w2 while w1 
� w2. For
example, the terminology concept Hazard is defined in WordNet as “a source of danger; a
possibility of incurring loss of misfortune”. Following the hypernym hierarchy, Hazard has
Physical Entity among its hypernyms. However, “drinking alcohol” (mentioned in WordNet
as an example of Hazard) can hardly be considered an instance of Physical Entity. Another
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Fig. 2 WordNet synsets for the ontology concepts Actor (source) and Person (target). Each ellipse repre-
sents a WordNet synset with its set of terms. The synsets associated with the source and target concepts are
highlighted respectively in red and blue. The arrows represent the hyponym relation. (Color figure online)

difference between background terminologies and web ontologies is the lack of a systematic
coverage of polysemy and synonymy in web ontologies. The consideration of these impor-
tant differences leads to the design of different matching methods depending on the type of
mediator, as further described in the rest of this section.

4.1 Distance-based Polysemic Lexical Comparison

We compare every concept of the source ontology with every concept in the target ontology.
The key idea of our algorithm is that given a source concept cS lexically annotated with
a terminology concept wcS and a target concept cT lexically annotated with wcT , we can
add a subclass mapping 〈cS, cT ,�〉 (respectively, a superclass mapping 〈cS, cT ,�〉) when
wcS 	 wcT (respectively, wcT 	 wcS ) holds in the terminology.

However the simple idea sketched above encounters two problems:

1. It can be very difficult to annotate an ontology concept with exactly one terminology
concept for two reasons. The first one is that information needed to automatically disam-
biguate among several candidate annotations can be inadequate. For example, in Fig. 2
there are three sets of synonyms associated with the concept Person (highlighted in
blue), and there is no empirical evidence of one being more appropriate than the others.
Therefore, they should all be considered in the following steps. The second reason is
that a terminology can provide several concepts with similar meaning, which can all
be considered correct annotations for the ontology concept (Po and Sorrentino 2011).
In Fig. 2, the two sets of synonyms associated with the concept Actor (highlighted in
red) are very similar and can be both considered correct annotations for the ontology
concept. Therefore, the matching algorithm has to handle the case in which concepts are
associated with multiple lexical annotations.

2. In general, the semantics of the relation 	 is different from the semantics of the subclass
relation �. Therefore, the more distant two terminology concepts are in the terminol-
ogy hierarchy, the higher the probability that they are weakly related, and, therefore, the
higher the probability that the inferred mapping among the ontology concepts is wrong.
The distance (length of the path) between two lexical annotations on the terminology
hierarchy can be used to assign a confidence score to the inferred mapping.

We address these two problems with an algorithm consisting of three steps.
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Step 1. Polysemic Lexical Annotation with Word Sense Disambiguation. Each concept
in the source (respectively, target) gets associated with a set of concepts in the background
terminology. This association is made through the concept labels: every time a label matches
exactly a concept in the source (respectively, target) ontology, then that terminology concept
becomes associated with the source (respectively, target) concept. Given a concept c, the set
of the terminology concepts associated with it is denoted by BSTc (for Background Synonym
Terminology). In Figs. 2 and 3, two graphs involving the terminology concepts are shown,
where the elements of BSTcS (Actor and Agent) are highlighted in red and the BSTcT concepts
(Person and Group), are highlighted in blue.

However, to improve the accuracy of lexical annotation, we apply word sense disambig-
uation techniques (Po and Sorrentino 2011). Some concepts in the ontologies have a textual
description (usually included in rdfs:comment), while in WordNet all the sets of synonyms
are described in a definition. We create a virtual document associated with each concept
and with each synset, after performing stop word removal and stemming. The virtual docu-
ments are then compared using a vector space model approach based on the cosine similarity
measure. These techniques were already implemented in one of our matchers called Vec-
tor-based Multi-word Matcher (VMM), extensively used in the OAEI (Cruz et al. 2009c).
In addition to comments and definitions, we also included in the documents the first
level of the concepts’ superclasses, since they proved to be particularly useful for dis-
ambiguation. After the similarity values are computed, the actual disambiguation is per-
formed. If the degree of similarity between a concept and a related synset is higher than
a given threshold, only those will be kept for further processing, thus narrowing the set
BSTc into a subset BSTc. The threshold has been experimentally set to 0.3, a high value
for cosine similarity. This leads to an improvement in precision, while not penalizing
recall.

Step 2. Background Hypernym Terminology Construction. Each concept in the source
(respectively, target) gets associated with a set of hypernyms from the background terminol-
ogy. This association is made by means of the previously built sets of synonyms. Given a
concept c, we consider each concept in BSTc and extract its hypernyms in the background
terminology. Finally, we take the union of all such sets, thus obtaining a set for each concept
c denoted BHTc (for Background Hypernym Terminology).

Step 3. Mapping Inference. We use the sets obtained in the previous two steps to build the
sets of subclass and superclass mappings denoted respectively by DPLC� and DPLC�.

Our mediator-based approach relies on the conversion of hypernym relations into sub-
class relations, the latter being interpreted according to their well-known OWL semantics.
We denote the correct (e.g., as determined by a pool of experts) annotations for the source
concept cS and of the target concept cT as wcS and wcT , respectively. We then define the
hyponym-to-subclass conversion factor (hsc) as the probability that a source concept cS is a
subclass of a target concept cT , given that wcS is a direct hyponym of wcT :

hsc = P(cS � cT |wcS 	1 wcT ) (1)

where 	1 denotes the direct hyponymy relation. We note that the hsc factor can change
depending on the terminology. We empirically estimated hsc to be 0.9 in WordNet, based on
the manual inspection of a few dozen branches of the WordNet concept hierarchy.

Now we can define the metric that computes the confidence value associated with the exis-
tence of a subclass mapping between a source and a target concept. We call this confidence

123



136 I. F. Cruz et al.

value the single-annotation subclass evidence score, denoted by saScore(cwcS
S , cwcT

T ). This
metric, which is based on the propagation of the hsc factor along the path between wcS and
wcT with length denoted by dist(wcS , wcT ), is computed as follows:

saScore(cwcS
S , cwcT

T ) =
{

P(cS � cT |wcS 	 wcT ) if wcS 	 wcT

0 if wcS 
	 wcT
(2)

where P(cS � cT |wcS 	 wcT ) is defined as follows:

P(cS � cT |wcS 	 wcT ) =
dist (wcS ,wcT )−1∏

i=1

P(cS � cT |wi 	1 wi+1) (3)

where w1 = wcS , wdist (wcS ,wcT ) = wcT

= hscdist (wcS ,wcT )

We also compute saScore(cwcT
T , cwcS

S ) by adapting Eqs. 2 and 3 accordingly.
Finally, we need to consider that according to the lexical annotation strategy adopted,

an ontology concept may be annotated with more than one terminology concept. We there-
fore define a polysemic subclass evidence score that aggregates the single-annotation sub-
class evidence scores for all the lexical annotations. The polysemic subclass evidence score
polyScore(cS, cT ) is defined as follows:

polyScore(cS, cT ) =
∑

wi ∈BSTcS ,w j ∈BHTcT
saScore(cwi

S , c
w j
T )

log(|BHTcT |) (4)

We use a normalization factor in the denominator that is based on the size of the Back-
ground Hypernym Terminology, BHTcT , which is associated with the target concepts. In
fact, the bigger this set is, the higher the probability of finding matchings between sets of
synonyms and hypernyms. Because the size of these sets grows rapidly when the length of
the paths increases, we use the logarithm of BHTcT . We also compute polyScore(cT , cS) by
adapting Eq. 4 accordingly.

In Fig. 2, there are two paths connecting the source and target terminology concepts,
respectively associated with the source concept Actor and with the target concept Person.
The first path (of length one) gets associated with an saScore of 0.9, while the second path
(of length three) gets associated with a value of 0.729. These values are then added and nor-
malized by applying the natural logarithm of BHTcS , which in this case is 10 (the hypernyms
of Person are not shown for simplicity). The overall score (0.707) is above the threshold
we experimentally set, and therefore a mapping between the ontology concepts Actor and
Person will be included in DPLC�.

In Fig. 3, there is only one path connecting the source and target terminology concepts,
even though the graph is significantly larger than in the previous example. This path (of
length five) gets associated with an saScore of 0.59. After normalization, the overall score
obtained (0.186) is below the threshold, and therefore that mapping will not be included in
DPLC�.

The polysemic subclass evidence score can be adopted to infer both subclass and super-
class relations. In fact, given a subclass score threshold th�, the set of subclass mappings
and superclass mappings returned by this matcher can be defined as follows:
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DPLC� = {〈cS, cT ,�〉|polyScore(cS, cT ) ≥ th� and (5)

polyScore(cS, cT ) ≥ polyScore(cT , cS)}
DPLC� = {〈cS, cT ,�〉|polyScore(cT , cS) ≥ th� and

polyScore(cT , cS) ≥ polyScore(cS, cT )}
4.2 Global Matching

LOD ontologies often use several concepts (e.g., foaf:Person in the ontology of the Semantic
Web Conference) that are imported from other ontologies and therefore need to be considered
in the matching process. In traditional ontology matching scenarios, this kind of interlinking
is rarer.

The Global Matching (GM) method is introduced to improve matching over external con-
cepts. This method is based on the fact that several external concepts used in LOD ontologies,
such as wgs84_pos:SpatialThing in the GeoNames ontology, are used across different ontol-
ogies. Such external concepts can help in discovering additional mappings. For example, it is
possible to determine that a mapping exists between dbpedia:Person and wgs84_pos:Spatial-
Thing if foaf:Person has been defined as a subclass of wgs84_pos:SpatialThing elsewhere.

Our GM method works as follows. For each source concept cS that has been imported
from an external ontology E , we search across several LOD ontologies for all concepts that
have been defined as subclasses of cS and we match these concepts with the concepts of the
target ontology using the ASM matcher. We proceed similarly for each target concept cT .
More specifically, if there is in some external ontology E a concept xE such that xE has
been defined as subclass of cS (respectively, cT ) and for some concept cT (respectively, cS)
sim(xE , cT ) ≥ th≡ (respectively, sim(cS, xE ) ≥ th≡), then 〈cS, cT ,�〉 ∈ G M� (respec-
tively, 〈cS, cT ,�〉 ∈ G M�).

The external ontologies that we use to search for external concepts are listed in a registry.
We included in the registry web ontologies that have either been defined by a recognized
institution such as the W3C consortium (e.g., Event Ontology,2 WGS84 Geo Position-
ing,3 and Media Ontology)4 or are well known and used by a wide community of users
(e.g., DBPedia,5 FOAF,6 and Freebase).7

These ontologies often reuse the most important concepts of third party ontologies. For this
reason, they provide good background knowledge, because of the shared external concepts.

5 Experimental results

Table 2 lists the ontologies that we have used for our experiments, which are the same that
were considered by the BLOOMS system8 (Jain et al. 2010). We note that no other bench-
mark has been has been set for the LOD domain. The table shows the number of concepts in
the ontologies and the number of external ontologies that they import. The evaluation settings

2 http://motools.sourceforge.net/event/event.html.
3 http://www.w3.org/2003/01/geo/wgs84_pos.
4 http://www.w3.org/TR/mediaont-10/.
5 http://dbpedia.org/ontology/.
6 http://xmlns.com/foaf/spec/.
7 http://rdf.freebase.com/rdf/base.fbontology.
8 http://wiki.knoesis.org/index.php/BLOOMS.
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Table 2 Ontologies in the experimental dataset (Jain et al. 2010)

Ontology Id # Classes # Imported ontologies

AKT portal AKT 169 1

BBC program BBC 100 2

DBpedia DBp 257 0

FOAF FOAF 16 0

GeoNames GN 10 0

Music ontology MO 123 8

Semantic web conference SWC 172 0

SIOC SIOC 15 0

Table 3 Comparison of S-Match, Aroma, BLOOMS (Jain et al. 2010), and AgreementMaker, with maxi-
mum values for each matching task in bold

Matching task S-Match AROMA BLOOMS AgreementMaker

Prec Rec F-m Prec Rec F-m Prec Rec F-m Prec Rec F-m

FOAF-DBp 0.11 0.40 0.17 0.33 0.04 0.07 0.67 0.73 0.70 0.80 0.90 0.85

GN-DBp 0.23 1.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.73 0.44

MO-BBC 0.04 0.28 0.07 0.00 0.00 0.00 0.63 0.78 0.70 0.56 0.27 0.36

MO-DBp 0.08 0.30 0.13 0.45 0.01 0.02 0.39 0.62 0.48 0.87 0.46 0.60

SWC-AKT 0.06 0.40 0.10 0.38 0.03 0.06 0.42 0.59 0.49 0.52 0.41 0.46

SWC-DBp 0.15 0.50 0.23 0.27 0.01 0.02 0.70 0.40 0.51 0.71 0.39 0.50

SIOC-FOAF 0.52 0.11 0.18 0.30 0.20 0.24 0.55 0.64 0.59 0.71 0.45 0.55

Average 0.17 0.43 0.24 0.25 0.04 0.07 0.48 0.54 0.51 0.64 0.52 0.57

consist of seven matching tasks, involving different types of comparisons. For example, the
Music Ontology and the BBC Program ontology are both related to entertainment, whereas
some other comparisons involve general purpose ontologies, such as DBpedia.

In this section, we first compare the results obtained by our system with the results obtained
by other systems for the seven matching tasks. We then provide an in-depth analysis of each
matcher that we used in our system. Finally, we provide a discussion of our results, which
we believe is of interest for future research in this domain.

Comparison with other systems. Table 3 shows the comparison between the results obtained
by AgreementMaker and the results previously obtained for the S-Match, AROMA, and
BLOOMS ontology matching systems (Jain et al. 2010). We are omitting the baseline results
(Alignment API) and the results that were reported for other systems (OMViaUO, and
RiMOM) because their results are not competitive in the LOD domain (Jain et al. 2010).

As can be seen in Table 3, our system achieves the best average precision and F-measure
by a large margin (respectively, 16 and 6 %). In terms of recall, BLOOMS is number one
followed closely by AgreementMaker. We comment next on the results obtained for each
task.

Task 1. For the FOAF-DBpedia matching task, our system has the best values for preci-
sion and recall. In particular, non-trivial mappings are discovered by our global matching
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Table 4 Comparison of AgreementMaker with its previous version (Cruz et al. 2011a), with maximum
values for each matching task in bold

Matching task AgreementMaker (2010) AgreementMaker

Prec Rec F-m Prec Rec F-m

FOAF-DBp 0.72 0.80 0.76 0.80 0.90 0.85

GN-DBp 0.26 0.68 0.38 0.32 0.73 0.44

MO-BBC 0.48 0.16 0.24 0.56 0.27 0.36

MO-DBp 0.62 0.40 0.49 0.87 0.46 0.60

SWC-AKT 0.48 0.43 0.45 0.52 0.41 0.46

SWC-DBp 0.58 0.35 0.44 0.71 0.39 0.50

SIOC-FOAF 0.56 0.41 0.47 0.71 0.45 0.55

Average 0.53 0.46 0.49 0.64 0.52 0.57

technique described in Sect. 3, which allows us to find mappings using external ontologies
and to propagate them through the subclasses of the involved concepts.

Task 2. For the GeoNames-DBpedia matching task, BLOOMS is not able to find mappings.
This is because the GeoNames ontology has very little information that is contained in the
ontology proper, as the actual categories are encoded in properties at the instance level. How-
ever, S-Match has a perfect recall (100 %), though precision is low (23 %). The use of our
global matching technique is the main reason why AgreementMaker outperforms all the
other systems.

Task 3. For the Music Ontology-BBC program task, BLOOMS obtains the best results, with
AgreementMaker second. BLOOMS uses Wikipedia while we use WordNet, a generic
background ontology. Wikipedia is very well suited for this kind of ontologies, because it
covers the specific vocabulary of the ontologies being matched.

Task 4. For the Music Ontology-DBpedia matching task, and in contrast with the previous
task, our results are better than those of BLOOMS in terms of F-measure. While BLOOMS
achieves slightly higher recall, the precision achieved by AgreementMaker is significantly
higher. Our system presents only mappings for which it is very confident, thus favoring
precision, while BLOOMS clearly favors recall. The next best system, S-Match, obtains
reasonable recall (30 %), albeit at the cost of very low precision (8 %).

Task 5. For the Semantic Web Conference-AKT Portal matching task in the scientific publi-
cations domain, we notice again that BLOOMS favors recall while AgreementMaker favors
precision. S-Match again favors recall at the cost of very low precision, while Aroma favors
precision at the cost of very low recall.

Task 6. For the Semantic Web Conference-DBpedia matching task, BLOOMS and
AgreementMaker achieve very similar good results. The conference domain is the same
used in the OAEI, on which both systems perform well. S-Match has an interesting recall
(50%), but low precision (15%).

Task 7. For the SIOC-FOAF matching task, both general linguistic understanding and specific
domain vocabulary are needed, because SIOC is an ontology related to online communities.
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Table 5 Execution times (in seconds) of the matching process (loading, similarity-based, mediator-based,
and total)

Matching task Load SB MB Total

FOAF-DBpedia 6.9 3.1 1.7 11.7

GeoNames-DBpedia 6.6 1.5 1.6 9.8

Music ontology-BBC program 16.0 3.7 4.7 24.4

Music ontology-DBpedia 26.3 18.2 7.5 52.1

Semantic web conference-AKT portal 3.5 2.1 2.8 8.3

Semantic web conference-DBpedia 7.9 8.1 2.4 18.5

SIOC–FOAF 0.1 0.2 1.7 2.0

Fig. 4 Analysis of the effectiveness of each matcher

AgreementMaker leads in precision followed by BLOOMS and S-Match (respectively, 71,
55, and 52 %), while BLOOMS significantly leads in recall because it is based on Wikipedia.

Table 5 shows the total execution times of the AgreementMaker matching process in
the seven tasks as well as the times for the different subtasks, namely loading and mapping
discovery using the similarity-based (SB) and mediator-based (MB) methods. We note that
the total execution time never exceeds one minute, even when the largest ontologies such as
the Music Ontology and DBpedia are being matched (with 123 and 257 classes, respectively).

We compared the performances of the Semantic Web Conference-AKT Portal matching
task between AgreementMakerand BLOOMS, the second best system. While BLOOMS
took 2 hours and 3 minutes, performed the same task in only 8.3 seconds. We ran our experi-
ments using an Intel Core2 Duo T7500 2.20GHz with 2GB RAM and Linux kernel 2.6.32-30
32 bits. We note that BLOOMS uses a web service to access the Wikipedia pages and that
the gap between AgreementMakerand BLOOMS was even wider for the other tasks.

Analysis of the results. Figure 4 shows the results (precision, recall, and F-measure) achieved
by our system overall (All) and by each of the methods (GM, EME, DPLC, CNA) so that
we can analyze the contributions of each of them. Global Matching (GM) has the best recall.
This is due to the fact that external concepts usually have a high number of subclasses and
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that in some of the seven matching tasks, most of the mappings involve external concepts. In
addition, GM it is the best method in terms of precision.

The Equivalence Mappings Extension (EME) method is the second best in recall. In fact,
even for small sets of equality mappings, a significant number of subclass relations can be
inferred.

The Distance-based Polysemic Lexical Comparison (DPLC) method is the third best
method in terms of F-measure. Even if this method has lower precision than the other meth-
ods, and its recall is also low (only 48% ontology concepts can be found in WordNet), its
contribution is instrumental in improving the overall recall because it finds mappings that
the other methods cannot find.

The Compound Noun Analysis (CNA) method is the one with the lowest F-measure
because of its low recall, which we can explain as follows: the extracted heads from the
compounds (most of them are endocentric) cannot usually be matched with the target con-
cepts, thus the number of inferred subclass mappings is low. However, this method introduces
some mappings that were not found by the other methods (we note that compound names
are not in WordNet), at no cost to precision, which is just slightly lower than the precision
of the GM and EME methods.

The overall results (All) demonstrates the importance of the combination of the map-
pings provided by the individual methods. In fact, the overall precision is about the same
as that of the most precise method (GM) and the overall recall is much higher than that
of each individual method. This phenomenon is similar to what happens in the best “clas-
sic” ontology matching system such as AgreementMaker, where the results of several
methods, which are targeted to different ontology features (e.g., syntactic, lexical, struc-
tural), are combined in a way that significantly improves the final alignment (Cruz et al.
2009b,c).

Discussion. The task of matching LOD ontologies is different from that of matching ontolo-
gies in “classic” scenarios, such as those in the OAEI. A major difference relates to the need
to have mappings that involve the subclass relation. Another difference is the presence of
external concepts that are defined in other ontologies. Therefore, URIs for equivalent con-
cepts will have different prefixes depending on the external ontology. For example, Person
may appear multiple times with different URIs (e.g., Person imported from the DC vocab-
ulary and Person imported from DBpedia). Such differences need to be resolved. A third
difference is that LOD ontologies change frequently over time (e.g., addition and removal of
concepts or of imported ontologies).

In contrast with the ontology matching tasks in the OAEI, where most of the gold
standards involve a 1:1 cardinality constraint, we did not encounter such a restriction for
LOD ontologies. If a particular cardinality constraint were imposed, then care would be
needed not to lose finer-grained subclass mappings in favor of mappings involving more
general classes. In particular, optimization algorithms that determine the set of the final
mappings would have to be modified to accommodate such a requirement (Cruz et al.
2009b).

The adoption of external lexical resources such as WordNet and Wikipedia is crucial. The
use of such ontologies, and, in our system, of other mediator ontologies, is the reason why
BLOOMS and AgreementMaker achieve better results than the other systems. It is hard to
find resources that contain most of the needed concepts and hierarchies whose semantics is
compliant with the subclass relation. The results show that WordNet has less coverage, but
its hypernym relation is suitable for this task, while Wikipedia offers more coverage, but the
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semantics of the subcategory relation is less appropriate to derive the semantics of the sub-
class relation—likely one of the factors that penalizes BLOOMS in precision, as compared
with AgreementMaker.

The ontology matching techniques described in this paper raise the same scalability con-
cerns as in classic ontology matching because each source concept is compared to each target
concept. In LOD, scalability issues are mostly related to instance matching, not to ontology
matching because with few exceptions (e.g., YAGO9 and OpenCyc)10 LOD ontologies are
not large. Scalability could become more relevant as (1) larger and more complex ontologies
are added or (2) real-time matching is needed for “on the go” applications. To address (1),
some solutions limit the number of comparisons between concepts in the source and in the
target ontologies (Cruz and Sunna 2008). To address (2), specific solutions (albeit outside
of the LOD domain) for “on the go” ontology matching have been proposed (Besana and
Robertson 2005).

6 Related work

In this section, we discuss related work where schema-level matching is one of the main
components (as opposed to instance-level matching Volz et al. 2009). Then we mention an
approach that uses background information and two approaches that use lexical annotation
methods for schema matching. Finally, we mention three approaches that use the “on the go”
paradigm.

The BLOOMS system performs schema-level matching for LOD. It searches Wikipedia
pages related to the ontology concepts: the categories extracted from these pages (using a web
service) are organized into trees and are compared to support concept matching (Jain et al.
2010). To evaluate its results, BLOOMS uses seven matching tasks, each associated with a
pair of popular datasets (e.g., DBpedia, FOAF, GeoNames) and defines the gold standard
for those tasks. BLOOMS is compared with well-known ontology matching systems such as
RiMOM (Li et al. 2009), S-Match (Giunchiglia et al 2007), and AROMA (David et al. 2006),
which have participated in the Ontology Alignment Evaluation Initiative (OAEI) (Euzenat
et al. 2010). BLOOMS easily outperforms those systems in the LOD domain even if those
systems perform better than BLOOMS in the OAEI (Euzenat et al. 2010).

The ontology matching system BLOOMS+, which is an enhanced version of BLOOMS,
has been used to align a set of LOD ontologies to the upper level ontology PROTON (Damova
et al. 2010). However, PROTON is a well-designed large ontology, more similar to the ontol-
ogies considered in the “classic” ontology matching scenarios than in LOD scenarios.

Other systems for LOD include the data fusion tool KnowFuss (Nikolov et al. 2009) and a
geospatial linked data tool (Parundekar et al. 2010). The former uses schema-level mappings
to improve instance co-reference, but does not address the discovery of schema-level map-
pings, while the latter is specific to the geospatial domain and infers schema-level mappings
from spatial information associated with instances.

The SCARLET system is worth mentioning, even if it has not been evaluated in the LOD
domain. It introduces the idea of looking for clues in background web ontologies to assist
in the discovery of mappings between two ontologies (Sabou et al. 2008). It searches for
concept names in the web ontologies and uses subclass relations defined in those ontologies
to derive new mappings. It uses logic-based rules, while our DPLC algorithm uses polysemic

9 http://www.mpi-inf.mpg.de/yago-naga/yago/.
10 http://sw.opencyc.org/.
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lexical annotations and a probabilistic scoring function. Our GM technique uses URI-based
similarity instead of name-based similarity. Our algorithm considers a pool of trusted web
ontologies so as to maximize precision.

Next, we describe recent work on the lexical annotation methods of ontology concepts
for schema matching and how it has influenced our methods. Our CNA methods is inspired
by work on compound names that establishes lexical relationships between terminology
concepts (Sorrentino et al. 2010). CNA uses the interpretation of compound names to infer
subclass relations between the ontology concepts. Our DPLC algorithm uses word sense
disambiguation, following previous work that associates a probability value to semantic
relations based on the probability score of the annotations (Po and Sorrentino 2011). In the
DPLC algorithm, word sense disambiguation is used to filter the set of annotations. Subclass
mappings between concepts (interpreted according to the usual OWL semantics) are then
inferred by comparing the set of lexical annotations and computing a polysemic subclass
evidence score. We consider that hyponym and subclass relations have different semantics
and define the hyponym-to-subclass conversion factor and a distance-driven score.

We briefly point to three ontology matching approaches that specifically address the
“on the go” matching paradigm, even if they were not tested in the LOD domain. In one of
those approaches, mappings between terms are dynamically discovered during the interaction
between autonomous agents and only relevant portions of the ontologies are matched (Besana
and Robertson 2005). Another approach matches RDF triples to support semantic interoper-
ability in smart spaces (Smirnov et al. 2010). A third approach proposes a framework where
folksonomies are used as mediators in the ontology matching process (Togia et al. 2010).

7 Conclusions

To tap into the huge potential of the LOD cloud, accurate and efficient ontology matching
methods are needed. In this paper, we extended the AgreementMaker system, one of the top
ontology matching systems in the Ontology Alignment Evaluation Initiative (OAEI) (Cruz
et al. 2009c, 2010, 2011b) with four LOD-specific methods: two similarity-based matching
methods, namely the Equivalence Mappings Extension method and the Compound Name
Analysis method, and two mediator-based methods, namely the Distance-based Polysemic
Lexical Comparison method and the Global Matching method. A detailed analysis of the
contributions of the LOD-specific methods that were added to AgreementMaker shows that
each of them plays an instrumental role in the overall result. Furthermore, with these new
methods, AgreementMaker amply surpasses the BLOOMS system (Jain et al. 2010), in
both precision and F-measure, at the cost of a small penalty in recall.

In the LOD domain, the use of background knowledge to assist in the matching is
particularly important. For example, BLOOMS (Jain et al. 2010) uses Wikipedia, and
AgreementMaker relies on Wordnet. The fact that Wikipedia provides very good con-
cept “coverage” may be one of the reasons for the 2% advantage in recall of BLOOMS in
comparison with AgreementMaker. However, the focus of AgreementMaker on trusted
web ontologies (to assist the Global Matching method) and on methods specifically designed
to guarantee the accuracy of the mappings, leads to a gain of 16% in precision and 6% in
recall when compared with BLOOMS. Finally, run time values show that AgreementMaker
significantly outperforms BLOOMS.

The development of accurate and efficient methods for LOD ontology matching provide
the basis for the development of “on the go” strategies, where further optimizations can be
performed so as to minimize the number of comparisons between concepts in the source and
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target ontologies, for example by identifying only those parts of the ontologies that need to
be matched. This will be the subject of future work.
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