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Abstract— The need for an automatic inference process able to
deal with information coming from unreliable sources is becoming
a relevant issue both on corporate networks and on the open Web.
Mathematical theories to reason with uncertain information have
been successfully applied in several situations, but each one of these
models is tailored to deal with a specific semantics of uncertainty. In
this paper, we put forward the idea of using explicit representations
of the different types of uncertainty for partitioning the inference pro-
cess into parts. By coordinating multiple independent reasoning pro-
cesses, we are sometimes able to apply a specific model to each type
of uncertain information, and recombine the final results via a suit-
able reconciliation process. We validated our approach applying it
to the classic schema matching problem, and using the Ontology
Alignment Evaluation Initiative, (OAEI) tests to assess the results.

Keywords— Uncertainty, Ontology Matching, Reasoning, Rules.

1 Introduction
The problem of automatic inference is one of the most chal-
lenging problem in computer science [1], becoming even
harder when knowledge is uncertain, due to lack of reliabil-
ity of the source of information, approximation, dependen-
cies and other factors. While many mathematical models for
reasoning on uncertain information have been proposed, the
general problem of handling and interpretation of uncertain
knowledge is still to be solved. In this paper, we put for-
ward the idea of using explicit representations of the differ-
ent uncertainties present in the knowledge base according to
different uncertainty models, coordinating multiple indepen-
dent reasoning processes. By splitting the inference process
into parts, we are able to apply a specific model to each type
of uncertain information, recombining the final results via a
suitable reconciliation process. Although the interoperabil-
ity among multiple inference models been studied [2, 3], in
the literature we are not aware of any hybrid reasoning pro-
cesses which can handle the flexible integration of different
models. As a proof of concept of this approach we present a
semantics-aware matching strategy, that we apply to the well-
known problem of ontology alignment [4]. The paper is struc-
tured as follows: Section 2 introduces the problem of uncer-
tain information in knowledge management, briefly present-
ing the different types of uncertainty and the mathematical
models used for the inference process. The section also in-
troduces the need for an explicit representation of the various
types of uncertainty, referring to the Ontology of Uncertainty
[5] proposed by W3C’s UR3W-XG incubator group1. Section
3 presents a case study, applying our technique to the classic
schema matching problem, testing it via the Ontology Align-

1http://www.w3.org/2005/Incubator/urw3/

ment Evaluation Initiative (OAEI) tests and comparing the re-
sults to the participants to the OAEI 2007 contest [4]. Con-
clusions and future work on our framework are presented in
Section 5.

2 Uncertain Information Representation and
Reasoning

Experience has shown that the open Web and other platforms
for hosting user-generated content can provide little quality
control at content production time. As a result, most publicly
available information can be considered uncertain to some de-
gree. In order to clarify the notion of uncertainty, it is impor-
tant to distinguish between degrees of truth and degrees of
uncertainty in the information [6]. A degree of truth can be
defined as the degree of compatibility between a statement and
a knowledge base, which is limited to what the system knows
about reality: a statement S is true if this assumption agrees
with the set of statements in the knowledge base. Instead, Un-
certainty of a statement arises when the knowledge base does
not provide sufficient information to decide if a statement is
true or false. Therefore uncertainty falls at a meta-level with
respect to truth [7]. In case of truth values, we briefly mention
two major theories [7]: Classical two-valued logic and Fuzzy
Logic. In the first case, a statement’s truth value can only as-
sume one of two values [8], namely 0 or 1. In the second case
[9], truth values belong to the entire interval [0, 1] . For uncer-
tainty representation, we distinguish between Probability and
Possibility theory. The degree of probability associated to a
statement is a typical example of gradual uncertainty. In sen-
tences like: ”The player tossing a coin wins with 50% proba-
bility”, ”The player wins” is a true statement: it cannot happen
that a player ”half wins”. The ”50%” at the end of the sentence
is not the statement truth value, but its level of uncertainty.
Possibility theory is an alternative to probability theory, which
separates the uncertainty of statements in possibilities and ne-
cessities [7]. Uncertainty can be classified as Epistemic, if
it comes from the limited knowledge of the agent that gener-
ates the assertion or Aleatory if it is intrinsic in the observed
world. Depending on the features of the agent that generates
uncertain statements, is possible to identify two different types
of uncertainty: Objective if the uncertainty derives from a re-
peatable observation and Subjective if the uncertainty in the
information is derived from an informal evaluation. Further-
more, uncertainty can depend on the type of statement it is
associated to: Ambiguous, Inconsistent,Vague, Incomplete
and Empiric.

For our purposes, uncertainty can be represented as an an-
notation about a statement, expressing the level of certainty
about it. We shall call ”uncertain information” the triple
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(S, t, l) formed by a statement S, its truth value t and its cor-
responding uncertainty level l. It is important to remark that in
many practical scenarios, we may encounter statements whose
uncertainty levels have diverse semantics, especially when un-
certain information is generated by multiple unsupervised pro-
cesses. For example, Web-based weather forecasting services
provide uncertain information in different forms; the uncer-
tainty can be possibilistic or probabilistic (Cloudy:”50%”,
Rain:”10%”) while truth value ranges can be classical (Rainy,
Fair) or fuzzy (Partially Covered, Heavy Rain). Traditional
approaches to uncertain reasoning support extensions of logic
models dealing with inference on statements and their truth
values, including mathematical theories able to deal with the
uncertainty levels. In many cases, however, handling uncer-
tainty hs an impact on the complexity and even the decidabil-
ity of the inference problem. Scientific areas very active in the
integration of classical logic with mathematical theories deal-
ing with uncertainty is Artificial Intelligence and Knowledge
Representation. Recently the effort was concentrated on the
languages for the Web, such as in particular Semantic Web
standards. For example, several probabilistic extensions of
Description Logics (DL) [10] and First Order Logic (FOL)
are available. Here, we shall focus the discussion on De-
scription Logics, which are the logical model underpinning
the OWL-Lite and OWL-DL ontology languages [11] used
on the Semantic Web [12]. OWL-Lite and OWL-DL corre-
spond respectively to SHIF(D) and SHOIN (D) Descrip-
tion Logics respectively, which are known to be tractable. A
sound and complete fragment of SROIQ(D) is SHOQ(D)
[13]. This fragment can be extended to handle uncertainty;
in [14] Lukasiewicz defines a Probabilistic Description Logic
P − SHOQ(D). Based on Lukasiewicz’s Probabilistic De-
scription Logics, Klinov in [15] has implemented the proba-
bilistic reasoner Pronto, that can reason with ontologies where
a probability interval is assigned to statements, specifying the
probability that a certain statement is true. As far as truth-
values are concerned, the work of Straccia and Bobillo [16]
extends the classical two-valued Description Logics to fuzzy
sets. Namely, the authors present an extension of SHIF(D)
Description Logics to the fuzzy case, dealing with different
definitions for the logic operators (Zadeh logic, Lukasiewicz
logic and Classical Logic); this approach, moreover, provides
support to backward reasoning in case of Classical Logic se-
mantics.

At first sight, one might hope that uncertainty represen-
tations and truth value ranges can be freely mixed accord-
ing to the characteristics of the problem at hand. On the
Web, vague information is usually modelled using fuzzy truth-
values, knowledge uncertainty due to incomplete or defective
observations is represented by Probability theory, and uncer-
tainty arising from common sense knowledge and guessing
can be handled with Possibility theory [17].

Unfortunately, the problem of dealing simultaneously with
probability-based uncertainty and fuzzy truth values has been
widely treated in literature but, as stated in [7] probability and
possibility theories are not fully compositional with respect
to all the logical connectives, without a relevant loss of ex-
pressiveness. This consideration leads to the consequence that
uncertain calculi and degrees of truth are not fully composi-
tional either. Nevertheless, some work in this direction has

been proposed, by imposing restrictions to the expressiveness
of the logics. The most relevant studies are: [18, 19] where
the authors define Probabilistic Description Logics Programs
(PDLP) by combining stratified fuzzy Description Logics pro-
grams with respect to degrees of probabilities in a unified
framework. In [20] a definition of possibilistic fuzzy Descrip-
tion Logics has been proposed by associating weights, repre-
senting degrees of uncertainty, to the fuzzy Description Logic
formulas. An extension of the fuzzy Description Logics in the
field of Possibility theory has been presented also in [21] by
annotating logic axioms with possibilities and necessity mea-
sures; by extending the approach presented in [20].

It is also important to underline that different approaches
can be used to tackle the same type of uncertainty (i.e. in case
of incomplete information is possible to use Possibilistic or
Probabilistic theory) the choice of the best theory depends on
the context. For instance, in [22] the authors use Dempster-
Shafer’s beliefs theory to resolve inconsistencies.

2.1 Ontology of Uncertainty

As mentioned in Section 2 uncertainty is generated from dif-
ferent situations and represented under different semantics.
it is possible to create a classification of assertions based
on several criteria: nature, derivation, temporal validity and
type. Nature of uncertainty can be divided in epistemic and
aleatory; objective and subjective; based on the temporal va-
lidity of a statement that can be valid for a period of time or
can be valid always. A statement is contingent if refers to
a particular situation or instant; in the second case a state-
ment refers to situations that summarize trends (e.g. laws
of physics, common sense knowledge, statistical knowledge)
and is classified as generic statement. The nature of uncer-
tainty, moreover, also depends on the statement it is attached
to. Statements can be ambiguous in case the statement can be
represented in different worlds with more than one interpreta-
tion, inconsistent if there is no possible world where the state-
ment can hold, vague, and incomplete in case the knowledge
about the observed world do not provide enough information
to take a decision. Finally, a statement is empiric when is satis-
fied at least in one world. A first effort toward capturing all as-
pects of uncertainty is the Ontology of Uncertainty, published
by the UR3W-XG incubator group[5]. This ontology tries to
capture the nature, type and source of uncertainty that are spe-
cific of an assertion and allows moreover to relate the assertion
to the correct computational model of inference. Statements,
in the Ontology of Uncertainty, are represented by the con-
cept Sentence, that provides information about the source
(Agent) of the assertion, the subject (World) of the asser-
tion and the semantics information about the Uncertainty
model related to the assertions. There is not much to say about
the two concepts Agent and World, which respectively rep-
resent the producer and the subject of an assertion. More in-
teresting is the case of concept Uncertainty, the central
concept of the ontology. This concept is related to all the var-
ious elements used to classify a Sentence under precise se-
mantics. Other concepts related to Uncertainty are then
used to describe type, derivation, validity and nature of the
statement2. The ontology provides a generic meta-model rep-

2Currently, the Ontology of Uncertainty defined by the URW3-
XG does not include a concept of Validity related to the temporal

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1170



resented in OWL-DL [11] for representing uncertainty associ-
ated to various assertions and provides some use case scenar-
ios, where, according to the semantics of the uncertainty, the
correct inference model is selected. Unfortunately, the doc-
ument [5] produced by the URW3-XG incubator group does
not specify how to deal with situations where more than one
model is involved in the inference process.

2.2 Using the Ontology of Uncertainty to support
Reasoning

The Ontology of Uncertainty provides information on which
mathematical model of uncertainty can be employed for man-
aging a specific set of statements. When more than one model
is involved in the reasoning process, the problem of integrat-
ing the results of multiple inference processes arises : if the
subsets of statements handled by each model are disjoint, i.e.
inferences are independent form each other, however, there
are no particular problems in re-conciliating the results of the
various reasoning processes;s. Some work in this direction
has been carried out by the Rule Interchange Format (RIF3).
In [2] the authors propose a framework for sharing informa-
tion between three different models of uncertainty, where the
fuzzy linguistic truth values are propagated through the three
models in a non-monotonic way, by exploiting the extension
principle [23] and aggregation of linguistic values. This ap-
proach is promising but is grounded to fixed fuzzy values (lin-
guistic truth) that are used by all the different models and then
aggregated according to non-monotonic rules.

In our approach, instead, we make use of the Ontology of
Uncertainty as a way to model different types of uncertainty
in a unified framework. The inference process involves three
different steps: the first step is to partition the knowledge base
in subsets according to the specific model, the second step is
to carry out independent inferences, and the third one aggre-
gates the results of the independent inference processes, fol-
lowing the First Inference Then Aggregation (FITA) approach
[24], which also supports parallel reasoning. In our strategy
the various reasoning processes are independent; we use the
Ontology of Uncertainty classification to divide the various
matching relations according to the uncertainty model to be
used for the reasoning process. This way, the reasoners can
be modelled as parallel processes. Directives on how to divide
the heterogeneous knowledge base and how to recombine the
results of the different reasoning processes are explicitly spec-
ified as DL-Safe Horn rules [25].

The knowledge base containing the information for our
matching strategy is composed by a set of statements, gen-
erated independently by different sources, seen as instances of
the concept Sentence in the Ontology of Uncertainty. To
each statement S, information about uncertainty is associated
by instantiating the ontology concept Uncertainty that
defines the correct semantics. DL-Safe rules and SPARQL
queries are largely involved in this process. A first set of DL-
Safe rules is used to associate the statements to the correct type
of uncertainty, and a set of SPARQL queries is used to divide
the knowledge base according to the reasoning model associ-

validity of an assertion, but its addition is straightforward.
3The mission of the Rule Interchange Format (RIF) Work-

ing Group is to produce W3C Recommendations for rules in-
terchange. http://www.w3.org/2005/rules/wiki/RIF_
Working_Group

ated to the statement. Finally a third set of rules is used to
aggregate the results of the various reasoners. Currently, our
approach requires the manual definition of rule sets. However,
while the first set of rules is largely application dependent, the
set of SPARQL queries and the third set of rules can be reused
in many applications4. A detailed application of our approach
is presented in Section 3.

3 A Semantics-aware Matching Strategy
Schema Matching is the time-honored problem of identifying
the relations between the entities of two data source schemata.
In case these schemata are represented as ontologies, this
problem is also known as Ontology Alignment. In the litera-
ture different matching operators for a wide range of situations
are available: the most exhaustive survey is [26].

Recent proposals tackle the schema matching problem by
considering more than one matching operator at once and
combining the final results through a matching strategy [27].
A Matching Strategy can be defined as the process of trans-
formation from a set of Matching Relations Mr to a new set
Mr′, while a Matching Operator can be defined as a func-
tion that takes as input two schema elements and creates as
output a Matching Relation between the two elements.

So far, even if some logic-based approaches are available
[28, 29], most strategies proposed in literature neither consider
explicitly the semantics of the various matching operators nor
the different meanings of the relations that they generate. In-
stead, our matching strategy explicitly models the semantics
of different matching operators as a Description Logic. In our
approach, matching relations are stored as instances of a do-
main ontology, describing our application scenario. This do-
main ontology is extended with the Ontology of Uncertainty
[5], which is used to associate the respective uncertainty to
the different types of assertions. The classification of the var-
ious uncertainty types is performed by applying SWRL rules
[30, 25] to the knowledge base. Once the classification is per-
formed, the knowledge base is divided (by a splitting process)
according to the specific uncertainty model. Each one of this
inference models is used to perform a classification of the var-
ious relations in order to discover the most reliable ones. Fi-
nally a reconciliation process aggregates the best results5.

3.1 The Matching Ontology

A matching relation mri is a 1 : 1 relation associating two
elements (concepts or attributes) of the two ontologies to
align by a relation r from a collection of set theory operators
(≡,⊂,⊃,∩,	=) and a degree of matching δ represented as:

mri = 〈eh, ek, r, δ〉 (1)

The relation r between the elements depends on the partic-
ular feature that is analysed by the matching operator: as an
example, in case of JaroWinkler matching operator, the fea-
tures are composed by the label of the elements eh and ek to

4Although they may require some fine tuning. This especially true
of the third set, which is closely related to the aggregation procedure.

5The classification, splitting and reconciliation process in our
system are rule driven, but this is not a strict requirement: this phases
of the strategy can also be inferred from a Description Logics reason-
ing process used to classify various instances.
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match, while in case of an Instance-based matching operator
the features are composed by the instances related to the ele-
ments to match.

We generally consider a matching operator as a process that
generates a matching relation mri represented by the relation
r between the elements eh, ek in input, associated with the
strength δ of the relation. A matching operator is defined by a
function f used to extract a particular feature that is analysed
by the operator, a function θ which generates the relation r
and a function φ that is in charge of the creation of the value
δ, which represents the strength of the relation:

mo = 〈f, θ, φ〉 (2)
mo(eh, ek) → 〈eh, ek, r, δ〉

Obviously, different matching operators carry different se-
mantics that needs to be considered in the matching generation
process. Also, the same relation can be generated by different
matching operators; but in this case, the syntax of the relations
is identical while the semantics is different. Consequently, dif-
ferent theories can be adopted, in order to infer the most suit-
able matching relations: the relations generated by the data
type based matching operator can be considered as possibili-
ties, while the relations generated by the instance based and
string based matching operator can be modelled as necessities
6. As we have seen, the Matching Ontology models the infor-
mation created by the various matching operators, as well as
information describing each specific matching operator. The
attributes, relations and concepts from the ontologies to align
are stored in the Matching Ontology as instances of the con-
cept Element, represented by a unique identifier (e.g. URI)
which is used by the system to retrieve the element in the orig-
inal ontologies. The concept MatchingOperator, in the
Matching Ontology, represents a generic matching operator;
the specific matching operators (e.g. JaroWinkler, WordNet,
Instances) are modelled as subclasses of this concept. The var-
ious matching relations are defined as instances of the concept
MatchingRelation, which is composed by the concept
RelatedElements that has a subject and an object
that represent the two elements that have been related by one
or more matching operators; and by a confidence value
representing the strength of the matching relation. Subclasses
of the concept Matching Relation are created in order to
specialize the matching relation according to the specific rela-
tion (e.g. Equivalent, Subset, Superset, Disjoint,
Intersection).

Instances of the Matching Ontology are generated during
the matching process. The various matching operators gener-
ate a set of matching relations in the form 〈eh, ek, r, δ〉; these
relations are stored in the Matching Ontology with a reference
to the instance of the matching operator that has generated the
relation. When the Matching Ontology is generated in this
way, some information is certain (e.g. the information pro-
vided by the original ontologies), and some other information
in uncertain under different semantics (e.g. the matching rela-
tions that can disagree or that may have a probability degree to
consider). This consideration motivates the use of additional

6Note that this does not have a direct implication on the mappings
to be created by the systems; for instance, it is clear that a necessary
matching of strings does not imply a necessary mapping.

annotations able to model the semantics of uncertainty of the
various matching relations.

3.2 Managing uncertainty in the matching strategy

In a scenario like the one described in Section 3.1, we use the
Ontology of Uncertainty to identify situations where is impor-
tant to explicitly describe the type of uncertainty related to an
assertion. First of all, the two ontologies (Matching Ontol-
ogy and Ontology of Uncertainty) have to be linked some-
how. Assertions in the Ontology of Uncertainty are repre-
sented by the concept Sentence. A sentence is saidBy
an Agent, which we identify with the matching operator;
moreover a sentence have also an object of the assertion
(saidAbout) which is represented by the concept World.
The two concepts Agent and World are then the linking
point between the two ontologies; the link is defined by declar-
ing MatchingRelation and MatchingOperator as
sub-concepts of World and Agent respectively. Here, the
Ontology of Uncertainty is used basically to drive the rea-
soning process: each type of uncertainty is processed by its
specific reasoner and a final process, based on SWRL rules,
integrates the results of the various reasoners. The applica-
tion flow of the Matching Strategy operates as follows: a pro-
cess takes as input the uncertain knowledge base generated
by the matching operators, afterwards it divides the asser-
tions according to their uncertainty and each sub part of the
ontology is processed by its specific reasoner: in the system
we consider a Probabilistic Description Logic reasoner, such
as Pronto [15], a fuzzy Description Logic reasoner such as
FuzzyDL [16] and a Defeasible Logic Reasoner such as DR-
Prolog [3], but other models can be easily added. In our sce-
nario the sources of information to be analysed, according to
different uncertainty models are independent and no intersec-
tions among them has to be managed. This particular case al-
lows a straightforward use of the Ontology of Uncertainty to
drive the reasoning process, although in general the assump-
tion of independence among the source of information is a
lucky case.

The first part of the matching strategy is to assign to the var-
ious assertions (Sentence), the correct information about
their uncertainty semantics. This information is classified ac-
cording to a set of pre-defined SWRL rules that assigns the
correct semantics in relation to several factors. The assign-
ment is based on: (i) the Agent that has generated the rela-
tion; as an example: some agents can generate objective or
subjective assertions: we can identify objective statements as
necessities and subjective as possibilities; (ii) the presence of a
degree of probability: as an example, sentences with a degree
of probability can be handled with probabilistic theory mod-
els or with possibility theories. In this case is important to
identify which statements need to be modelled with probabil-
ity theory and which ones need to be modelled with possibility
theory. (iii) the level of inconsistency among matching rela-
tions: as an example, if a sentence asserts that two elements
are equivalent and another matching relation asserts that they
are disjoint; (iv) the trustiness level of the matching operator:
some operators are more reliable than others; (v) the level of
detail of the assertion: the assertion created by a Data Type
matching operator is more vague then an assertion created by
a Regular Expression matching operator; (vi) the Data Type
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of the elements to match can be used to establish priorities
between operators.

uncertainty : Sentence(?sentence)∧ (3)

matching : MatchingRelation(?matrel)∧
uncertainty : saidBy(?sentence, ?operator)∧
matching : MatchingOperator(?operator)∧

uncertainty : saidAbout(?sentence, ?matrel)∧
uncertainty : Objective(?derivation)∧

uncertainty : Uncertainty(?uncer)∧
uncertainty : hasUncertainty(?sentence, ?uncer) →

uncertainty : derivationType(?uncer, ?derivation)

There are one or more rules for each specific uncertainty type,
nature, model, derivation and temporal validity. An example
of a rule that we use in this step of the matching strategy is
reported in (3). In our strategy the rules are applied to the
matching ontology with the use of a rule engine such as Jess7;
the rules we use have to be restricted to the DL-Safe [25] sub-
set to ensure tractable complexity of the reasoning processes.
By applying the rules, all the matching relations are associated
to their respective uncertainty.

At this point, a set of sub-knowledge bases is created by
dividing the various instances of the concept sentence ac-
cording to their uncertainty model. A SPARQL [32] query
is used in this case to select the instances of the concept
sentence that respect the desired restrictions. As an ex-
ample the following SPARQL query returns the instances of
Sentence that are associated to a probability theory model.

SELECT ?sentence ?type ?derivation ?nature ?model
WHERE {?sentence uncertainty:hasUncertainty ?uncertainty.
?uncertainty uncertainty:nature ?nature.
?uncertainty uncertainty:derivationType ?derivation.
?uncertainty uncertainty:uncertaintyType ?type.
?uncertainty uncertainty:uncertaintyModel ?model.
?probabilistic rdf:type uncertainty:Probability.
FILTER (?model = ?probabilistic)}

Once the set of assertions has been partitioned, the parallel
reasoning processes can be launched. The reasoning processes
are performed locally, exploiting the information provided by
each assertion and the information provided by the ontologies
to align. According to the information that has been provided
to each reasoner, the process has to return back to the match-
ing strategy the set of assertions that they believe to be the
most reliable ones. Each reasoning process returns the results
as instances of its representative concept (sub-concepts of the
concept Sentence).

When the parallel reasoning processes come to an end, re-
sults are propagated back to the matching ontology by a rec-
onciliation process. This process can be another reasoning
process; in the case of our matching strategy we make use of
SWRL rules to aggregate the results. Basically the reconcilia-
tion process follows the priority between the various reasoners
that need to be made explicit. Some models are more reliable
than others and this preference is defined in our system by
SWRL rules. In our matching strategy we have to deal with
inconsistencies because different relations on the same pair of

7in the Java prototype we developed, we have used Jess Rule en-
gine (http://herzberg.ca.sandia.gov/) with the support
of JessTab [31] and Protégé (http://protege.stanford.
edu/) to translate SWRL rules and assertions from OWL to Jess
and backwards.

elements can be classified as reliable relations by different rea-
soning processes. In case the preferences between inference
models can not solve this situation we handle inconsistencies
by assigning preferences between relations and operators, ac-
cording to contextual factors: (e.g., analysing the data types of
the elements to match. Equivalence relations have the highest
priority in case of Strings, because Instance-based equivalence
between integers is less reliable than the one between Strings).
Rules are also used to propagate the best matching relations
to other elements of the ontologies exploiting structural in-
formation from the original ontologies to match. This case
can again be managed using a defeasible rules system such as
DR-Prolog [3], which provides different precedences between
rules, to help the decision process in inconsistent situations.

4 Experimental Evaluation
Let us now describe the use of OAEI as a validating test for
our data integration system. The comparison has been carried
out with the results of the 2007 contest [4]. The majority of the
participants of the context are based on a linear combination
of several matching operators. In some cases this aggregating
function is adaptive (Asmov [33], Prior+ [34]), while in some
other cases it is fixed and defined by several experimentation
(RiMOM [35], Sambo [36], Soda [37], Ola [38], TaxoMap
[39], X-Som [40]). Some approaches are based on Possibil-
ity theory such as DSSim [28] and OWL-CM [41]. The test is
performed using a palette of five semantically different match-
ing operators (JaroWrinkler Matching Operator, WordNet La-
bel Matching Operator, Description Matching Operator, Type-
based Matching Operator and Instance-based Matching Op-
erator). The results are stored in a matching ontology and the
most reliable relations are extracted by our matching strategy.
Each relation is associated to the respective matching operator.
The reasoners that we used are a Fuzzy Description Logic rea-
soner [16] for the matching relations classified as probabilities
(e.g. JaroWinkler matching operator) and a classic Descrip-
tion Logic reasoner [42] to process certain matching relations
that the rules classify as necessities (e.g. String matching op-
erator). The matching strategy has been developed as a Java
prototype that we used to run the tests.

4.1 Results

The testbed can be divided in five subcategories:
101-104 This test set is the easiest set of tests. The first task

is to match the reference ontology 101 with itself, the second
test requires to generate a matching from the reference ontol-
ogy to an ontology totally irrelevant (102 is a wine ontology).
The ontology 103 represents a language generalization (un-
available constraints are replaced by their generalization): this
ontology is an OWL-Lite generalization of the ontology 101.
Finally the ontology 104 represents a language restriction with
respect to the reference ontology 101. The constraints that are
not available in OWL-Lite are simply removed. In the case of
this first set of tests, our algorithm does not generate perfect
alignments. In the case of 103 the propagation mechanism of
the strategy does not perform well because of the generaliza-
tion of the ontology. The various matching operators generate
several reliable relations that the strategy can not recombine
correctly in relation to their priority.

201-210 In this set of test cases, the structure of ontology
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Test # Name Prec. Rec. fMeas.
101 Reference Alignment 1 1 1
102 Irrelevant Ontology NaN NaN NaN
103 Language Generalization 0,81 0,56 0,66
104 Language Restriction 0,94 0,94 0,94

is preserved. Syntactical changes are introduced: labels and
identifiers are replaced by random names, misspellings, syn-
onyms, language translation and moreover the comments in
some cases have been suppressed. Our matching strategy ob-
tains good results in this set of tests, because of the variety
of the palette of matching operators that are considered in the
strategy. In some cases (202, 209, 210) the Recall value is
low, this because in case a matching operator does not create
a possible relation this can not be automatically generated by
the strategy. SWRL rules are used to propagate the best results
to related elements, but if the matching relation is not created
by any matching operator the propagation mechanism is not
effective.

Test # Name Prec. Rec. fMeas.
201 No Names 0,92 0,90 0,91
202 No Names, No Comments 0,88 0,15 0,26
203 No Comments 0,97 0,97 0,97
204 Naming Conventions 0,92 0,92 0,92
205 Synonyms 0.91 0,90 0,90
206 Translation 0,96 0,70 0,95
207 0,98 0,70 0,97
208 0,96 0,72 0,82
209 0,87 0,34 0,49
210 0,92 0,12 0,22

221-247 In this case the set of tests can be divided into two
subgroups: 221-231 and 232-247. The first subgroup contains
several structural modifications, such as the hierarchy that is
flattened or expanded, and individuals, restrictions and data
types that are suppressed. Each one of the documents in this
subgroup has been modified by a structural change. Because
of the fact that the labels and comments are preserved, the
modifications have little influence on our system. The use of
Description Matching Operator and Name Matching Opera-
tor allows the strategy to find most of the correct alignments
using just the labels and comments information. In the second
subgroup (232-247), the modifications made by combinations
of the single modifications used in 221-231. Our system ob-
tains good results for 232-247 as well.

Test # Name Prec. Rec. fMeas.
221 No Specialization 0,92 0,92 0,92
222 Flattened Hierarchy 0,92 0,92 0,92
223 Expanded Hierarchy 0,93 0,93 0,93
224 No Instance 0,93 0,93 0,93
225 No Restrictions 0,91 0,91 0,91
228 No Properties 0,97 0,97 0,97
230 Flattened Classes 0,95 0,96 0,95
231 Expanded Classes 0,93 0,93 0,93
232 0,95 0,95 0,95
233 1 1 1
236 1 1 1
237 0,92 0,92 0,92
238 0,91 0,91 0,91
239 0,93 0,97 0,95
240 0,85 0,88 0,87
241 1 1 1
246 0,97 1 0,98
247 0,91 0,94 0,93

Note that the observations about the Recall value we made
about the previous tests, here are not valid since the ontolo-
gies provide sufficient information to the matching operators
that can create reliable relations. Also in case of 222 where

there is no hierarchy the results are satisfactory because of the
information provided by the ontology.

248-266 This set of documents represents the most chal-
lenging case. This set combines structural and syntactical sup-
pressions. The single challenges represented by the two pre-
vious set of documents are mixed in this set. All labels and
identifiers are replaced by random names, and the comments
are also suppressed. In this case our system does not perform
well because no hierarchical representation is preserved so the
strategy can not propagate the few correct matching found.
This results in a low level of Recall. However, not enough
information is provided in the ontologies, and the matching
strategy can only find few alignments. The tests from 254 to
262, are the most difficult since almost all literal (labels and
comments) and structural information are removed. In this
case the propagation of the results can not take place because
the relations that the strategy discovers can not be associated
to other elements because of the structural information that is
missing. When some structural information is preserved, the
strategy can exploit this information in order to create possible
matches, starting from the relations discovered by the single
matching operators.

Test # Name Prec. Rec. fMeas.
248 0,88 0,14 0,25
249 0,74 0,14 0,24
250 0,92 0,33 0,49
251 0,86 0,13 0,22
252 0,65 0,11 0,19
253 0,88 0,14 0,25
254 0,90 0,27 0,42
257 0,92 0,33 0,49
258 0,86 0,13 0,22
259 0,65 0,11 0,19
260 0,82 0,31 0,45
261 0,69 0,27 0,39
262 0,90 0,27 0,42
265 0,82 0,31 0,45
266 0,69 0,27 0,39

301-304 This test set is composed by real ontologies con-
textually related to the reference ontology 101. The ontolo-
gies in this test set represent bibliographical information and
they have been defined independently each other. This test
represents a real world case of ontology alignment. Our strat-
egy performs in the average with respect to the other systems
evaluated. In the case of ontologies 301 our approach finds
most of the correct alignments, but it also returns some wrong
results. The alignment results for 302 and 303 are far from sat-
isfactory. The reason is that these ontologies do not provide
individuals and with shallow class hierarchy, where classes
and properties are not related. In this case as well, the re-
call value is low: the matching operators are very sensible to
the noise in data; moreover without a useful hierarchy the few
matching relations identified by the matching operators can
not be propagated or enforced with the support of hierarchical
information. The ontology 304 has similar structure and vo-
cabularies to the reference ontology 101 and in this case, the
results are slightly better than the previous alignments.

Test # Name Prec. Rec. fMeas.
301 Real: BibTeX/MIT 0,9 0,6 0,71
302 Real: BibTeX/UMBC 0,79 0,46 0,58
303 Real: Karlsruhe 0,83 0,49 0,62
304 Real: INRIA 0,81 0,62 0,70
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Figure 1: Graph of the Precision values of the different match-
ing algorithms.

Figure 2: Graph of the Recall values of the different matching
algorithms.

As one can see from the graphs in Figure 1 and 2 , our algo-
rithm has acceptable results but under the best scores. These
results are anyway reasonably encouraging, because our strat-
egy is neither entailed to a particular reasoning model nor to a
set of specific matching operator. More important our strategy
does not imply a training phase that is typically required by
the other systems. Our semantics-aware strategy is a new ap-
proach to ontology matching problem that provide a approach
generally valid and not dependent on the domain. At this stage
the results are very sensible to factors independent to the strat-
egy; such as the quality of the matching operators and the
available reasoners.

For this test we used a Probabilistic Description Logics rea-
soner and a traditional Description Logic reasoner in case of
matching relations without a confidence degree. Moreover the
inconsistencies, in the knowledge base, are not treated by a
reasoning process but with the use of SWRL rules. As soon as
new reasoners or new models appears we can exploit their use
with our strategy. Moreover or strategy is highly customiz-
able: if a new matching operator is plugged in the matching
strategy is just necessary to create the related concept in the
matching ontology and the SWRL rules reacting to the seman-
tics of the new matching operator.

In case of the first series of test the strategy do not obtain
the best results but, instead provides results under the average.
Even the most simple matching operators, such as Edna, per-
forms better than our strategy. The reason of this behaviour
has been identified in the confusion of the strategy that con-
siders the relations generated by different operator all reli-
able at the same level. We had run the same test only with
JaroWinker matching operator and we obtained an average
value of Precision 1 and Recall 1 for all the first series; this
result confirm our previous assumption. In the case of the sec-
ond and the third series the results are in the average of the

approaches presented to the contest. The graph in Figure 1
shows the comparison of the Precision of our strategy with
respect to the other algorithms. As is possible to see the val-
ues are very closed to 1, except in some isolated cases (Edna).
These results show that the various strategies generate correct
relations. The graph in Figure 2 shows the comparison of the
Recall of our strategy with respect to the other algorithms. As
is possible to see the values this time instead are far from the
limit. Only few strategies (Asmonv, Falcon, Lily, OLA2) ob-
tain results around 0.8, while the others still remain over the
0, 5. This generally low value of Recall means that the algo-
rithm does not propagate well the good matching relations by
exploiting the structure of the ontologies.

5 Conclusions
In this paper we presented preliminary work on a framework
for managing different types of uncertainty and a possible ap-
plication to the Schema Matching problem. The Ontology
of Uncertainty, proposed by the W3C’s UR3W-XG incubator
group, provides a vocabulary to annotate different sources of
information with different types of uncertainty. We argue that
such annotations should be clearly mapped to corresponding
reasoning and representation strategies. This mapping allows
the system to analyse the information on the basis of its uncer-
tainty model, running the inference process according to the
respective uncertainty. In this way we can also deal with com-
plex situations that do not tailor to the traditional strategies:
as an example, matching relations provided by a user with her
specific level of expertise. In our scenario the sources of in-
formation analysed, according to different uncertainty mod-
els are independent and no intersection among them has to be
managed. This particular case allows a straight-forward use
of the Ontology of Uncertainty to drive the reasoning process,
although in general the assumption of independence among
the source of information is a lucky case. The need of addi-
tional work on the Ontology of Uncertainty is necessary in or-
der to support reasoning processes when combinations of un-
certainty models are applied to a single source of information.
This outlook is promising in order to provide more expressive
frameworks for reasoning under different types of uncertain-
ties, but definitely the need of more research in this direction
is evident.
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Extending fuzzy description logics with a possibilistic layer. In
URSW, volume 327 of CEUR Workshop Proceedings, 2007.

[22] Andriy Nikolov, Victoria S. Uren, Enrico Motta, and Anne
N. De Roeck. Using the dempster-shafer theory of evidence
to resolve abox inconsistencies. In URSW, volume 327, 2007.

[23] L.A. Zadeh. Fuzzy sets. Information Control, 8:338–353, 1965.
[24] Hiroshi Maeda and Yuji Nobusada. A study on the parallel

computability of multi-fold approximate reasoning. Fuzzy Sets
Syst., 97(2):129–144, 1998.

[25] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering
for owl-dl with rules. In Journal of Web Semantics, pages 549–
563, 2004.

[26] Erhard Rahm and Philip A. Bernstein. A survey of approaches
to automatic schema matching. VLDB Journal: Very Large
Data Bases, 10(4):334–350, 2001.
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