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Abstract—Schema matching is a basic operation of data integration, and several tools for automating it have been proposed and

evaluated in the database community. Research in this area reveals that there is no single schema matcher that is guaranteed to

succeed in finding a good mapping for all possible domains and, thus, an ensemble of schema matchers should be considered. In this

paper, we introduce schema metamatching, a general framework for composing an arbitrary ensemble of schema matchers and

generating a list of best ranked schema mappings. Informally, schema metamatching stands for computing a “consensus” ranking of

alternative mappings between two schemata, given the “individual” graded rankings provided by several schema matchers. We

introduce several algorithms for this problem, varying from adaptations of some standard techniques for general quantitative rank

aggregation to novel techniques specific to the problem of schema matching, and to combinations of both. We provide a formal

analysis of the applicability and relative performance of these algorithms and evaluate them empirically on a set of real-world

schemata.

Index Terms—Database integration, schema matching, rank aggregation.
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1 INTRODUCTION

SCHEMA matching is the task of matching concepts
describing the meaning of data in various data sources

(for example, database schemata, XML DTDs, HTML form
tags, and so forth). As such, schema matching is recognized
to be one of the basic operations required by the process of
data integration [3]. The area of data integration has a rich
body of literature on schema matching, summarized in a
few surveys [7], [41] and special issues [11], [39]. Examples
of algorithmic tools providing means for schema matching
are COMA [8], Cupid [31], OntoBuilder [23], Autoplex [1],
Similarity Flooding [34], Clio [36], Glue [10], to name a few.
Foundational principles of schema matching are also
discussed in [3], [22], [30], and [32].

A typical classification of schema-matching tasks relates
to the amount of automatic processing required for

achieving a task. Due to its cognitive complexity, schema

matching has been traditionally performed by human
experts [5], [28]. For obvious reasons, manual concept

reconciliation in large-scale and/or dynamic environments
(with or without computer-aided tools) is inefficient and at

times close to impossible. Introduction of the Semantic Web
vision [2] and shifts toward machine-understandable Web

resources and Web services have made even clearer the

vital need for automating schema matching. The move from
manual to semiautomatic schema matching has been

justified in the literature using arguments of scalability
(especially for matching between large schemata [26]) and

by the need to speed up the matching process. The
motivation for moving to fully automatic (that is, unsuper-
vised) schema matching stems from the possible absence of
a human expert in the decision process. In particular, such
situations characterize numerous emerging applications
triggered by the vision of the Semantic Web and machine-
understandable Web resources [2], [43]. To illustrate this
further, consider the recent Web service challenge competi-
tion held in 2006.1 The teams at this competition were
required to discover and compose Web services in a
completely unsupervised manner. Although the first
competitions are still based on exact string matching of
parameters, the next competitions have been declared to
involve issues of heterogeneous and constrained schema
matching.

Attempting to address the schema-matching problem,
numerous heuristics (schema matchers or simply matchers
hereafter) have been proposed and evaluated in the
database community (for example, see [1], [4], [9], [18],
[19], [23], [25], [34], and [42]). However, choosing among
this variety of tools is far from being trivial. First, the
number of schema matchers is continuously growing, and
this diversity by itself complicates the choice of the most
appropriate tool for a given application domain. Second, as
one would expect, recent empirical analysis shows that
there is no (and may never be) single dominant schema
matcher that performs best, regardless of the data model
and application domain [22]. In fact, due to effectively
unlimited heterogeneity and ambiguity of data description,
it seems unavoidable that optimal mappings for many pairs
of schemata will be considered as “best mappings” by none
of the existing schema matchers.

Striving to increase robustness in the face of the biases
and shortcomings of individual matchers, several tools have
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enabled combining principles by which different schema
matchers judge the similarity between concepts. The idea is
appealing since an ensemble of complementary matchers
can potentially compensate for the weaknesses of each
other. Indeed, several studies report on encouraging results
when using schema matcher ensembles (for example, see
[8], [13], [23], [31], and [38]). Given that, the first goal of our
work is to formally analyze the applicability and limitations
of prior works on ensembling schema matchers and provide
a more general ensemble framework that overcomes these
limitations.

However, even having a good ensemble of complemen-
tary schema matchers cannot guarantee that an optimal
mapping between the schemata (for example, a mapping
that would have been generated by a human expert) will
always be identified as the top choice of the ensemble. To
address such situations to the largest degree possible, one
can adopt the approach in which K (and not just one) top-
ranked schema mappings are generated and examined2

either iteratively or simultaneously [22], [21], [27], [29]. Our
second goal is thus to connect between the ensemble
approach and the top-K approach, increasing the robust-
ness of the schema-matching process by enjoying the best of
these two worlds.

To achieve our goals, here, we introduce a generic
computational framework, schema metamatching, for com-
puting the top-K prefix of a “consensus” ranking of
alternative mappings between two schemata, given the
graded valid mappings of schema attributes provided
“individually” by the members of an ensemble. A valid
mapping in this case is a mapping that satisfied matching
constraints (for example, cardinality constraints) specific to
the application.3

Our starting point is based on rank aggregation
techniques developed in the areas of Web search and
database middleware [12], [17]. First, we show that the
Threshold algorithm, originally proposed in the context of
database middleware [17], can be applied to our problem
almost as is. Unfortunately, as we show, computing the top-
K mappings for schema metamatching using the Threshold
algorithm may require time exponential in the size of the
matched schemata. Since in the original context of domain-
independent rank aggregation the Threshold algorithm has
been shown to be optimal in a strong sense, we proceed
with developing techniques that exploit the specifics of the
schema-matching problem. For a certain wide class of
problems, we present a simple algorithm, the Matrix-Direct
(MD) algorithm whose time complexity is polynomial in the
size of the matched schemata and the required K.
Subsequently, we present the Matrix-Direct-with-Bounding
(MDB) algorithm, which draws upon both the MD and

Threshold algorithms, addressing matching scenarios
where the MD algorithm is inapplicable. We show that the
Threshold and MDB algorithms are (complexity-wise)
mutually undominated—that is, there exist problem in-
stances in which one algorithm performs dramatically
better than the other. To enjoy the best of both worlds,
and even to improve upon them, we introduce the Cross-
Threshold algorithm, a hybrid version of these two
algorithms, based on their in-parallel, mutually enhancing
execution. Our analysis shows the complexity and effec-
tiveness of adopting this hybrid algorithm.

We support our formal analysis with experiments on a
real-world data feed. In these experiments, we test the
relative performance of the Threshold, MDB, and Cross-
Threshold algorithms on numerous sets of various schema
matchers. Our empirical findings support the formal
results, in particular showing that the CrossThreshold
algorithm dominates both Threshold and MDB algorithms.

It is important to note that the schema metamatching
framework does not define the “consensus” ranking, but
only aims at its efficient generation. The “consensus”
ranking is defined by the actual choice of ensemble, and
this choice is orthogonal to our work. In particular, the
relative effectiveness of the “consensus” ranking is indepen-
dent of the choice of the schema metamatching algorithm.
Therefore, our formal and empirical analyses are devoted
solely to the correctness of the algorithms and their
comparative performance.

To summarize, the main contributions of this paper are
listed as follows:

. Introduction of schema metamatching, a generic
computational framework for combining an ensem-
ble of arbitrary schema matchers for identifying the
top-K schema mappings.

. Provision and formal analysis of four algorithms for
schema metamatching. In particular, we analyze an
existing algorithm (Threshold) for general rank
aggregation adapted to our domain and compare
its applicability and performance with a generalized
version of the COMA [8] approach (MD). We next
develop and study two novel generically applicable
algorithms (MDB and CrossThreshold). In particular,
we show that the CrossThreshold algorithm com-
bines the benefits of all the other algorithms,
providing the generically most efficient solution to
the schema metamatching problem.

. Comparative quantitative evaluation of the algo-
rithms that empirically supports the practical re-
levance of our formal results.

The rest of the paper is organized as follows: In Section 2,
we provide some basic formalism and notation, and
introduce the schema metamatching framework. In Section 3,
we discuss two basic algorithms that can be used to
implement schema metamatching, namely, the Threshold
and MD algorithms. In Section 4, we introduce the
MDB algorithm and compare it with the Threshold algo-
rithm. In Section 5, we introduce the CrossThreshold
algorithm, a hybrid version of the Threshold and MDB
algorithms, and discuss its properties. The corresponding
experiments and empirical analysis are presented in Sec-
tion 6. We conclude in Section 7.
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2. Automatic examination of alternative schema mappings is beyond the
scope of this paper; it is typically tool dependent and may involve analysis
of query variations [35], Web server error messages, and so forth.

3. Alternatively, the ensemble members can first provide rankings of
only the attribute-level mappings, while ignoring the application constraints
posed on the schema matching process. It is apparent that such an approach
would significantly reduce the complexity of individual rankings. How-
ever, these rankings then need to be combined into a “consensus” ranking
of valid schema mappings. To the best of our knowledge, there is no
evidence in the literature that such an approach can provide, at a low
complexity cost, a semantically justified “consensus” ranking over the
schema mappings while respecting schema-level matching constraints.



2 FORMALISM, NOTATION, AND PROBLEM

STATEMENT

We begin by introducing some formalism and notation
essential for defining the schema metamatching problem.

Let schema S be a finite set of some attributes. We put no
particular limitations on the notion of schema attributes;
attributes can be both simple and compound, compound
attributes need not necessarily be disjoint, and so forth. For
any schemata pair S and S0, let S ¼ S � S0 be the set of all
possible attribute mappings between S and S0, and let the
power-set � ¼ 2S be the set of all possible schema mappings
between this pair of schemata. Let � : �! f0; 1g be a
Boolean function that captures the application-specific
constraints on schema mappings, for example, cardinality
and interattribute mapping constraints.4 Given such a
constraint specification �, the set of all valid schema
mappings in � is given by �� ¼ f� 2 � j; �ð�Þ ¼ 1g. A
schema matcher A takes as its input a schemata pair S, S0, as
well as a constraint specification �, and provides us with an
ordering �A over ��. For schema mappings �, �0 2 ��,
� �A �0 means that � is estimated by A to be as good as �0. It
is worth noting that such an ordering may be given either
implicitly or explicitly.

Although various schema-matching models have been

proposed, many of them follow a similar two-step pattern

[8] that we adopt here. In the first step, each attribute

mapping in S is automatically assigned with a real-valued

degree of similarity. If S and S0 are of arity n and n0,

respectively, then this step results in an n� n0 similarity

matrix MðAÞ, where M
ðAÞ
i;j represents the degree of similarity

between the ith attribute of S and the jth attribute of S0, as

assigned by A. Various schema matchers differ mainly in

the measures of similarity they employ and, thus, yield

different similarity matrices. These similarity measures can

be arbitrarily complex and may use various techniques for

name matching, domain matching, structure matching

(such as XML hierarchical representation), and semantic

matching.
In the second step, the similarity information in MðAÞ is

used to quantify the quality of different schema mappings �
in �� using some real-valued local aggregation function (or
l-aggregator, for short):

f ðAÞ �;MðAÞ
� �

¼ fðAÞ MðAÞ
1;�ð1Þ; . . . ;M

ðAÞ
n;�ðnÞ

� �
that is, a function that aggregates the degrees of similarity
associated with the individual attribute mappings forming
the schema mapping �. The ordering �A on �� is then

� �A �0 , f ðAÞ �;MðAÞ
� �

� f ðAÞ �0;MðAÞ
� �

for each �, �0 2 ��. A popular choice of l-aggregator is the
sum (or average) of attribute mapping degrees of similarity
(for example, see [8], [23], and [33]), but other l-aggregators
have been found appealing as well (for example, the Dice
l-aggregator suggested in [8], threshold-based aggregators

[37], and so forth). Without loss of generality, in what
follows, we assume that f is computable in time linear in n

and n0. However, at least technically, nothing prevents us
from using more sophisticated (and possibly more compu-

tation-intense) l-aggregators.
Having defined the ordering �A over ��, the schema

matcher A can now provide answers to various queries. The
most common query these days stands for retrieving a top-1
mapping:

�1 ¼ arg max
�

fð�;MÞ j � 2 ��f g

(possibly) along with its quality estimation f ðAÞð�1;MAÞ. In
the top-K approach, this query is generalized to retrieving a
top-ith mapping

�i ¼ arg max
�

fðAÞð�;MðAÞÞ j � 2 �� n f�1; � � � ; �i�1g
n o

ð1Þ

annotated with fðAÞð�i;MAÞ. In what follows, we refer to
this query as q-topðiÞ. In addition, the schema matcher can
be queried for the estimate f ðAÞð�;MðAÞÞ for an arbitrary

mapping � 2 �� and, here, we denote such a query by
q-estimð�Þ. Clearly, the time and space complexity of

answering these queries depend on both the structure of �

and the l-aggregator f ðAÞ. On the positive side, however, in
many natural settings, answering these queries can be
efficient. For instance, when f ðAÞ is equivalent to sum, and �

is devoted to enforce one-to-one cardinality constraint, then

the time complexity of retrieving �i is5 Oði�4Þ, where � ¼
max fn; n0g [21], [24], [40], and providing the estimate
fðAÞð�;MðAÞÞ can be done in Oð�Þ.

Now, let us consider an ensemble of m schema
matchers A1; . . . ; Am utilizing (possibly different) local

aggregators fð1Þ; . . . ; fðmÞ, respectively. Given two schemata
S and S0 as before, these matchers produce an m� n� n0
similarity cube of n� n0 similarity matrices Mð1Þ; . . . ;MðmÞ.
Such an ensemble of schema matchers A1; . . . ; Am is used
to generate a “consensus” ordering � over �� from the

individual orderings �1; . . . ;�m . This ordering aggrega-
tion is performed via aggregating the weights each Ai

provides to the schema mappings in ��. In turn, weight
aggregation can always be modeled using a real-valued

global aggregation function (or g-aggregator, for short)
F ðf ð1Þð�;Mð1ÞÞ; � � � ; f ðmÞð�;MðmÞÞÞ [8], [23]. In what follows,
by h~f; F i, we denote the set of l-aggregators and
g-aggregator in use, respectively. Likewise, we use the
notation

h~f; F ið�Þ � F fð1Þð�;Mð1ÞÞ; � � � ; fðmÞð�;MðmÞÞ
� �

for the aggregated weight provided by A1; . . . ; Am with

h~f; F i to the mapping �. The aggregated ordering � on ��

is then

� � �0 , h~f; F ið�Þ � h~f; F ið�0Þ

for each �; �0 2 ��. For instance, many g-aggregators
proposed in the literature can be generalized as
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4. We refrain from an in-depth analysis of cardinality and other
interattribute mapping constraints. The interested reader is referred to [6],
[10], [20], and [44].

5. Given �1; . . . ; �i�1, the time complexity of retrieving �i is Oð�3Þ [21],
[24], [40].



F f ð1Þð�;Mð1ÞÞ; � � � ; fðmÞð�;MðmÞÞ
� �

¼ �

m

Xm
l¼1

klf
ðlÞð�;MðlÞÞ;

ð2Þ

where (2) can be interpreted as a (weighted) sum (with
� ¼ m) or a (weighted) average (with � ¼ 1) of the local
rankings, where kl is the arbitrary weighting parameters. It
is important to note that the choice of g-aggregator is
unavoidably ensemble dependent and, thus, here, we
consider it as a given property of the ensemble.

Having formalized individual schema matchers and
their ensembles as above, we define the schema metamatch-
ing problem to be that of generating the top-K valid
mappings between S and S0 with respect to an ensemble
of schema matchers A1; . . . ; Am, their respective l-aggre-
gators f ð1Þ; . . . ; f ðmÞ, and the ensemble’s g-aggregator F .
Formally, given S, S0, �, and K � 1, our task is to
generate f�1; . . . ; �Kg � ��, where the ith best mapping �i

is inductively defined as

�i ¼ arg max
�
h~f; F ið�Þ j � 2 �� n f�1; � � � ; �i�1g
n o

ð3Þ

similar to (1) for the basic case of m ¼ 1.

3 RANK AGGREGATION FOR SCHEMA MATCHING

Having formalized the problem of schema metamatching,
we now proceed with exploring it from the computational
standpoint. To stress some of the computational issues
involved, consider a straightforward procedure for rank
aggregation, where each judge (a schema matcher in our
case) explicitly ranks the entire universe of alternatives,
associating each alternative with a certain level of “good-
ness.” These individual grades are then combined (this or
another way) into a grading underlying the “consensus”
ranking, and we are provided with the top-K elements of
this aggregated ranked list. Unfortunately, in the case of
schema matching, the size of the universe of alternatives
makes this straightforward approach unrealistic: Given two
schemata of n attributes each, there are already n! alternative
1:1 mappings between them, and this number is even larger
for less constrained settings. Therefore, any realistic method
for schema metamatching has to either consider individual
rankings represented implicitly in some compact form or
carefully query the judges about the mappings while
limiting the number and complexity of these queries to the
extent possible.6

In the remainder of this paper, we focus on the
algorithmic aspects of solving this problem. Before we
begin discussing various algorithms, it is worth observing
that a naı̈ve approach of 1) generating m top-K lists of
mappings with respect to A1; . . . ; Am using the q-top
queries and 2) subsequently aggregating these lists using
F is not sound. To illustrate this, consider the top-1
mapping �1. First, as strange as it may seem, �1 may
appear in none of the m individual top-K lists and, thus,
will definitely not appear in an aggregated list of any
length. Such a case may occur whenever �1 is not one of the

top-K mappings of any of A1; . . . ; Am, yet, these experts are
so in odds with each other that the common consensus
becomes a convenient mediocre mapping. Second, even if
�1 appears in some, or even most, individual top-K lists, it
can be improperly ranked in step 2), and possibly even
discarded from the aggregated top-K list. This can occur if
the relative aggregated ranking of �1 is significantly affected
by the scores it gets from the experts that individually
ranked it lower than top-K.

3.1 Adopting the Threshold Algorithm

The problem of optimal aggregation of several quantita-
tively ordered lists has been recently studied in the context
of middleware for multimedia database systems [14], [15],
[17], [16]. The most efficient general algorithm for this
problem, called the Threshold (TA) algorithm, has been
introduced in [17], and we begin by presenting this
algorithm in terms of our problem in Fig. 1.

The intuition behind the TA algorithm is elegantly

simple. For each schema matcher Ai, the algorithm utilizes

q-top queries to generate as many mappings in a ranked

order as needed. Assume that K ¼ 1; that is, we are

interested only in the best mapping. Assume further that we

are at a stage in the algorithm where we have not seen any

mapping � whose aggregated weight h~f; F ið�Þ � �
TA

, where

�
TA

is determined in step 1b. If so, at this point we cannot be

sure that the best mapping has already been seen, because

the next mapping �0 generated by q-top could have

aggregated weight h~f; F ið�0Þ � �
TA

. If this is the case, then

clearly no mapping � seen so far could be the best mapping,
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6. Note that in contrast to the case of Web meta-search [12], our judges
are ready to answer any query about mapping rankings.

Fig. 1. The TA algorithm, adopted for schema metamatching.



since h~f; F ið�0Þ > h~f; F ið�Þ. Thus, it is safe to halt only when

we see a mapping whose aggregated weight is at least �
TA

.

Similarly, for K > 1, the stopping rule verifies a sufficient

condition to ensure that the top-K mappings have been

seen.

The only property required to ensure the completeness of

the TA algorithm is monotonicity of the g-aggregator F in the

following sense [17]: A function F is monotonic if, for every

two mappings �, �0, such that f ðlÞð�;MðlÞÞ > f ðlÞð�0;MðlÞÞ
holds for all 1 	 l 	 m, we have h~f; F ið�Þ > h~f; F ið�0Þ. Since

this requirement does not seem to induce any practical

limitation, henceforth, we adopt this assumption of mono-

tonicity for g-aggregators. Likewise, for ease of presentation

and without loss of generality, we assume that F is

computable in time linear in m.
Considering the time complexity of the TA algorithm

while ignoring the specifics of the schema metamatching

problem, it can be easily shown that this algorithm may

have to access in a sorted manner as many as half of each
sorted list (for example, see [17, Example 6.3]). Further,

although we found no setting of schema-matching problem
on which the TA algorithm performs that bad, the next

theorem shows that in the context of schema metamatching,
it may still have exponentially long runs.

Theorem 1. The time complexity of schema metamatching using

TA is �ðð�2Þ!Þ.

3.2 The MD Algorithm

Theorem 1 provides a strong motivation to seek more

efficient alternatives to the TA algorithm. In [17], however,
this algorithm is shown to be optimal in a strong sense of

“instance optimality.” For the formal definition of instance

optimality, we refer the reader to [17]; roughly, for any set
of data and any other rank aggregation algorithm A with

the time complexity CompðAÞ, instance optimality of the
TA algorithm implies that its time complexity is of the order

of that of A, that is, CompðTAÞ ¼ OðCompðAÞÞ. Hence, at
least at first view, it seems that using the TA algorithm for

schema metamatching is the best we can do. However,
below, we show that, for a certain class of aggregators

h~f; F i, an extremely simple technique exploiting specifics of
the schema-matching problem provides a significantly

better performance. Note that this does not contradict the

instance optimality of the TA algorithm, as the latter is a
generic algorithm independent of the actual grading

mechanisms. In particular, the TA algorithm in our domain
considers only the outputs of q-top queries and does not

intervene in their processing. Hence, it is possible that one
can devise algorithms outperforming TA by exploiting some

properties of the specific problem domain at hand.
To begin with an example, let us consider l- and

g-aggregators:

8l 2 f1; . . . ;mg : f ðlÞð�;MðlÞÞ ¼
Xn
i¼1

M
ðlÞ
i;�ðiÞ

h~f; F ið�Þ ¼
Xm
l¼1

klf
ðlÞð�;MðlÞÞ:

ð4Þ

Observe that the summations in (4) can be distributed,
resulting in

f; Fh ið�Þ ¼
Xn
i¼1

Xm
l¼1

klM
ðlÞ
i;�ðiÞ;

where the vector notation ~f is replaced with f to explicitly
highlight the uniqueness of the l-aggregator in this case.
That is, if the l-aggregator f and g-aggregator F happen to
be as in (4), then using F for local weight aggregation and f
for global weight aggregation will be equivalent to using f
and F in their original roles. In other words, in case of (4),
we have hf; F ið�Þ ¼ hF; fið�Þ for any mapping � between
any pair of schemata S and S0. The special case of (4) can be
generalized as follows:

Definition 1. Given a set of similarity matrices Mð1Þ; . . . ;MðmÞ

over a pair of schemata S, S0, and a pair of l-aggregator f and
g-aggregator F , we say that f and F commute on
Mð1Þ; . . . ;MðmÞ if and only if, for every mapping � between
S and S0, we have

f; Fh ið�Þ ¼ F; fh ið�Þ: ð5Þ

Likewise, if f and F commute on all possible sets of similarity

matrices, then we say that f and F are strongly commutative.

For instance, the aggregators f and F as in (4) are
strongly commutative. To illustrate commutativity in the
absence of strong commutativity, consider a pair of
aggregators corresponding to min and product, respectively.
Although these two aggregators are clearly not strongly
commutative, they do commute, for instance, on any set of
Boolean similarity matrices.

The commutativity between the l- and g-aggregators
leads to an extremely efficient algorithm for schema
metamatching. Specifically, in Fig. 2, we present the
MD algorithm, generalizing the applicability of the compo-
site method of COMA [8] to any schema metamatching
problem in which 1) all the judges use the same l-aggregator
and 2) the l- and g-aggregators commute on the given set of
similarity matrices. The correctness and time complexity of
the MD algorithm are stated by Theorem 2.

Theorem 2. Given a set of schema matchers A1; . . . ; Am and a

pair of local and global aggregators hf; F i, let M
 be a matrix

defined as M

i;j ¼ F ðM

ð1Þ
i;j ; � � � ;M

ðmÞ
i;j Þ for all 1 	 i 	 n,

1 	 j 	 n0. If f and F commute on the similarity matrices

Mð1Þ; . . . ;MðmÞ, then the MD algorithm correctly finds the top-

K valid mappings with respect to the aggregated ranking in

time Oð�2mþ �Þ, where � is the combined time complexity of

iteratively executed queries q-topð1Þ; . . . ;q-topðKÞ over M
.
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Fig. 2. The MD algorithm.



4 MD ALGORITHM WITH BOUNDING

Reading so far, it seems natural to conclude that the schema
metamatching problems satisfying the conditions of Theo-
rem 2 should be processed using MD, whereas all other
problems should be processed using TA (that is, we are back
to an instance optimal algorithm for general quantitative
rank aggregation). However, below, we show that, although
the former conclusion is sound, the latter is not necessarily so.

Definition 2. Consider a set of similarity matrices
Mð1Þ; . . . ;MðmÞ over a pair of schemata S, S0 and two sets
of l- and g-aggregators h~f; F i and h~f 0; F 0i. We say that
h~f 0; F 0i dominates h~f; F i on Mð1Þ; . . . ;MðmÞ (denoted as
h~f 0; F 0i � h~f; F i) if, for every mapping � from S to S0, we
have

h~f 0; F 0ið�Þ � h~f; F ið�Þ: ð6Þ

Likewise, if (6) holds for all possible sets of similarity matrices,
then we say that h~f 0; F 0i strongly dominates h~f; F i.

Consider a schema metamatching problem defined by a
set of similarity matrices Mð1Þ; . . . ;MðmÞ and a set of l- and
g-aggregators h~f; F i that do not commute on Mð1Þ; . . . ;MðmÞ.
Suppose that there exists a pair of functions hh;Hi that 1) do
commute on Mð1Þ; . . . ;MðmÞ and 2) dominate h~f; F i on these
matrices. Corollary 3, which follows immediately from the
definition of the MD algorithm, gives us a simple property
of this algorithm that provides some intuition for the
subsequent steps of construction.

Corollary 3. Given a set of schema matchers A1; . . . ; Am and a
pair of local and global aggregators hh;Hi commuting on
Mð1Þ; . . . ;MðmÞ, the top-K result of the MD algorithm with
respect to hh;Hi is a correct top-K aggregation with respect to
any set of l- and g-aggregators h~f; F i, such that both hh;Hi �
h~f; F i and h~f; F i � hh;Hi hold on Mð1Þ; . . . ;MðmÞ.

In general, nothing prevents Corollary 3 to be realized.
To illustrate that, consider the following set of four real-
valued functions: fðxÞ ¼ x2, F ðxÞ ¼ x=2, hðxÞ ¼ x2=2, and
HðxÞ ¼ x. Although f and F do not commute on reals
(F ðfðxÞÞ ¼ x2=2 and fðF ðxÞÞ ¼ x2=4), the functions h and H
are strongly commutative ðHðhðxÞÞ ¼ hðHðxÞÞ ¼ x2=2Þ, and
we have HðhðxÞÞ ¼ F ðfðxÞÞ. However, the practical realiz-
ability of Corollary 3 with respect to schema metamatching
is less clear, as it is not clear whether there exists a set of
four functions that will be interesting in practice for schema
metamatching.

Corollary 3, however, does provide us with some useful
intuition. Consider a schema metamatching problem de-
fined by a set of similarity matricesMð1Þ; . . . ;MðmÞ and l- and
g-aggregators h~f; F i that do not commute on Mð1Þ; . . . ;MðmÞ.
Suppose that there exists a pair of functions hh;Hi that do
commute on Mð1Þ; . . . ;MðmÞ and dominate h~f; F i on these
matrices, yet is not dominated by h~f; F i. For instance, let F
be a weighted sum as in (4), and f be defined as

fðiÞð�;MÞ ¼
Pn

j¼1 Mj;�ðjÞ;
Pn

j¼1 Mj;�ðjÞ > ti
0; otherwise;

�
ð7Þ

where ti > 0 is some predefined constant threshold. The
intuition behind (7) is that judges that can no longer provide

mappings with sufficient similarity measure (set as the
threshold ti) “quit” by nullifying all further mappings.
Another example, reflecting one of the currently used
settings in schema matching (for example, [4] and [37]), is

fðiÞð�;MÞ ¼
Xn
j¼1

Mj;�ðjÞ � � Mj;�ðjÞ > tj
� �� �

; ð8Þ

where � is the Kronecker discrete delta function. According

to (8), individual pairwise attribute mappings that do not

pass a predefined matcher-specific threshold are nullified.

In both cases, it is not hard to verify that ~f and F do not

commute (in all but trivial cases of effectively redundant

thresholds.) On the other hand, functions h and H standing

for simple sum and weighted sum (as in (4)) are (strongly)

commutative, and we have h~f; F i � hh;Hi for both (7) and

(8). For such cases, we now present the MDB algorithm. This

algorithm draws upon both the TA and MD algorithms,

addressing problems with noncommutative pairs of local

and global aggregation functions, while being more efficient

than the TA algorithm in at least some such problem

instances.
The MDB algorithm is shown in Fig. 3. Consider a

schema metamatching problem with schema matchers
A1; . . . ; Am and aggregators h~f; F i that do not commute
on Mð1Þ; . . . ;MðmÞ. As we already mentioned, the basic
idea behind the MDB algorithm is to use a pair of
functions hh;Hi (that both dominate h~f; F i and commute

DOMSHLAK ET AL.: RANK AGGREGATION FOR AUTOMATIC SCHEMA MATCHING 543

Fig. 3. The MDB algorithm.



on Mð1Þ; . . . ;MðmÞ) as an upper bound for the “incon-
venient” h~f; F i of our actual interest. Informally, the MDB
algorithm behaves similarly to the MD algorithm if the
latter is given with the aggregators hh;Hi. However,
instead of reporting immediately on the generated map-
pings �, the MDB algorithm uses the decreasing aggre-
gated weights hh;Hið�Þ to update the value of a threshold
�
MDB

. In turn, as much as the way the threshold �
TA

is used
in the TA algorithm, the threshold �

MDB
is used to judge

our progress with respect to the weights h~f; F i that really
matter. Theorem 4 shows that the MDB algorithm is
correct for any such upper bound hh;Hi.
Theorem 4. Consider a set of schema matchers A1; . . . ; Am, with
h~f; F i being their l- and g-aggregators. Given a function pair
hh;Hi that both commute and dominate h~f; F i on
Mð1Þ; . . . ;MðmÞ, the MDB algorithm correctly finds the top-
K valid mappings with respect to h~f; F i.
Returning to the question of performance, recall that our

intention in developing the MDB algorithm was to provide
an alternative to the TA algorithm for ensemble-aggregation
settings where the standard MD is not applicable. Have we
achieved our goal, or will the TA algorithm always be more
efficient anyway? We now show that, for schema meta-
matching, MDB can significantly outperform TA.

Theorem 5. Given a schema metamatching problem instance, the
time complexity of the TA algorithm on this instance can be
exponentially worse than that of the MDB algorithm.

Theorem 5 shows that the TA algorithm does not
dominate the MDB algorithm, but it says nothing about the
opposite direction: Does the MDB algorithm dominate the
TA algorithm, or maybe the relative attractiveness of these
two algorithms (complexity-wise) depends on the actual
metamatching instance at hand? The problem with answer-
ing this question in a general manner is that the running time
of the MDB algorithm depends on the choice of bounding
functions. Therefore, dominance of the MDB algorithm over
the TA algorithm would mean that, for each metamatching
problem instance and each K, the optimal choice of bounding
functions hh;Hi will make the MDB algorithm at least as
efficient as TA. At this stage, we have no evidence that this is
actually the case. In fact, so far it is not even clear that
the above notion of optimality has a clear mathematical
semantics. It is worth noting here that the actual tightness of
hh;Hiwith respect to h~f; F i is only one factor in determining
the efficiency of the MDB algorithm, and the optimality as
above should also relate to this or another notion of order
preserving: Intuitively, the MDB algorithm is most efficient if
the order induced by hh;Hi over alternative schema
matchings coincides with the order induced by h~f; F i, and
hh;Hi is sufficiently tight to allow the discovered mappings
to cross �

MDB
quickly enough. On the other extreme, the

MDB algorithm is least efficient if the order induced by
hh;Hi is the inversion of the order induced by h~f; F i. Later,
we provide an algorithm that makes use of the “good”
mappings that were discovered by the MDB algorithm even
when hh;Hi fails to provide a sufficiently tight threshold. As
for order preserving, the superiority of the algorithm should
hold for all problem instances and all choices of K, and it is
not clear how (if at all) this notion can be defined in a
problem-instance-independent manner.

In the absence of a general relation as above, the question
now is whether or not we can say something about the
attractiveness of the TA algorithm with respect to the
MDB algorithm that is equipped with a “reasonable” pair of
bounding aggregators. Theorem 6 provides an affirmative
answer to this question and shows that TA can significantly
outperform MDB.

Theorem 6. Given a schema metamatching problem instance, the
time complexity of the MDB algorithm on this instance can be
exponentially worse than that of the TA algorithm.

5 THE CROSSTHRESHOLD ALGORITHM

The main conclusion to be drawn from Theorem 6 is that
the MDB algorithm should not replace but rather comple-
ment the TA algorithm. Thus, it would be natural to adopt a
parallel execution of TA and MDB, that is, performing
mþ 1 parallel q-top querying of schema matchers. This
way, we involve both algorithms in computing the top-K
mappings, halting as soon as one of these algorithms
reaches the desired goal.

The question that suggests itself immediately is whether
we can improve the performance of this parallel execution
of the TA and MDB algorithms by either monitoring their
intermediate behavior or letting TA and MDB share some
information gathered from their own individual computa-
tions. Our discussion of this possibility leads to specifica-
tion and analysis of a mixed version of the TA and
MDB algorithms, in which TA and MDB are executed in
parallel; yet, these parallel executions are not independent
but rather communicating and mutually enhancing.

5.1 Is an Early Winner a True Winner?

A naı̈ve approach to accelerate parallel execution of the TA
and MDB algorithms corresponds to the hypothesis that by
observing the performance of both TA and MDB in
identifying the top-i mappings (where i < K), a decision
can be taken to continue with only one of these algorithms
in identifying the remaining K � i mappings. Observe that
such an “early winner detection” will be especially helpful
in problems where de facto MDB outperforms TA, since
TA’s execution of m parallel q-top querying is more costly
than executing MDB.

Unfortunately, such a selection strategy provides us with
no guarantee that the performance will not worsen after
abandoning the “so-far looser” algorithm. More interest-
ingly, our experiments show that this absence of guarantee
is not of theoretical interest only. For instance, Fig. 4
compares the performance of the TA and MDB algorithms
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on two schemata from the hotel reservation domain. The x-
and y-axes in Fig. 4 correspond to the requested number of
the top mappings K and the (plotted on a logarithmic scale)
number of iterations performed by the algorithms, respec-
tively. On this problem instance, the MDB algorithm
manages to get the top-4 mappings faster than the
TA algorithm. However, from K ¼ 6 on, TA outperforms
MDB. This example demonstrates that in practice as well,
the relative performance of the TA and MDB algorithms for
any i < K cannot serve as a perfect indicator for their future
behavior. (We discuss our experiments in more details in
Section 6.)

5.2 Can the TA and MDB Algorithms Help Each
Other?

Although we have shown that neither the TA algorithm nor
the MDB algorithm can be safely abandoned, a natural next
step would be to allow these two algorithms to share a pool
of the top-K candidates. This way, both algorithms will
contribute to each other new candidates as they come along,
possibly replacing other less attractive candidates (discov-
ered by either of the two algorithms.) Moreover, such a pool
sharing suggests aggregating the thresholds used in the TA
and MDB algorithms, achieving a new threshold that is
more effective than the original two. This way, the schema
mappings selected by the TA algorithm as candidates for
the top-K set can be “approved” by means of the
information obtained by the MDB algorithm, and vice versa.

Fig. 5 formalizes the resulting algorithm, which we refer
to as CrossThreshold. The joint threshold � used in this
algorithm is set to minf�

TA
; �

MDB
g, and Theorem 7 shows the

correctness of the CrossThreshold algorithm with such a
threshold. Note that this choice of � for the CrossThreshold

algorithm is optimal, because any other � 0 > � cannot be
more effective than � , whereas setting � to any value lower
than minf�

TA
; �

MDB
g cannot guarantee the soundness of the

procedure.

Theorem 7. Let A1; . . . ; Am be a set of schema matchers with

h~f; F i being their l- and g-aggregators. Given a function pair

hh;Hi that both commute and dominate h~f; F i on

Mð1Þ; . . . ;MðmÞ, the CrossThreshold algorithm correctly

finds the top-K valid mappings with respect to h~f; F i.

Although Theorem 7 shows the correctness of the
CrossThreshold algorithm, the reader may rightfully
wonder whether it can provide any computational speedup
compared to the basic independent parallel execution of the
TA and MDB algorithms. Below, we provide an affirmative
answer to this question.

Considering the generation of the top-K mappings for a
general schema metamatching problem, let I be the
minimal number of iterations required for this purpose by
the CrossThreshold algorithm and I

TA
and I

MDB
be the

corresponding minimal number of iterations required by
independently running the TA and MDB algorithms,
respectively. If using CrossThreshold provides any compu-
tational speedup on this problem instance, then we should
have

I < minfITA; IMDBg: ð9Þ

To obtain some intuition on when (if at all) (9) may hold, let
� ½x, �

TA
½x, and �

MDB
½x be the values obtained after x

iterations by � , �
TA

, and �
MDB

, respectively. By definition of
the CrossThreshold algorithm and its reported top-K list Y ,
we have

8� 2 Y : h~f; F ið�Þ � � ½I ¼ min �TA½I; �MDB½If g ð10Þ

and without loss of generality, assume that �
TA
½I 6¼ �

MDB
½I.

First, suppose that the value of � ½I is contributed by the
TA algorithm, that is, � ½I ¼ �

TA
½I; thus, (10) can be

reformulated as

8� 2 Y : h~f; F ið�Þ � �TA½I: ð11Þ

On the other hand, (9), in particular, implies that there
exists at least one mapping � 2 Y that has not been seen by
TA. Thus, after I iterations, such a mapping � is exclusively
provided to the shared pool of candidates by the
MDB algorithm, yet, the TA algorithm can successfully
verify membership of � in the top-K list. The situation with
� ½I ¼ �

MDB
½I is symmetric; in this case, there exists at least

one mapping � 2 Y that is exclusively discovered by the
TA algorithm, and yet its membership in the top-K list can
be successfully verified by the MDB algorithm.

We now formalize this intuition to characterize schema
metamatching problem instances on which the Cross-

Threshold algorithm can provide a computational speedup
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over its basic “asynchronous” counterpart. Starting with (9)
and (10), we provide two lemmas that significantly reduce
the spectrum of scenarios in which such a speedup is
theoretically possible. Specifically, Lemmas 8 and 9 restrict
the global aggregator value of mappings that are identified
by one algorithm and verified with the appropriate thresh-
old of the other algorithm to be equal to the joint threshold � .

Extending the notation introduced in Section 5.2, let Y ¼
Y
TA
[ Y

MDB
be a (possibly not disjoint) cover of Y , where Y

TA

and Y
MDB

contain the top-K mappings provided to the
CrossThreshold algorithm by the q-top queries toA1; . . . ; Am

and A
, respectively.

Lemma 8. If I < I
TA

and � ½I ¼ �
TA
½I, then Y n Y

TA
6¼ ;, and for

each � 2 Y n Y
TA

, we have

h~f; F ið�Þ ¼ �TA½I:

Lemma 9. If I < I
MDB

and � ½I ¼ �
MDB
½I, then Y n Y

MDB
6¼ ;,

and for each � 2 Y n Y
MDB

, we have

h~f; F ið�Þ ¼ �MDB½I:

At first view, it seems that the restrictions posed by
Lemmas 8 and 9 are too strict for the CrossThreshold
algorithm to provide a significant computational speedup
(if any). However, below, we show that even in such
boundary situations, the speedup is not only possible, but
also potentially significant.

Theorem 10. There exist schema metamatching problem
instances for which the time complexity of both the TA and
MDB algorithms is exponentially worse than that of the
CrossThreshold algorithm.

6 EMPIRICAL EVALUATION

We have implemented the generic versions of the four
algorithms TA, MD, MDB, and CrossThreshold.7 In this
implementation, each algorithm can be plugged in with a
concrete schema model (for example, relational), a set of
(standard or user defined) schema matchers, and a pair of l-
and g-aggregators.

As a testbed, we have gathered 24 Web forms from six
different domains, namely, dating and matchmaking, job
hunting, Web mail, hotel reservation, news, and cosmetics.
We first extracted the schemata of these Web forms using
the OntoBuilder ontology extractor. Then, we generated the
similarity matrices for all pairs of domain-compatible Web
forms using four different schema matchers called Term,
Value, Composition, and Precedence [23]. The valid
schema mappings have been defined to be all the mappings
obeying one-to-one cardinality constraint.

In our experiments, we have evaluated the TA, MDB, and
CrossThreshold algorithms on five pairs of these matchers,
namely, {Term, Value}, {Term, Precedence}, {Term,
Composition}, {Value, Precedence}, and {Value, Com-
position}. Likewise, all these 15 schema metamatching
settings have been evaluated on nine pairs of l- and g-
aggregators hf; F i, namely, havg;mini and havgðtÞ; avgi,

where avgðtÞ stands for the average version of (7), and
t 2 f0:025; 0:05; 0:1; 0:15; 0:2; 0:25; 0:5; 0:75g. To eliminate
possible influence of having different l-aggregators for
different schema matchers on the conclusiveness of the
evaluation, in all these 135 experiment configurations, the
matchers have been set to use the same l-aggregator.
Likewise, in all these configurations, we have used
havg; avgi as the dominating pair of bounding aggregators
hh;Hi and generated up to K ¼ 20 top mappings.

To summarize, we have experimented with 12 pairs of
schemata, five groups of schema matcher pairs, and nine
pairs of l- and g-aggregators, for a total of 540 comparative
experiments between the TA, MDB, and CrossThreshold
algorithms. Below, we discuss the results of our empirical
evaluation of TA, MDB, and CrossThreshold. Note that
empirical evaluation of the MD algorithm is redundant, as
the running time of MD on a given problem instance can be
derived analytically from Theorem 2.

6.1 Evaluating the TA and MDB Algorithms

Recall that Theorems 5 and 6 show that the TA and MDB
algorithms do not dominate each other. These formal
results, however, say little about the practical relationship
between the two algorithms. Interestingly, our experiments
on real-world schemata support the formal conclusion of
Theorems 5 and 6 that there is no clear winner between the
TA and MDB algorithms.

To start with a concrete example, in Fig. 6, we present the
performance of the TA and MDB algorithms on two
different pairs of schemata, while employing the same pair
of matchers {Term, Precedence} and the same pair of l-
and g-aggregators hf; F i ¼ havgð0:25Þ; avgi (bounded by
hh;Hi ¼ havg; avgi.) The x- and y-axes in these graphs
correspond respectively to the requested number of the top
mappings K and the number of iterations performed by the
algorithms (plotted on a logarithmic scale). It is easy to see
that the MDB algorithm significantly outperforms the
TA algorithm on the problem instance depicted in Fig. 6a,
whereas the TA algorithm significantly outperforms the
MDB algorithm on the problem instance depicted in Fig. 6b.
Thus, Fig. 6 clearly shows that performance incomparability
between the TA and MDB algorithms is not restricted to
some extreme pathological problem instances. Moreover,
this example illustrates that these two algorithms are
incomparable even if there is no difference between their
settings neither in the choice of schema matchers nor in the
choice of l- and g-aggregators.

Table 1 summarizes the relative performance of the MDB
and TA algorithms on various pairs of schemata and
various choices of schema matcher groups. The rows in
Table 1 correspond to the different choices of the l- and
g-aggregators, whereas its four columns capture the
percentage of experiments in which:

1. TA performed at least as well as MDB for all 1 	 K 	
20 and outperformed MDB for at least one such K;

2. MDB performed at least as well as TA for all 1 	 K 	
20 and outperformed TA for at least one such K;

3. TA and MDB performed exactly the same; and
4. none of these two algorithms dominated the other

for all 1 	 K 	 20.
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This table further illustrates that the performance of the
MDB and TA algorithms is generally incomparable. Like-
wise, as it was expected, Table 1 shows that the perfor-
mance of the MDB algorithm correlates with the relative
informativeness of our bounding aggregators havg; avgi
with respect to the actual l- and g-aggregators in use.
Specifically, the lower the threshold is, the better the
MDB algorithm performs.

6.2 Evaluating the CrossThreshold Algorithm

Next, we compare the empirical performance of the Cross-
Threshold algorithm with the independent in-parallel
execution of the TA and MDB algorithms. Recalling that
the CrossThreshold algorithm is always at least as effective
as its basic counterpart, and that Theorem 10 implies the
theoretical feasibility of (9), our intention here is to check
whether the computational gain from using the Cross-
Threshold algorithm can also be observed in practice.

Let Imin ¼ minfI
TA
; I

MDB
g denote the number of iterations

required to solve a given schema metamatching problem
using the basic in-parallel execution of the TA and
MDB algorithms. Fig. 7 illustrates the relative performance
of the CrossThreshold algorithm with respect to in-parallel
execution by plotting the ratio Imin=I averaged over all
12 tested pairs of schemata and five tested pairs of schema
matchers. Since we always have I 	 Imin, the (averaged)
ratio Imin=I is always bounded from below by 1. Each vertex
on this surface corresponds to an average ratio for a certain

number of required mappings K (x-axis) and a certain
choice of l- and g-aggregator functions (y-axis).

Fig. 7 clearly shows that using the CrossThreshold
algorithm is beneficial not only in theory, but also in
practice. Averaging over all 540 experimental sessions, the
CrossThreshold algorithm was � 16 percent faster than its
basic counterpart. For the aggregator pairs havgðtÞ; avgi, the
relative benefit of using the CrossThreshold communication
between the TA and MDB algorithms was roughly propor-
tional to the cutoff value t. The intuition behind this
relationship is that, as t gets closer to 0, the values that the
bounding functions havg; avgi provide to the mappings are
closer to those provided by the actual aggregators
havgðtÞ; avgi, and thus, the MDB algorithm is getting closer
to the “perfect” algorithm MD.

Now, consider the pair of local and global aggrega-
tors havg;mini. Recall that in our experiments with this
pair of aggregators, the TA algorithm outperformed the
MDB algorithm in 95 percent of the experiments for any
1 	 K 	 20 (see the last row in Table 1). If so, then one
would expect the performance of the CrossThreshold
algorithm on these problems to be similar to that of the
TA algorithm, as it seems that the MDB algorithm will
have nothing to contribute to the process. However,
Fig. 7 shows exactly the opposite; not only does the
CrossThreshold algorithm outperform the TA algorithm
on this problem set, but the marginal contribution of
using it was also the largest among all the pairs of l-
and g-aggregators considered.
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Fig. 6. The TA and MDB algorithms with schema matchers {Term, Precedence} and hf; F i ¼ havgð0:25Þ; avgi evaluated on two different pairs of

schemata.

TABLE 1
Relative Performance of the MDB and TA Algorithms

Fig. 7. The CrossThreshold algorithm versus independent in-parallel

execution of the TA and MDB algorithms.



This phenomenon corresponds to a certain interesting
form of “mutual assistance” between the TA and MDB
algorithms in CrossThreshold, the possibility of which we
have exploited in our proof of Theorem 10. Recall our
discussion that the efficiency of the MDB algorithm is affected
by two separate factors. First, top mappings with respect to
h~f; F i might be pushed down when using hh;Hi. However,
even if this is not the case and the MDB algorithm
immediately finds the true top mappings, the algorithm
may not be able to verify them due to the threshold �

MDB
,

which is too high. Now, consider MDB embedded in the
CrossThreshold algorithm and a schema-matching problem
instance corresponding to the latter situation. Despite the fact
that the MDB algorithm fails to report the top-K mappings, it
can still successfully provide the right candidates. In turn,
these candidates can be approved by the (lower) threshold
�
TA

, whereas the TA algorithm may fail to generate good
candidates by itself. In such situations, the marginal
contribution of using the CrossThreshold algorithm is
expected to be the highest, and this was exactly the typical
situation in our experiments on problem instances with
hf; F i ¼ havg;mini.

To summarize, our experiments demonstrate the prac-
tical advantages of using the CrossThreshold algorithm
over the basic in-parallel execution of the TA and MDB
algorithms. Hence, the CrossThreshold algorithm provides
a more appealing solution for situations in which one is
uncertain about the relative attractiveness of the TA and
MDB algorithms in a domain of discourse.

7 CONCLUSIONS AND FUTURE WORK

We introduced schema metamatching, a novel computa-
tional framework for robust automatic schema matching
that generalizes and extends previous proposals for
exploiting an ensemble of schema matchers. We presented
several algorithms for schema metamatching, varying from
adaptation of a standard technique for quantitative rank
aggregation in the area of database middleware, to novel
techniques developed especially for the problem of schema
matching. We provided a formal computational analysis of
all algorithms and characterized their relative applicability.
In particular, our formal analysis allowed us to devise a pair
of strictly superior algorithms MD and CrossThreshold,
where the choice between the two depends on whether the
l- and g-aggregators commute on the schema-matching
problem at hand, which is an easy-to-check property.
Likewise, we evaluated all the algorithms empirically on a
set of real-life schemata gathered from Web forms and a set
of state-of-the-art schema matchers. Our experiments
demonstrate the benefit of using the CrossThreshold
algorithm over using the TA or MDB algorithms indepen-
dently or in parallel.

Our work opens several venues for future research, two
of which are discussed below. First, observe that in the
TA algorithm (and thus in the CrossThreshold algorithm),
the parallel querying of different matchers with the
q-top queries is kept uniform, that is, each iteration of the
TA algorithm progresses on all the matchers. In general-
purpose aggregation of quantitative rankings [17], this
strategy is indeed expected to be as good as any other
strategy. However, having additional knowledge about the

data can provide us with (at least heuristically) better
strategies and, currently, we are exploring this direction to
further improve the performance of the CrossThreshold
algorithm. Second, as discussed in Section 4, it is clear that
the complexity of our MDB algorithm depends crucially on
the quality of the chosen pair of dominating aggregators.
Therefore, we are looking into refining our notion of
dominance by incorporating topological measures of order-
ing and tightness.

APPENDIX

Theorem 1. The time complexity of schema metamatching using
TA is �ðð�2Þ!Þ.

Proof. The proof of this lower bound is by construction of a
certain set of similarity matrices for which the
TA algorithm finds the best mapping only after Oðð�2Þ!Þ.

Consider two algorithms, A1 and A2, and a pair of
schemata S and S0, each consisting of n attributes, where
n ¼ 2k, k 2 IN (and thus � ¼ n). Likewise, let the
l-aggregators f ð1Þ ¼ f ð2Þ both be the regular product
(denoted by f), �� be the set of all one-to-one mappings
from �, and the g-aggregator F be the utilitarian
aggregator min. Given S and S0, the similarity matrices
Mð1Þ and Mð2Þ, induced by A1 and A2, respectively, are
given as follows:

M
ð1Þ
i;j ¼

x; ði 	 n=2Þ ^ ðj 	 n=2Þ ^ ði 6¼ jÞ
x� �; i ¼ j
0; otherwise

8><
>:

M
ð2Þ
i;j ¼

x; i > n=2 ^ j > n=2 ^ i 6¼ j
x� �; i ¼ j
0; otherwise

8><
>:

for arbitrary positive values of x and �, where �� x, and
x� � > 0. We illustrate these matrices for n ¼ 4 as
follows:

Mð1Þ ¼

x� � x 0 0

x x� � 0 0

0 0 x� � 0

0 0 0 x� �

0
BBB@

1
CCCA

Mð2Þ ¼

x� � 0 0 0

0 x� � 0 0

0 0 x� � x

0 0 x x� �

0
BBB@

1
CCCA:

First, consider Mð1Þ. Each valid mapping between the

first n=2 attributes of S and the first n=2 attributes of S0

(see the top left quadrant of Mð1Þ) results in a nonzero

value of f restricted to these attributes. There are ðn2Þ!
such mappings. Any other mapping of any of these

attributes will nullify the value of f . On the other hand,

the last n=2 attributes of S have to be mapped to the n=2

last attributes of S0, and there is only one such mapping
leading to a nonzero value of f , namely, the main

diagonal of the bottom right quadrant of Mð1Þ. Therefore,

we have constructively shown that Mð1Þ induces exactly

ðn2Þ! mappings �, such that fð�;Mð1ÞÞ > 0. Denote this set
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of mappings by �þ1 � ��. By a similar construction, the
same holds for Mð2Þ, that is, j�þ2 j ¼ ðn2Þ!. Now, consider

the sets �þ1 and �þ2 , and let �I denote the indentity

mapping, that is, the mapping captured by the main

diagonals of Mð1Þ and Mð2Þ. Evidently, for l 2 f1; 2g, we

have �I 2 �þl , and for each �I 6¼ � 2 �þl , we have

fð�;MðlÞÞ > fð�I;MðlÞÞ. Therefore, �I will be discovered

by the TA algorithm after exactly ðn2Þ! q-top queries to

each of Að1Þ and Að2Þ. On the other hand, we have
�þ1 \ �þ2 ¼ f�Ig, and thus, for each mapping � 2 �, we

have

f; Fh ið�Þ ¼ min
Yn
i¼1

M
ð1Þ
i;�ðiÞ;

Yn
i¼1

M
ð2Þ
i;�ðiÞ

( )

¼
nðx� �Þ; � ¼ �I
0; otherwise:

�

This means that, under the considered aggregators f
and F , the top-1 mapping between S and S0 has to be �I .
However, it will take the TA algorithm ðn2Þ! iterations to
discover �I . tu

Theorem 2. Given a set of schema matchers A1; . . . ; Am and a

pair of local and global aggregators hf; F i, let M
 be

a matrix defined as M

i;j ¼ F ðM

ð1Þ
i;j ; � � � ;M

ðmÞ
i;j Þ for all

1 	 i 	 n; 1 	 j 	 n0. If f and F commute on the

similarity matrices Mð1Þ; . . . ;MðmÞ, then the MD algorithm

correctly finds the top-K valid mappings with respect to the

aggregated ranking in time Oð�2mþ �Þ, where � is the

combined time complexity of iteratively executed queries

q-topð1Þ; . . . ;q-topðKÞ over M
.

Proof. The correctness is immediate from the construction

of the MD algorithm and Definition 1. As F is assumed to

be computable in time linear in the number of F ’s

parameters, generating M
 takes time Oð�2mÞ. Thus, the

overall complexity of the MD algorithm is Oð�2mþ �Þ.
For instance, for aggregators as in (4) and � enforcing

one-to-one cardinality constraint, the time complexity of

the MD algorithm is Oð�4K þ �2mÞ. tu
Theorem 4. Consider a set of schema matchers A1; . . . ; Am, with

h~f; F i being their l- and g-aggregators. Given a function pair

hh;Hi that both commute and dominate h~f; F i on

Mð1Þ; . . . ;MðmÞ, the MDB algorithm correctly finds the top-

K valid mappings with respect to h~f; F i.
Proof. Let Y be as in step 3 of the MDB algorithm. We need

only show that every mapping � 2 Y has at least as high

weight according to h~f; F i as every mapping �0 62 Y . By

definition of Y , this is the case for each mapping �0 62 Y
that has been seen by MDB. Thus, assume that �0 was not

seen. By the definition of �
MDB

as in step 2b of the

MDB algorithm and the incrementality of querying A


with q-top, for each such unseen �0 and for each � 2 Y ,

we have

h~f; F ið�Þ � � � hh;Hið�0Þ � h~f; F ið�0Þ

where � is the value of �
MDB

at termination of MDB. The

second inequality holds since �0 has not been seen and

therefore hh;Hið�0Þ cannot receive a value higher than � .

Thus, we have proven that Y contains the top-K
mappings with respect to h~f; F i. tu

Theorem 5. Given a schema metamatching problem instance, the
time complexity of the TA algorithm on this instance can be
exponentially worse than that of the MDB algorithm.

Proof. The proof is by example of the corresponding
problem instance. Specifically, we consider the class of
schema metamatching problems used in the proof of
Theorem 1 and show that, for a certain subclass of these
problems, the MDB algorithm can identify the best
mapping after only two iterations.

Consider the schema metamatching problem exactly
as in the proof of Theorem 1 and assume further that
x 2 ð0; 1. We already showed that on this problem
instance the TA algorithm performs �ððn2Þ!Þ iterations for
K ¼ 1. Recall that the aggregators f and F in this
example stand for product and min, respectively. Hence, f
and F do not commute on this problem similarity
matrices and, thus, the MD algorithm cannot be used for
this problem instance. Now, consider a pair of functions
hh;Hi, where both h and H stand for a simple average.
Observe that, since the entries of both matrices Mð1Þ and
Mð2Þ lie in the interval [0, 1], we have hf; F i � hh;Hi.
Likewise, since h and H are (trivially) strongly commu-
tative, we can solve this problem instance using the
MDB algorithm with hh;Hi. The matrix M
, constructed
by the MDB algorithm from the matrices Mð1Þ and Mð2Þ

using H, is defined as follows by the first equation and
illustrated for n ¼ 4 by the second equation:

M

i;j ¼

x=2; ði 	 n=2Þ ^ ðj 	 n=2Þ ^ ði 6¼ jÞ
x=2; ði > n=2Þ ^ ðj > n=2Þ ^ ði 6¼ jÞ
x� �; i ¼ j
0; otherwise

8>>><
>>>:

M
 ¼

x� � x=2 0 0

x=2 x� � 0 0

0 0 x� � x=2

0 0 x=2 x� �

0
BBB@

1
CCCA:

Since x� � > x=2 for any � < x=2, the mapping
processed in the first iteration of the MDB algorithm will
be the mapping �I , corresponding to the main diagonal of
M
, with hf; F ið�IÞ ¼ ðx� �Þn. Also, at the second iteration
of the MDB algorithm, we have �

MD
¼ ðx� �Þn�1 � ðx=2Þ.

The MDB algorithm would halt at the second iteration if
�
MD
	 hf; F ið�IÞ, which holds, for example, for x ¼ 0:98

and � ¼ 0:01. Likewise, in the proof of Theorem 1, we
have already shown that �I is the best mapping with
respect to hf; F i. Hence, the time complexity of the
TA algorithm on this problem instance with K ¼ 1 is
exponentially worse than that of the MDB algorithm (with
properly chosen upper bound hh;Hi). tu

Theorem 6. Given a schema metamatching problem instance, the
time complexity of the MDB algorithm on this instance can be
exponentially worse than this of the TA algorithm.

Proof. This proof is by example of a corresponding class of
schema metamatching problems: On any instance of this
problem class, the TA algorithm identifies the best
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mapping on the first iteration, yet, it will be the last
mapping discovered by the MDB algorithm.

Consider two algorithms, A1 and A2, and a pair of

schemata S and S0, each consisting of n attributes.

Likewise, let the l-aggregator f be the product operator,

g-aggregator F be the min operator, and �� be the set of

all one-to-one mappings from �. Given S and S0, the

similarity matrices Mð1Þ and Mð2Þ, induced by A1 and A2,

respectively, are defined as follows:

M
ð1Þ
i;j ¼

�; i ¼ j
0; otherwise

�

M
ð2Þ
i;j ¼

1� 3�; i ¼ j
1; otherwise

�

for an arbitrary 1=3 > � > 0. We illustrate such matrices

for n ¼ 4 as follows:

Mð1Þ ¼

� 0 0 0

0 � 0 0

0 0 � 0

0 0 0 �

0
BBB@

1
CCCA

Mð2Þ ¼

1� 3� 1 1 1

1 1� 3� 1 1

1 1 1� 3� 1

1 1 1 1� 3�

0
BBB@

1
CCCA:

Considering the execution of the TA algorithm on Mð1Þ

and Mð2Þ as defined above, first, notice that the only

mapping �, for which we have fð�;Mð1ÞÞ > 0, is the

mapping �I (that is, the identity permutation). Therefore,

�I will be discovered by the TA algorithm on the first

iteration, with �TA ¼ hf; F ið�IÞ. Second, notice that all

the entries of Mð1Þ and Mð2Þ lie in the interval [0, 1]. Thus,

for all �I 6¼ � 2 ��, we have hf; F ið�Þ ¼ 0. Finally, since

fð�I;Mð2ÞÞ > 0, we have hf; F ið�Þ > 0, and thus, �I is the

best mapping with respect to hf; F i.
It is not hard to see that the aggregators f and F do

not commute on our Mð1Þ and Mð2Þ. Consider a pair of

functions hh;Hi, where both h and H stand for a simple

average. Since the entries of both matrices Mð1Þ and Mð2Þ

lie in the interval [0, 1], we have hf; F i � hh;Hi.
Likewise, since h and H are (trivially) strongly commu-

tative, we can solve this problem instance using the

MDB algorithm with hh;Hi. The matrix M
, constructed

by MDB from the matrices Mð1Þ and Mð2Þ using H, is

defined as follows by the first equation and illustrated

for n ¼ 4 by the second equation:

M

i;j ¼

1
2� �; i ¼ j
1
2 ; otherwise

(

M
 ¼

1
2� � 1

2
1
2

1
2

1
2

1
2� � 1

2
1
2

1
2

1
2

1
2� � 1

2

1
2

1
2

1
2

1
2� �

0
BBBBB@

1
CCCCCA:

For each mapping � 2 ��, let k� be the number of
attributes i 2 S, such that �ðiÞ ¼ i (that is, the number

of the attribute mappings in � that lie on the

main diagonal of M
). For each � 2 ��, we have

k� 2 f1; 2; . . . ; n� 3; n� 2; ng, and

hð�;M
Þ ¼

1
2 ; k� ¼ 0
1
2� k�

n ; 0 < k� 	 n� 2
1
2� �; k� ¼ n:

8><
>:

Therefore, for each �I 6¼ � 2 �, we have

hh;Hið�Þ > hh;Hið�IÞ

and, thus, (the best mapping!) �I will be the last mapping
discovered by the MDB algorithm. tu

Theorem 7. Let A1; . . . ; Am be a set of schema matchers with

h~f; F i being their l- and g-aggregators. Given a function

pair hh;Hi that both commute and dominate h~f; F i on

Mð1Þ; . . . ;MðmÞ, the CrossThreshold algorithm correctly

finds the top-K valid mappings with respect to h~f; F i.
Proof. Let Y be the set of mappings as in step 3 of the

CrossThreshold algorithm. We only need to show that

every mapping � 2 Y has a weight at least as high,

according to h~f; F i, as every mapping �0 62 Y . By defini-

tion of Y , this is the case for each mapping �0 62 Y that has

been seen by the CrossThreshold algorithm. Assume that

�0 was not seen, and let � 0, � 0
TA

, and � 0
MDB

be the value of � ,

�
TA

, and �
MDB

, respectively, at the termination of Cross-

Threshold. If � 0
MDB

> � 0
TA

, by monotonicity of F , we have

� 0 ¼ � 0
TA
� h~f; F ið�0Þ for every �0 62 Y . Otherwise, if

� 0
MDB
	 � 0

TA
, from the incrementality of querying Ai with

q-top, we have � 0 � hh;Hið�0Þ � h~f; F ið�0Þ for every

�0 62 Y . However, by definition of Y , for every � 2 Y , we

have h~f; F ið�Þ � � 0. Therefore, for every �0 62 Y , we have

h~f; F ið�Þ � � 0 � h~f; F ið�0Þ, as desired. tu
Lemma 8. If I < I

TA
and � ½I ¼ �

TA
½I, then Y n Y

TA
6¼ ;, and for

each � 2 Y n Y
TA

, we have

h~f; F ið�Þ ¼ �TA½I: ð12Þ

Proof. The assumption of the lemma that I < I
TA

implies

that there exists at least one mapping � 2 Y that would

have been discovered by (independently running) TA

only at some iteration I 0 > I, and thus, we have

Y n Y
TA
6¼ ;. Now, considering mappings � 2 Y n Y

TA
,

recall that �
TA
½I ¼ F ðf ð1Þð�1;M

ð1ÞÞ; . . . ; f ðmÞð�m;MðmÞÞÞ,
where �1; . . . ; �m are mappings provided by A1; . . . ; Am

at the iteration I, respectively. From the lemma assump-

tion ð� ½I ¼ �
TA
½IÞ and (10), we have

�TA½I ¼F ðf ð1Þð�1;M
ð1ÞÞ; . . . ; fðmÞð�m;MðmÞÞÞ

	 h~f; F ið�Þ
¼F ðf ð1Þð�;Mð1ÞÞ; . . . ; f ðmÞð�;MðmÞÞÞ

ð13Þ
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for all � 2 Y . On the other hand, by the definition of the

q-top queries, we have f ðiÞð�i;MðiÞÞ � f ðiÞð�;MðiÞÞ for

each mapping �i as in (13). Thus, by the monotonicity of

F , we have

F ðf ð1Þð�1;M
ð1ÞÞ; . . . ; f ðmÞð�m;MðmÞÞÞ �

F ðf ð1Þð�;Mð1ÞÞ; . . . ; f ðmÞð�;MðmÞÞÞ;
ð14Þ

and together, (13) and (14) imply (12). tu

Lemma 9. If I < I
MDB

and � ½I ¼ �
MDB
½I, then Y n Y

MDB
6¼ ;,

and for each � 2 Y n Y
MDB

, we have

h~f; F ið�Þ ¼ �MDB½I: ð15Þ

Proof. Similar to the proof of Lemma 8, the assumption that

I < I
MDB

implies that there exists at least one mapping

� 2 Y that would have been discovered by (indepen-

dently running) MDB only at some iteration I 0 > I, and

thus, we have Y n Y
MDB
6¼ ;. Considering such mappings

� 2 Y n Y
MDB

, from the assumption that � ½I ¼ �
MDB
½I, we

have

�MDB½I ¼ hh;Hið�0Þ 	 h~f; F ið�Þ; ð16Þ
where �0 is the mapping discovered by the MDB algorithm

at the iteration I. Likewise, since � 2 Y n Y
MDB

, we have

hh;Hið�Þ 	 hh;Hið�0Þ: ð17Þ

Finally, since hh;Hi dominates h~f; F i, we have

h~f; F ið�Þ 	 hh;Hið�Þ: ð18Þ
Together, (16), (17), and (18) provide us with the lemma

claim that h~f; F ið�Þ ¼ �
MDB
½I. tu

Theorem 10. There exist schema metamatching problem

instances for which the time complexity of both the TA and

MDB algorithms is exponentially worse than that of the

CrossThreshold algorithm.

Proof. The proof is by example of the corresponding

problem instance. Consider two algorithms, A1 and A2,

and a pair of schemata S and S0, each consisting of n

attributes. Likewise, let the l-aggregator f be the regular

product, and the g-aggregator F be the utilitarian

aggregator min. Given S and S0, the similarity matrices

Mð1Þ and Mð2Þ, induced by A1 and A2, respectively, are

given as follows:

M
ð1Þ
i;j ¼

xþ 2�; ði ¼ jÞ _ ðiþ j < nþ 1Þ
0; otherwise

�

M
ð2Þ
i;j ¼

x; ði ¼ jÞ _ ðiþ j > nþ 1Þ
0; otherwise

�

such that x > 0, � > 0, and xþ 2� < 1. We illustrate the

matrices for n ¼ 5 as follows:

Mð1Þ ¼

xþ 2� xþ 2� xþ 2� xþ 2� 0

xþ 2� xþ 2� xþ 2� 0 0

xþ 2� xþ 2� xþ 2� 0 0

xþ 2� 0 0 xþ 2� 0

0 0 0 0 xþ 2�

0
BBBBBB@

1
CCCCCCA

Mð2Þ ¼

x 0 0 0 0

0 x 0 0 x

0 0 x x x

0 0 x x x

0 x x x x

0
BBBBBB@

1
CCCCCCA
:

Likewise, consider a pair of bounding functions
hh;Hi, where both h and H stand for average. Since the
entries of both matrices Mð1Þ and Mð2Þ lie in the interval
[0, 1], we have hf; F i � hh;Hi. The matrix M
, con-
structed by the MDB algorithm from the matrices Mð1Þ

and Mð2Þ using H, is defined as follows by the first
equation and illustrated for n ¼ 5 by the second
equation:

M

i;j ¼

xþ � i ¼ j
x
2 þ �; ði 6¼ jÞ ^ ðiþ j < nþ 1Þ
0; iþ j ¼ nþ 1
x
2 ; otherwise

8>>><
>>>:

M
 ¼

xþ � x
2 þ � x

2 þ � x
2 þ � 0

x
2 þ � xþ � x

2 þ � 0 x
2

x
2 þ � x

2 þ � xþ � x
2

x
2

x
2 þ � 0 x

2 xþ � x
2

0 x
2

x
2

x
2 xþ �

0
BBBBBB@

1
CCCCCCA
:

First, consider the execution of the TA algorithm on
this problem instance. Let �

I
stand for the mappings

captured by the primary diagonal. That is, for 1 	 i 	 n,
�
I
ðiÞ ¼ i. It is not hard to see that

hf; F ið�IÞ ¼ min fðxþ 2�Þn; xng ¼ xn

whereas, for each mapping � 6¼ �
I
, we have either

fð�;Mð1ÞÞ ¼ 0 or fð�;Mð2ÞÞ ¼ 0, and thus, hf; F ið�Þ ¼ 0.

Hence, the top-1 mapping for this problem instance

cannot be anything but f�
I
g.

On the other hand, Mð1Þ induces �ððn2 � 1Þ!Þmappings
� having

f �;Mð1Þ
� �

¼ ðxþ 2�Þn ¼ f �I;M
ð1Þ

� �
and Mð2Þ induces �ððn2 � 1Þ!Þ mappings � having

f �;Mð2Þ
� �

¼ xn ¼ f �I;M
ð2Þ

� �
:

Therefore, the best mappings �
I

might be discovered by

the TA algorithm only after �ððn2 � 1Þ!Þ iterations.
In turn, consider the performance of the MDB

algorithm on this problem instance and further assume
that xn < ðxþ �Þ=n. From the description of M
, it is not
hard to see that the best mapping �

I
will be discovered

by the MDB algorithm on the first iteration. However,
observe that the lowest value obtained by �

MDB
on M


will be higher than ðxþ �Þ=n. Since hf; F ið�
I
Þ ¼ xn, we
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conclude that the MDB algorithm could verify that the
candidate �

I
is indeed the best mappings only after �ðn!Þ

iterations.
Now, consider the “cooperative” execution of TA

and MDB in the scope of the CrossThreshold algo-
rithm. Following our discussion above, assume that TA
would fail to discover �

I
for the first �ððn2 � 1Þ!Þ

iterations. However, immediately after the first itera-
tion, we have �

TA
¼ xn. Recall that �

I
is discovered by

the MDB algorithm at the first iteration. It is easy to
see that after the first iteration of the CrossThreshold
algorithm, we have � ¼ �

TA
and, thus, we immediately

conclude that

hf; F ið�Þ ¼ xn ¼ �:

Hence, the best mapping �
I

is discovered by the
CrossThreshold algorithm immediately after the first
iteration, while both I

TA
and I

MDB
for this top-1 problem

are exponential in n. tu
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