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Abstract. Existing ontology matching algorithms use a combination of lexical
and structural correspondance between source and target ontologies. We present
a realistic case-study where both types of overlap are low: matching two unstruc-
tured lists of vocabulary used to describe patients at Intensive Care Units in two
different hospitals. We show that indeed existing matchers fail on our data. We
then discuss the use of background knowledge in ontology matching problems.
In particular, we discuss the case where the source and the target ontology are
of poor semantics, such as flat lists, and where the background knowledge is of
rich semantics, providing extensive descriptions of the properties of the concepts
involved. We evaluate our results against a Gold Standard set of matches that we
obtained from human experts.

1 Introduction

Semantic integration of heterogeneous datasources is widely regarded as technologi-
cally one of the most urgent and scientifically one of the most challenging problems
[1–8]. Consequently, much recent work has appeared in this area. In the fields of AI,
Knowledge Engineering and Semantic Web research, this problem goes by the name of
ontology matching(see [1, 6, 7] for a number of recent surveys of this very active field).

According to [6], the methods to solve the problem of ontology matching can be
divided into:terminologicalmethods which try to identify lexical correspondences be-
tween the labels of concepts in the source and target ontologies,instance-basedmeth-
ods which use instance data in both source and target ontologies to discover matches
[9], structuralmethods which use the structure of the ontologies, andsemanticmethods
which use additional logical methods to induce the matches [5].

The majority of the approaches use a combination of terminological and structural
methods, where the lexical overlap is used to produce an initial mapping, which is
subsequently improved by using the structure of source and target. Hence, this majority
of approaches crucially relies on two assumptions:

– sufficient lexical overlap exists between the source and target ontology
– source and target ontology have sufficient structure

In this paper, we will present a case-study where neither of these assumptions hold.
In this case study, not only there is insufficient lexical overlap between source and
target, but more crucially, the structures to be matched containno structure at all: they



are simply lists of terms, instead of richly structured ontologies. Consequently, current
state-of-the-art matchers are expected to fail.

We believe that our case-study is representative of many realistic cases. Experience
with Semantic Web applications shows that many of them rely on rather lightweight
semantic structures, providing at most a hierarchy of terms, where often this hierarchy
is only a 2-3 levels deep [10]. Hence, the reliance of existing ontology matchers on such
structure is indeed an important limiting factor.

After showing indeed the failure of a number of state-of-the-art matchers in our
case-study, we present a novel method for ontology matching that uses an additional
source ofbackground knowledgeto compensate for the lack of structure to be found in
source and target vocabularies as well as the freedom in choice of terminology.

The basic idea of our approach is to first align the concepts from the source and
target ontologies with the background knowledge, then use the structure of this back-
ground knowledge to derive semantic relationships between the source and target con-
cepts, and finally use these relationships to induce a mapping between them.

We built a system that implements this approach and tested it with the data from
our case-study. We then score the performance of our system against a human-created
Gold Standard, and show that on such poorly structured data, our system performs
significantly better than existing state-of-the-art matchers.

In the following sections we first describe the details of our case (section 2), and
we show the low success rate of some existing state-of-the-art matchers on these data
(section 3). We then proceed to explain our own matching process, based on the use
of background knowledge (section 4 and 5), and show in section 6) that we achieve
considerably higher success rates than the existing matchers. The final section 7) con-
cludes.

2 The data in our case study

In this section we describe the data involved in our case study. The challenge was to
match two vocabularies that were taken from the medical domain. The vocabularies
are lists of reasons for admission in the Intensive Care Unit (ICU) of two Amsterdam
hospitals. A reason for admission describes a problem, why a patient was brought into
the ICU. Each patient arriving at the ICU in either hospital is classified using one or
multiple terms from the corresponding list. These classifications are used for monitoring
patient progress, for planning of required ICU resources, and for off-line nationwide
quality comparison of different ICU’s.

Source vocabulary:As source vocabulary for our mapping case-study, we use a set
of reasons for admission from the OLVG hospital in Amsterdam. It is a flat list of
terms with no structure. The list is partly based on the ICD-9-cm3 vocabulary, and
on the Dutch “Classificatie van Medisch Specialistische Verrichtingen” (CMSV)4, a
classification of medical procedures. During its use in the past three years, the OLVG
list has been extended with additional descriptions of medical conditions of patients

3 http://www.cdc.gov/nchs/about/otheract/icd9/abticd9.htm
4 http://www.nictiz.nl/kr_nictiz/2527



at the ICU. The resulting list is a mixture of problem descriptions at several levels of
abstraction with minor redundancy. It does not only contain reasons for admission to
the ICU, but also other medical conditions that are relevant during the stay of patients
at the ICU. We limited our experiments to the list-elements actually used at admission,
identified as those terms that are used for describing patients during the first 24 hour of
their stay. The resulting list contains 1399 problem descriptions consisting of maximal
7 words each. 95% of these descriptions consist of no more than three words. The list
is mainly in Dutch but also contains English terms.

Target vocabulary:As target vocabulary, we use a second set of reasons for admission,
used at the AMC hospital in Amsterdam. The AMC vocabulary consists of a flat list of
1460 reasons for admission at the intensive care unit of the AMC hospital. This list was
used as the target vocabulary in our experiments.

Background ontology:As outlined above, the essential idea of our aproach is to first
align the unstructured source and target vocabularies with a given background ontology,
and then to use the structure of the background ontology to derive matching relation-
ships between the source and target vocabularies. In our case study, we use the DICE
ontology as background knowledge. DICE has been developed by the Medical Infor-
matics group at the AMC hospital. It is a medical terminology, formalized in OWL DL5,
of some 2300 concepts, described by some 5000 lexical terms. These concepts are re-
lated to each other with some 4300 relational links of 50 different relation types. DICE
mainly aims to cover concepts in the Intensive Care domain, and is structured in five
different hierarchies (called “aspects” in DICE): abnormalities (255 concepts), medical
procedures (55 concepts), anatomical locations (1512 concepts), body subsystem (13
concepts), and causes (85 concepts). Together, these five vocabularies are the main or-
ganisational structure of DICE. Each aspect has a domain of possible values, organized
in a tree structured taxonomy. The concepts in the aspect taxonomies are labeled with a
language attribute, in the current version either Dutch or English. If a concept is named
with multiple terms, one of the terms functions as ‘preferred’ term - label, and the others
as synonyms.

3 Performance of state-of-the-art tools on our case study

3.1 Ontology alignment tools

There are several other approaches for ontology matching. An overview can be found
in [6, 1, 7]. In this section, we summarize three of the most prominent approaches.

– FOAM is an ontology alignment framework to fully or semi-automatically align
two or more OWL ontologies, developed by the university of Karlsruhe [11]. It is
based on heuristics (similarity) of the individual entities (concepts, relations, and
instances). As result, it returns pairs of aligned entities. It can handle ontologies
within the DLP-fragment of OWL. Part of FOAM is a machine learning component
that optionally takes user feedback into account.

5 http://www.w3.org/TR/owl-guide/



– Falcon-AO [12] is an automatic ontology matching tool, developed by the South
East University of China. It outperformed all other ontology matchers in the 2005
ontology alignment initiative [13]. Falcon-AO regards ontologies as graph-like struc-
tures, and then produces mappings between elements in the two graphs that corre-
spond semantically to each other. Both of linguistic similarity and structural sim-
ilarity are taken into account. There are two matchers integrated in Falcon-AO:
LMO for syntactic comparison based on edit distance, and GMO for graph-based
comparison.

– S-Match is a algorithm and tool developed by the University of Trento [14], based
on CTXmatch[5]. S-Match takes two trees, and for any pair of nodes from the two
trees, it computes the strongest semantic relation holding between the concepts
of the two nodes. For this, it uses lexical techniques, background knowledge in
the form of relations between synsets in WordNet, and the structure of the tree.
S-Match is restricted to tree-like structures used for classification purposes.

As is already illustrated in the descriptions above, most alignment tools exploits a com-
bination of syntactical comparison techniques and structural comparison techniques.
This mixed approach can work well in practice, as the results in the ontology alignment
initiative show. However, when one of the sources to be matched merely is a unstruc-
tured list, the mixed approaches reduce to lexical comparison of labels.

Only one of the tools, i.e. S-Match, exploits background knowledge to do the map-
ping. However, in the current version S-Match can only use a predefined set of back-
ground knowledge sources, such as Wordnet and UMLS. Moreover, it only uses the
class hierarchy of background ontologies.

3.2 Performance of other tools

We have applied two of the ontology matching tools described above to the data that is
described in our case study. We loaded an OWL representation of both the OLVG list
and the AMC list plus the DICE background knowledge into the tools. In this section we
only describe the amount of matches that we found, in section 6.1 we give an analysis
of the correctness of these matches.

When using FOAM to align the two lists, we initially got 326 matches, but those
included symmetric matches. Effectively FOAM found 159 matches. An analysis re-
vealed that many obvious matches were missing because synonym labels were ignored.
To solve this, we have regenerated the AMC list with separate concept definitions for
each known synonym. This resulted in 696 effective matches.

We also used Falcon-AO.6. Initially, the files were too large to run in one step.
After splitting the AMC-ontology in several files, we were able to run the tool, and
extrapolated that we would end up with less than 100 matches. However, because all
matches were necessary based based on lexical measures only, we tried to use the lexical
matcher component (LMO) in a stand-alone configuration. This has two advantages.
First, the stand-alone LMO matcher is much more efficient, so that matching can run on
the complete AMC ontology. Second, it returns a a ranking of all matches found, and not

6 Experiments performed in collaboration with Dr. Wei Hu, South East University of China.



just the ones that are above the threshold. As a result, we get much more matches, but
many of them with a low confidence level. When using the stand-alone LMO matcher,
683 matches were returned.

Unfortunately, because S-Match isn’t freely available, we haven’t yet been able to
use S-Match on our dataset with a medical thesaurus as background knowledge.

4 Semantic matching of concepts from unstructured vocabularies

The scheme of our matching approach is depicted in Figure 1. The task is to match the
source vocabulary to the target vocabulary, where both vocabularies are unstructured
(flat) lists. Our approach consists of finding semantic matches by using a (richly struc-
tured) ontology that holds background knowledge about the domain. First, the source
and target vocabulary are each matched with the background knowledge ontology pro-
ducing so-calledanchoring matches. Anchoring matches connect a source or target
concept to one or more concepts in the background knowledge ontology, which we
call anchors. Then, based on the relationships among the anchors entailed by the back-
ground knowledge, we induce in a second step how the concepts from the source are
matched to the concepts in the target vocabulary, yielding thesemantic matchwe are
looking for. A concept can match to several anchors, in which case the collection of
anchors is combined according to the semantics of the background knowledge.

In the following, we will describe the anchoring process (subsection 4.1) and the
process of inducing the source-to-target semantic match (subsection 4.2) in more detail.

Fig. 1. Our general approach: Matching a source vocabulary to a target vocabulary using an on-
tology describing background knowledge.



4.1 Anchoring vocabulary concepts with the background knowledge

As explained, the source and target vocabularies are anchored to concepts in the back-
ground ontology. The anchoring matches can be established manually by a domain
expert, or automatically using existing concept matching techniques.

The automatic anchoring in our approach, is performed by a simple lexical heuristic
that discovers partial matches between two strings. It makes use of the concept’s labels
and synonyms only. A concept’s label is the string name assigned to the concept. Quite
often, these labels come with a list of synonyms for the concept. We used both the
labels and the synonyms in our comparison. Our heuristic is based on comparing the
number of matching words: If all the words in a label or synonym of a conceptA are
found in a label or synonym of conceptB, it concludes thatA is an anchor ofB. We
also used some simple Dutch morphological rules to deal with the common Germanic
construction of compound words that do not have a delimiting space between the words.
For example,“hersentumor” (brain tumor) is a special case of“tumor” .

Figure 2 depicts an example of discovering an anchoring match.
Clearly, these heuristics are very simple, and it is not difficult to think of cases where

they fail: In Figure 2, for example,“long brain tumour” would also end up being a
special case of“brain” .

It would seem that such a simplistic lexical mapping would not suffice, and it would
seem that we are replacing one ontology matching problem (source to target) by two on-
tology matching problems (anchoring source and target to the background knowledge).
Why then, would this make our problem any easier? The surprising thing is, as revealed
in our experiments, that this is indeed the case. After presenting our experimental data
in the next section, we will discuss why the use of such simple lexical heuristics is suf-
ficient for the anchoring process, while it isnot sufficient for the direct source-to-target
matching.

Fig. 2.An example of lexical anchoring by comparing two labels:“Long brain tumor” and“Long
tumor”. The first consists of a superset of the words from the second label, so the second can be
considered a property value filler of the first.

The anchoring process implicitly adds structure to the unstructured source and target
vocabularies, and has established relations between source and target concepts through
the relations between their anchors in the background ontology. We exploit this structure
in the next step, to discover semantic matches between the source and target vocabulary
concepts.



4.2 Semantic matching - the use of background knowledge

As said, we make use of the background knowledge ontology to perform the discoveries
of semantic matches. When comparing two conceptsA andB having anchorsA′ and
B′ respectively, we compareA′ andB′, and, if they are related, infer thatA andB are
related as well.

An example is given in Figure 3: the concept“Dissection of artery” is found to
have location“Artery” , and the concept“Aorta thoracalis dissection”is found to have
location“Aorta thoracalis” . A relation is inferred between these two medical concepts,
since they describe related anatomical locations: according to the background ontology
“Aorta thoracalis” is a kind of “Artery” . Hence, the source concept can be inferred
to have a more specific location than the target concept. Notice that with pure lexical
methods, no meaningful match between these two concepts could have been derived.
The use of background knowledge was essential to derive this match.

Fig. 3. An example of relating two medical concepts using background knowledge. A semantic
match is discovered using the location taxonomy.

In general, either the source conceptA or the target conceptB could be anchored
to multiple anchors and the background knowledge could reveal relationships on an-
chors that represent different properties. On the one hand, this makes the comparison
more complex. On the other hand, if multiple anchors are related in similar ways, they
reinforce that the main conceptsA andB are related in the same way. In case the multi-
ple anchors are related in incompatible ways (e.g. anchorA′

1 subsumes anchorB′
1, but

anchorA′
2 is subsumed by anchorB′

2), a subsumption relation between the concepts
cannot be inferred. However, they do reveal the source and target concepts have some
relationship and are within some semantic distance.



This is illustrated in the example depicted in Figure 4, where we try to match the
concepts“Heroin intoxicatie” and “Drugs overdosis”. According to the background
knowledge,“Heroin” is a kind of “Drugs” , while “Overdosis” is a kind of “Intoxi-
catie”, i.e. the two aspects have a subsumption relationship to each other, however, in
reverse direction between the concepts. Hence, the concepts are neither equivalent nor
one subsuming the other. However, the two concepts do have a big semantic overlap.
Again, note that these concepts do not have any lexical similarity - their describing la-
bels consist of entirely disjoint sets of words. It was only possible to discover this match
by using the background knowledge.

Fig. 4.An example of matching two concepts using background knowledge. The concepts are not
equivalent but do have a big semantic overlap.

The successful application of the method depends on the richness of the background
knowledge. As discussed later in Section 6, with increasing richness, the more likely it
becomes that anchoring matches can be established in the first place, but, more impor-
tantly, the more likely it becomes a relation between the anchors can be found.

Experience in practice has shown that concepts from two matching ontologies are
rarely precisely equivalent, but rather have some (otherwise unspecified) semantic over-
lap. Consequently, finding such semantic relationships seems more useful for integra-
tion purposes, than finding precise equivalences.

4.3 Comparison with other approaches

Our approach can be compared with the semantic coordination approach proposed by
Bouquet et al. [5]. That approach assumes the source and target vocabularies do have



some structure and each concept does have a label that is meaningful in natural lan-
guage. It proceeds in two phases. In the first phase, called explicitation, the concepts
from source and target ontology are transformed into propositional expressions, using
the labels and surrounding structure such as ancestor and sibling labels. The words in
the label are considered as propositional atoms. An additional source, such as Word-
Net7, may be used to enrich the explicitation, by taking the senses returned by WordNet
on each word in the label as the propositional atoms. In the second phase, the obtained
propositional expressions are tested whether one implies the other, for example, in a
SAT solver. Since the propositional expressions capture the semantics of the original
concepts, valid implications indicate a semantic subsumption relation between the con-
cepts.

In our scheme, we also assume the labels are meaningful in natural language. How-
ever, we do not assume a (semantic) structure to be present. We also create logic ex-
pressions and subsequently evaluate them, however, in our case, the logic framework is
given by the background knowledge.

Usually, the description in a background knowledge ontology are expressed in a
logic richer than propositional logic. Accordingly, after the anchoring (which may be
compared with the “explicitation” phase) we obtain richer logic representations. In par-
ticular, we include concept relations. In line with frame-based systems, quite often con-
cept relations have the character of properties: one concept is the filler of a property
of the other concept. In our reasoning paradigm we took the fillers apart in a separate
classification and combined the different classifications of all fillers to derive the match
between the main concepts.

5 Experiments to test our approach

In our experiments we matched the source and target lists (i.e. the unstructured OLVG
and AMC vocabularies) both lexically, i.e. directly, and semantically, i.e. using the
DICE ontology as background knowledge.

Experiment 1: Lexical matching.In the lexical match, we directly matched pairs of
terms from the two vocabularies, using the lexical matching method described in Sec-
tion 4.1. In testing for equality of terms, we allowed for edit-distance of two characters
using Levenshtein string distance [15], to compensate for the typing mistakes in the
lists. The result is a list of pairs of terms, that were either equivalent or related in a
more-general-than relation.
Hypothesis:We expect that the results of this lexical matching step are comparable to
the performance of existing tools on this data, such as discussed in Section 3, since on
these data the existing tools are also reduced to performing lexical matching only.

Experiment 2: Semantic matching.When matching the vocabularies semantically, we
followed the general scheme of our approach, depicted in Figure 1, using the five aspect
taxonomies in DICE as the background knowledge. First, in the anchoring step, we lex-
ically matched the terms from the OLVG and AMC source and target vocabularies to

7 http://wordnet.princeton.edu/



each of the five DICE aspects taxonomies, producing anchors in the background ontol-
ogy for the terms from the vocabularies. For the AMC-DICE anchoring, besides anchor-
ing through the lexical matching procedure, we also used a given anchoring schema that
was created manually by experts from the AMC hospital. After obtaining the anchors
we used the relationships specfied between the anchors in the DICE taxonomies to infer
a semantic match between the source and target concepts. Figure 5 depicts the scheme
(which is essentially the general scheme from Figure 1 instantiated for our experiment).
Note that each term from source and target ontology is matched multiple times to the
background ontology, viz. once per aspect taxonomy.
Hypothesis:We expect the results of semantic matching to be better than the results of
direct lexical matching between the two vocabularies.

Evaluation: For measuring the performance of the various methods and tools, we cre-
ated a Gold Standard solution for this problem. A medical expert was invited to create
manually matches between the OLVG and AMC vocabularies. He was given a random
sample set of 200 concepts from the OLVG list, for which he was asked to find the
matching concepts in the AMC list. This set was created as follows: 30 terms were se-
lected for which we knew that good anchorings in DICE would be available, together
with the top 15 most frequently used terms from the OLVG vocabulary, supplemented
with randomly drawn terms to a total of 200 terms. For these 200 terms, the expert
created matches for 125 concepts, leaving the other 75 “unknown”. For each of the
matched OLVG concepts he proposed one AMC concept as the most appropriate match.
No statements about alternates were made. This yields a Gold Standard on the order of
about 10% of the entire vocabulary, which is sufficient for reliable performance mea-
surements.

6 Results

6.1 Experiment 1: Lexical matching.

We will first present the results of our “baseline experiment”: directly trying to find
lexical matches between the OLVG and AMC vocabularies without the mediating role
of the DICE background knowledge. When matching the OLVG list to the AMC list
directly, using the lexical technique only, 582 OLVG concepts were matched to concepts
in the AMC list. Of these, 274 were found to be lexically equivalent, and the remaining
308 concepts were partial matches.

Evaluation against the Gold StandardThe 582 OLVG terms for which lexical matches
were produced represent some 42% of all OLVG terms. Comparison against the Gold
Standard revealed that some 24% were correct. In section 3 we already reported on
the number of matches found by tools like FOAM and Falcon-AO. We also scored the
precision of these tools against the Gold Standard. These figures are summarised in the
table in Figure 6.

8 These figures are the numbers of correct matches on those matches for which the Gold Stan-
dard contained an answer.



Fig. 5. Matching the OLVG and AMC vocabularies using the aspect taxonomies of DICE as
background knowledge ontology (this is Figure 1 instantiated for our experiments.)

A manual analysis revealed that around 260 concepts in the OLVG list (i.e. 19% of
the corpus) have a large lexical overlap with concepts in the AMC list. The figures in the
table show that both FOAM and our lexical matching method finds a comparable per-
centage of correct matches. A possible explanation for the fact that our method scores
a higher percentage of correctness (24%) than the estimated lexical overlap (19%) is
that the Gold Standard is slightly biased towards frequently occurring problems (see
the description of the creation of the Gold Standard in the previous section), for which
the lexical overlap can be higher.

The LMO module o Falcon-AO retrieves much fewer of correct matches. The most
likely explanation of this effect is that Falcon-AO limits itself to 1-1 matches, preventing
many plausible partial matches. This is illustrated by the following example matches

total matches foundcorrect matches found8

on corpus on Gold Standard
(n=1399) (n=200)

lexical matching 582 49 (=24%)
FOAM 696 41 (=20%)
Falcon-AO 683 28 (=14%)

Fig. 6.Results of the lexical matching experiment



produced by Falcon-AO on our case-study data:

OLVG#Oesofagus_perforatie 7→ AMC#Oesofagus ruptuur

OLVG#Oesophagus_resectie 7→ AMC#Oesofagus perforatie

although both by themselves reasonable, together these matches prevent the obvious
match

OLVG#Oesofagus_perforatie 7→ AMC#Oesofagus perforatie

because Falcon limits itself to 1-1 matches: both of these terms are already part of
another match. The obvious solution would be to allow terms to participate in multiple
matches, producing an n-m matching as done by our lexical method.

6.2 Experiment 2: Semantic matching

In the first step of semantic matching OLVG and AMC concepts are anchored into the
DICE background ontology.

Experiment 2: Semantic matching, anchoring step.When anchoring the OLVG vocab-
ularies to DICE, we used the lexical technique described earlier, and we found in total
549 of OLVG concepts anchored to DICE concepts, via 1298 anchors.

For anchoring the AMC vocabulary to DICE we used a combined expert- and au-
tomatic approach. An expert manually established 4568 DICE-anchors for the AMC
vocabulary. We enhanced these anchor matches using the lexical matching technique
and found a further 1248 new anchors, which increased the amount of anchors to a total
of 5816, anchoring a total of 1404 concepts.

Notice that the anchorings are many-to-many relations: a single term from source
or target vocabulary can have multiple anchor terms in DICE, either in a single or in
different aspect taxonomies. Table 7 shows how many terms were anchored, and how
often our lexical heuristics were able to establish anchorings to multiple DICE aspect
taxonomies. Such anchoring in multiple aspects is important, because it will enable the
inference step to use multiple DICE taxonomies to infer potential semantic matchings.

Table 7 shows that our simple lexical heuristics succeeded in constructing anchors
for 39% of the OLVG vocabulary. This indicates that indeed our weak lexical heuristics
are able to establish anchorings, to be used in the second step of our approach. The
high percentage of anchoring for the AMC vocabulary is due to the contribution of the
manually constructed anchors.

Figure 8 details how the anchors are distributed over the five DICE aspects (sep-
arate taxonomies). It shows that the anchors are very unevenly distributed over the
various aspects (with only three anchors established from the OLVG vocabulary to as-
pect hierarchy on body-systems), and a similarly uneven relative contribution between
expert-created and lexically found anchors across the different aspects (with again the
body-systems aspect producing very few lexical anchors for the AMC vocabulary).

9 = 4568 manually + 1248 by lexical matching



OLVG AMC
anchored on 5 DICE aspects 0 2
anchored on 4 DICE aspects 0 198
anchored on 3 DICE aspects 4 711
anchored on 2 DICE aspects 144 285
anchored on 1 DICE aspect 401 208
total nr. of anchored terms 549 (=39%) 1404 (=96%)
total nr. of anchoring relations1298 58169

Fig. 7.Results of the anchoring step in our experiment

AMC list OLVG list
Aspect Expert-manualAdditional lexicalTotal Lexical
Abnormality 1168 271 1439 354
Action taken 292 122 414 109
Body system 1217 2 1219 3
Location 1336 721 2057 255
Cause 555 132 687 60

4568 1248 5816 781

Fig. 8.Distribution of anchors over the different DICE aspect taxonomies

Experiment 2: Semantic matching, inference step.In the second step, relationships
between anchors in DICE are used to infer matches between source and target terms.
As a result of this matching, a matching AMC term was derived for 538 OLVG terms.
Of these, 413 matches were based on inference in a single DICE aspect, while 135
matches were supported by inference in two aspects (i.e. the inference in two DICE
taxonomies produced support for the same match).

Evaluation against the Gold StandardThe evaluation of semantic matches against the
Gold Standard is made more complicated by the fact that the n-m anchors can also
produce n-m matches between source and target vocabularies. When a single OLVG
concept matches with multiple concepts in the AMC vocabulary, we ranked the match-
ings as follows:

1. If the match corresponds to a direct, lexical equivalence, it is ranked highest in the
result set.

2. The remaining matches, were ranked according to the number of DICE aspect tax-
onomies that supported the match

3. Matches based on the same number of DICE aspects, were ranked according to
the number of equivalence matches on DICE properties (ie preferring equivalences
over part-of, contained-in, type-of, etc).

We assess the performance of our method on the Gold Standard containing human
created matches for a random set of 200 OLVG concepts. For 65 concepts, our method
produced the same results as the expert, proposing the matched AMC concept as a



single best candidate. For 8 concepts, our method found the expert match in the first
five suggested matches. For 43 concepts, neither our method, nor the expert produced
any matching. For 49 concepts matched by the expert our method did not produce any,
or produced matches of low confidence. For the remaining 35 concepts, the matches
produced by our method were different from those by the expert. Manual inspection
revealed that our method produced either new matches for which the expert did not
produce any, but that did seem plausible, or other matches that seem a refinement of the
proposed expert matches.

These figures are summarised in the table in Figure 9, including the results for the
lexical approach reported already in Figure 6 above. This summary shows that on such
semantically empoverished vocabularies as in our case-study, the use of semantic back-
ground knowledge as part of the matching can substantially improve both the number of
matches found and the quality of these matches, as compared to either a purely lexical
technique, or as compared to existing tools that, in the absence of any structure in the
source and target vocabulary, default to lexical matching only.

Semantic Own Lexical FOAM Falcon-AO
matching matching

agreement on single best match65 (=32%) 43 35 22
agreement among top 5 matches8 (= 4%)
agreement on no match possible43 (=22%) 43 26 32
improvement over expert match35 (18%) 6 6 6
TOTAL POSITIVE: 151(=76%) 92 (=46%) 67 (=33%) 60 (=30%)
wrong match found 5 47 78
incorrectly found no match 49(=24%) 103 86 62
TOTAL NEGATIVE: 49(=24%) 108 (=54%) 133 (=67%)140 (=70%)

Fig. 9.Summary of evaluation on Gold Standard (n=200)

7 Conclusion

We explored the use of a semantically rich background knowledge in semantic matching
of semantically poor concept lists. We provided empirical evidence that background
knowledge can improve the matching process considerably. The use of a background
knowledge source is the only way to discover matches, when there is no terminological,
instance or structural match between the matching ontologies.

Work by [5] has already shown the usefulness of simple background knowledge in
the form of the WordNet hierarchy. We extended the method of [5] by using a much
richer source of background knowledge. This enabled us to reason across multiple hi-
erarchies in the background knowledge, and made it possible to discover relations be-
tween concepts which were not directly related in a subsumption relation.



8 Future work

In future work we will focus upon testing with ontologies of larger size. Such tests can
provide for stronger evidence whether this method can be successfully applied to the
ontology integration problem. We are currently setting up experiments on mapping the
anatomical subhierarchies of CRISP and MeSH, while using FMA as the background
knowledge source, and using parts of the UMLS metathesaurus as the Gold Standard.

An interesting further question is how the number and quality of matches found
increases with a growth in background knowledge. We are currently performing exper-
iments on the same case-study from this paper (mapping the OLVG and AMC unstruc-
tured vocabularies), but while using increasingly more background knowledge. We are
currently redoing the experiments from this paper, but by adding such sources as ICD10
and MeSH as background knowledge besides DICE.
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