
Schema Exchange: a Template-based Approach

to Data and Metadata Translation

Paolo Papotti and Riccardo Torlone

Università Roma Tre
{papotti,torlone}@dia.uniroma3.it

Abstract. In this paper we study the problem of schema exchange, a
natural extension of the data exchange problem to an intensional level.
To this end, we first introduce the notion of schema template, a tool for
the representation of a class of schemas sharing the same structure. We
then define the schema exchange notion as the problem of (i) taking a
schema that matches a source template, and (ii) generating a new schema
for a target template, on the basis of a set of dependencies defined over
the two templates. This framework allows the definition, once for all,
of generic transformations that work for several schemas. A method for
the generation of a “correct” solution of the schema exchange problem is
proposed and a number of general results are given. We also show how
it is possible to generate automatically a data exchange setting from a
schema exchange solution. This allows the definition of queries to migrate
data from a source database into the one obtained as a result of a schema
exchange.

1 Introduction

In the last years, we have witnessed an increasing complexity of database appli-
cations, especially when several data sources need to be accessed, transformed
and merged. There is a consequent growing need for advanced tools and flexible
techniques supporting the management, the exchange, and the integration of
different and heterogeneous sources of information.

In this trend, the data exchange problem has received recently great atten-
tion, both from a theoretical [12, 13] and a practical point of view [19]. In a data
exchange scenario, given a set of correspondences between a source and a target
schema, the goal is the automatic generation of queries able to transform data
over the source into a format conforming to the target.

In this paper, we address the novel problem of schema exchange, which nat-
urally extends the data exchange scenario to sets of similar schemas. To this
aim, we first introduce the notion of schema template, which is used to rep-
resent a class of different database schemas sharing the same structure. Then,
given a set of correspondences between the components of a source and a target
template, the goal is the translation of any data source whose schema conforms
to the source template into a format conforming to the target template. This
framework allows the definition, once for all, of “generic” transformations that



works for different but similar schemas, such as the denormalization of a pair of
relation tables based on a foreign key between them.

To tackle this problem, we introduce a formal notion of solution for a schema
exchange setting and propose a technique for the automatic generation of solu-
tions. This is done by representing constraints over templates and correspon-
dences between them with a special class of first order formulas, and then using
them to generate the solution by chasing [2] the source schema. Moreover, we
show how it is possible to generate automatically a data exchange setting from
a schema exchange solution. This allows the definition of a set of queries to mi-
grate data from a source database into the database obtained as a result of the
schema exchange.

From a practical point of view, in our scenario the user can: (i) describe a
collection of databases presenting structural similarities, by means of a source
template T1, (ii) define the structure of a possible transformation of the source
through a target template T2, (iii) define how to exchange information from the
source to the target by means of simple correspondences, graphically represented
by lines between T1 to T2, and (iv) translate any data source over a schema
matching with T1 into a format described by a schema matching with T2.

We advocate that the relational model is adequate for implementing such
approach. In particular we show how existing repositories for relational database
management systems can be profitably used for such purpose. In fact, templates
can be stored in tables and can be then queried using a standard relational query
language, independently of whether or not they are associated with some data.

To our knowledge, the notion of schema exchange studied in this paper is
new. In general, we can say that our contribution can be set in the framework of
metadata management. Metadata can generally be thought as information that
describes, or supplements, actual data. Several studies have addressed metadata
related problems, such as, interoperability [15, 20], annotations and comments on
data [7, 10, 14], data provenance [9], and a large list of more specific problems,
like data quality [17]. While the list is not exhaustive, it witnesses the large
interest in this important area and the different facets of the problem.

Most of the proposed approach focus on a specific kind of metadata and are
not directly applicable to other cases without major modifications. Bernstein
set the various problems within a very general framework called model manage-
ment [3–5]. In [6] the authors show the value of this framework to approach
several metadata related problems, with a significant reduction of programming
effort. Our contribution goes in this direction: as in model management, schemas
and mappings are treated as first class citizens. In particular, the schema ex-
change problem has some points in common with the ModelGen operator. The
ModelGen operator realizes a schema translation from a source data model Ms

to a target data model Mt. For instance, the ModelGen operator could be used
to translate an Entity-Relationship schema into a schema for an XML docu-
ment (e.g., a DTD). Several approaches to this problem have been proposed
in the last years [1, 8, 16, 18]. In this paper, we provide a novel contribution to
this problem by studying a framework for schema translation with a clear and



precise semantics, that can be at the basis of an innovative tool supporting an
important activity of model management.

The structure of the paper is as follows. In Section 2 we briefly set the basic
definitions and recall some results of the data exchange problem. In Section 3,
we introduce the notions of template and schema exchange and we show how
they can be implemented with the relational database technology. In Section 4
we describes how templates and schemas are related and, in Section 5 we show
how a data exchange problem can be obtained from a schema exchange setting.
Finally, in Section 6, we draw some conclusions and sketch future directions of
research.

2 Preliminaries

2.1 Basics

A (relational) schema S is composed by a set of relations R(A1, . . . , An), where
R is the name of the relation and A1, . . . , Ak are its attributes. Each attribute is
associated with a set of values called the domain of the attribute. An instance of
a relation R(A1, . . . , An) is a set of tuples, each of which associates with each Ai

a value taken from its domain. An instance I of a schema S contains an instance
of each relation in S.

A dependency over a schema S is a first order formula of the form: ∀x(φ(x) →
χ(x)) where φ(x) and χ(x) are formulas over S, and x are the free variables of
the formula, ranging over the domains of the attributes occurring in S.

As usual, we will focus on two special kind of dependencies: the tuple gen-
erating dependencies (tgd) and the equality generating dependencies (egd), as
it is widely accepted that they include all of the naturally-occurring constraints
on relational databases. A tgd has the form: ∀x(φ(x) → ∃y(ψ(x,y)) where φ(x)
and ψ(x,y) are conjunction of atomic formulas, whereas an egd has the form:
∀x(φ(x) → (x1 = x2)) where φ(x) is a conjunction of atomic formulas and x1,
x2 are variables in x.

2.2 Data Exchange

In the relational-to-relational data exchange framework [12], a data exchange
setting is described by M = (S,T, Σst, Σt), where: (i) S is a source schema,
(ii) T is a target schema, (iii) Σst is a finite set of s-t (source-to-target) tgds
∀x(φ(x) → ∃y(χ(x,y))) where φ(x) is a conjunction of atomic formulas over S
and χ(x,y) is a conjunction of atomic formulas over T, and (iv) Σt is a finite
set of tgs or egds over T. Given an instance I of S, a solution for I under M
is an instance J of T such that (I, J) satisfies Σst ∪ Σt. A solution may have
distinct labeled nulls denoting unknown values.

In general, there are many possible solutions for I under M . A solution J is
universal if there is a homomorphism from J to every other solution for I under
M . A homomorphism from an instance I to an instance J is a function h from



constant values and nulls occurring in I to constant values and nulls occurring
in J such that: (i) it is the identity on constants, and (ii) (with some abuse of
notation) h(I) ⊆ J .

In [13] it was shown that a universal solution of I under M can be obtained
by applying the chase procedure to I using Σst ∪ Σt. This procedure takes as
input an instance I and generates another instance by applying chase steps
based on dependencies in Σst ∪ Σt. There are two kinds of chase steps: (1) a
tgd ∀x(φ(x) → ∃y(ψ(x,y))) can be applied to I if there is a homomorphism
h from φ(x) to I; in this case, the result of its application is I ∪ h′(ψ(x,y)),
where h′ is the extension of h to y obtained by assigning fresh labeled nulls to
the variables in y; (2) an egd φ(x) → (x1 = x2) can be applied to I if there is a
homomorphism h from φ(x) to I such that h(x1) 6= h(x2); in this case, the result
of its application is the following: if one of h(x1) and h(x2) is a constant and
the other is a variable then the variable is changed to the constant, otherwise
the values are equated unless they are both constants, since in this case the
process fails. The chase of I is obtained by applying all applicable chase steps
exhaustively to I.

3 Schema Exchange Semantics

In this section we define the schema exchange problem as the application of the
data exchange problem to templates of schemas.

3.1 Schema templates

We fix a finite set C of construct names. A construct C(p0, p1, . . . pk) has a name
C in C and a finite set p1, . . . , pk of distinct properties, each of which is associated
with a set of values called the domain of the property. In principle, the set C
can contain construct names from different data models so that we can define
transformations between schemas of different models. In this paper however, for
sake of simplicity, we focus on schema exchange between schema templates of
relational schemas; the approach can be extended to other types of templates,
but challenging issues already arise in the relational case.

Therefore, we fix the following relational construct names and properties:

Construct Names Properties (domain)
Relation (or R) name (strings)
Attribute (or A) name (strings), nullable (booleans), in (strings)

AttributeKey (or AK) name (strings), in (strings)
AttributeFKey (or AFK) name (strings), in (strings), refer (strings)

Note that the Relation construct is associated only to the name property, whose
domain is a set of strings. The same domain is also associated with the property
in of the constructs Attribute, AttributeKey and AttributeFKey, and the property
refer of the construct AttributeFKey: these properties are used to specify refer-
ences between constructs. Clearly, other properties can be considered for every



construct. For instance, we could associate the properties type and has default

with the construct Attribute.
Basically, a template is a set of constructs with a set of dependencies associ-

ated with them, which are used to specify constraints over single constructs and
semantic associations between different constructs.

Definition 1 (Template). A (schema) template is a pair (C, ΣC), where C
is a finite collection of constructs and ΣC is a set of dependencies over C.

Example 1. An example of a template T = (C, ΣC) contains the following set
of constructs:

C = { Relation(name),AttributeKey(name, in),Attribute(name, nullable, in),
AttributeFKey(name, in, refer)}

and the dependencies:

ΣC = { d1 = AttributeKey(nK , nR) → Relation(nR),
d2 = Attribute(nA, u, nR) → Relation(nR),
d3 = AttributeFKey(nF , nR, n

′

R) → Relation(nR),Relation(n′R),
d4 = Attribute(nA, u, nR) → (u = true)}

The tgds d1 and d2 state the membership of keys and attributes to relations,
respectively. The dependency d3 states the membership of a foreign key to a
relation and its reference to another relation. Finally, the egd d4 states that we
are considering only relations with attributes that allow null values.

For simplicity, in the following we will omit the membership dependencies
between constructs (like d1, d2 and d3 in Example 1), assuming that they belong
to ΣC.

Let us now introduce the notion of e-schemas. Basically, an e-schema corre-
sponds to the encoding of a (relational) schema and is obtained by instantiating
a template.

Definition 2 (E-schemas). An e-schema component S over a construct C is a
function that associates with each property p1, . . . , pk of C a value ai taken from
its domain. A e-schema S over a template (C, ΣC) is a finite set of e-schema
components over constructs in C that satisfy ΣC.

Example 2. A valid e-schema for the template of Example 1 is the following:

Relation

name

EMP

DEPT

AttributeKey

name in

EmpName EMP

DeptNo DEPT

Attribute

name nullable in

Salary true EMP

Building true DEPT

AttributeFKey

name in refer

Dept EMP DEPT



It is easy to see that this e-schema represents a relational table EMP with EmpName

as key, Salary as attribute and Dept as foreign key, and a relational table DEPT

with DeptNo as key and Building as attribute.

Note that e-schemas in Example 2 remind the common way commercial data-
bases use to store metadata in catalogs. We can therefore easily verify whether
a relational schema stored in a DBMS matches a given template definition: this
can be done by querying the catalog of the system and checking the satisfaction
of the dependencies.

In the following, an e-schema component over a construct C(p1, . . . , pk) will
be called a relation component if C = Relation, an attribute component if C =
Attribute, a key component if C = AttributeKey, a foreign key component if
C = AttributeFKey. Moreover, we will denote an e-schema component over a
construct C(p1, . . . , pk) by C(p1 : ai, . . . , pk : ak). Alternatively, we will use, for
each construct, a tabular notation with a column for each property.

3.2 Schema exchange

Given a source template T1 = (C1, ΣC1
), a target template T2 = (C2, ΣC2

), and
a set ΣC1C2

of source-to-target dependencies, that is, a set of tgds on C1 ∪ C2,
we denote a schema exchange setting by the triple (T1, T2, ΣC1C2

).

Definition 3 (Schema exchange). Let (T1, T2, ΣC1C2
) be a schema exchange

setting and S1 a source e-schema over (C1, ΣC1
). The schema exchange problem

consists in finding a finite target e-schema S2 over (C2, ΣC2
) such that S1 ∪ S2

satisfies ΣC1C2
. In this case S2 is called a solution for S1 or, simply a solution.

Example 3. Consider a schema exchange problem in which the source template
T1 = (C1, ΣC1

) and the target template T2 = (C2, ΣC2
) are the following:

C1 = { Relation(name),AttributeKey(name, in),Attribute(name, in)}

C2 = { Relation(name),AttributeKey(name, in),Attribute(name, in),
AttributeFKey(name, in, refer)}

with the corresponding membership constraints in ΣC1
and in ΣC2

.
Assume now that we would like to split relations over T1 into a pair of

relations over T2 related by a foreign key. This scenario is graphically shown
(informally) in Figure 1 and is precisely captured by the following set of tgds
ΣC1,C2

:

ΣC1,C2
= { Relation(nR),AttributeKey(nK , nR),Attribute(nA, nR) →

Relation(nR),AttributeKey(nK , nR),AttributeFKey(nF , nR, n
′

R),
Relation(n′R),AttributeKey(nF , n

′

R),Attribute(nA, n
′

R)}

Consider now the following e-schema valid for T1:



Relation (nameAttributeKey (name )AttributeFKey (name ) )Relation (nameAttributeKey (name )Attribute (name ) )

Relation (nameAttributeKey (name )Attribute (name ))

T1 T2

Fig. 1. Schema exchange scenario for Example 3

Relation

name

EMP

AttributeKey

name in

EmpName EMP

Attribute

name in

DeptName EMP

Floor EMP

This e-schema has one relation called EMP with EmpName as key and two at-
tributes: DeptName and Floor. A possible solution S′

1
for this setting is:

Relation

name

EMP

N0
N2

AttributeKey

name in

EmpName EMP

N1 N0
N3 N2

Attribute

name in

DeptName N0
Floor N2

AttributeFKey

name in refer

N1 EMP N0
N3 EMP N2

where N0, . . . , N3 are labelled nulls. This solution contains three relations: EMP,
N0 and N2. Relation EMP has EmpName as key and N1, N3 as foreign keys for N0 and
N2, respectively. Relation N0 has N1 as key and DeptName as attribute. Finally,
relation N2 has N3 as key and Floor as attribute. There are several null values
because the dependencies in ΣC1,C2

do not allow the complete definition of the
target e-schema.

Consider now another solution S′

2
:

Relation

name

EMP

N0

AttributeKey

name in

EmpName EMP

N1 N0

Attribute

name in

DeptName N0
Floor N0

AttributeFKey

name in refer

N1 EMP N0

with N0 and N1 as labelled nulls. This solution contains two relations named EMP

and N0. Relation EMP has EmpName as key and N1 as foreign key, relation N0 has
N1 as key and DeptName and Floor as attributes.

Two issues arise from Example 3: which solution to choose and how to generate
it. Solution S′

2
in the example seems to be less general than S′

1
. This is captured



precisely by the notion of homomorphisms. In fact, it is easy to see that, while
there is a homomorphisms from S′

1
to S′

2
, there is no homomorphism from S′

2
to

S′

1
. It follows that S′

2
contains “extra” information whereas S′

1
is a more general

solution. As in data exchange [12, 13], we argue that the “correct” solution is
the most general one, in the sense above. This solution is called universal.

Definition 4 (Universal solution). A solution S of the schema exchange
problem is universal if there exists a homomorphism from S to all other so-
lutions.

The following result follows from analogous results of the data exchange problem.

Theorem 1. Let (T1, T2, ΣC1C2
) be a data exchange setting and S1 be an e-

schema over T1. The chase procedure over S1 using ΣC1C2
∪ ΣC2

terminates
and generates a universal solution.

4 Decoding and encoding of relational schemas

In this section we describe how the notion of e-schema introduced in Section 3
can be converted into a “standard” relational schema, and vice versa.

4.1 Relational decoding

Basically, the transformation of an e-schema in a relational schema requires the
definition of formulas that describe the semantics of the various components of
an e-schema, according to the intended meaning of corresponding constructs.

Let S be an e-schema over a template T = (C, ΣC). The relational decoding
of S, denoted by R-Dec(S), is a pair (S, ΣS) where:

– S contains a set of objects R(A1, . . . , An) for each relation component S ∈ S

such that:

• S(name) = R and
• R = Si(in) for the attribute components S1, . . . , Sk in S such that
Si(name) = Ai.

– ΣS contains an egd over R(A1, . . . , An) ∈ S of the form:

R(x1, x2, . . . , xn), R(x1, x
′

2
, . . . , x′n) → (x2 = x′

2
, . . . , xn = x′n)

for each key component S ∈ S such that:
• S(name) = A1 and
• S(refer) = R.

– ΣR contains a tgd over a pair of relation schemas R(A1, . . . , Ak, . . . , An) and
R′(A′

k, A
′

1
, . . . , A′

n) in S of the form:

R(x1, . . . , xk, . . . , xm) → R′(xk, x
′

1
, . . . , x′n)

for each foreign key component S ∈ S such that:



• S(name) = Ak,
• S(in) = R,
• S(refer) = R′, and
• R′ = S′(in) for the key component S′ in S such that S′(name) = A′

k.

Example 4. Let us consider the e-schema S of Example 2 reported below:

Relation

name

EMP

DEPT

AttributeKey

name in

EmpName EMP

DeptNo DEPT

Attribute

name nullable in

Salary true EMP

Building false DEPT

AttributeFKey

name in refer

Dept EMP DEPT

The relational representation of S is: R-Dec(S) = (S, ΣS) where:

S = {EMP(EmpName, Salary, Dept), DEPT(DeptNo, Building)}

ΣS = { EMP(x1, x2, x3), EMP(x1, x
′

2
, x′

3
) → (x2 = x′

2
, x3 = x′

3
),

DEPT(x1, x2), DEPT(x1, x
′

2
) → (x2 = x′

2
),

EMP(x1, x2, x3) → DEPT(x3, x
′

2
)}

In the same line, a procedure for the encoding of a relational schema, that is for
the transformation of a relational schema (S, ΣS) into an e-schema S, can also
be defined. This procedure will be illustrated in the following section.

4.2 Relational encoding

Let S be a relational schema with a set of dependencies ΣS. The encoding of S,
denoted by R-Enc(S, ΣS), is an e-schema S such that:

– for each relation R(A1, . . . , An) in S, S has a relation component m such that
m(name) = R and, for each attribute Ai ∈ R, S has an attribute component
mi such that:
• mi(name) = Ai,
• mi(nullable) =true if Ai is nullable,
• mi(in) = R;

– for each egd in ΣS of the form:

R(x1, x2, . . . , xn), R(x1, x
′

2
, . . . , x′n) → (x2 = x′

2
, . . . , xn = x′n)

over a relation schema R(A1, . . . , An) ∈ S, S has a key component m such
that:
• m(name) = Ai, and
• m(in) = R;



– for each tgd in ΣS of the form:

R(x1, . . . , xk, . . . , xm) → R′(xk, x
′

1
, . . . , x′n)

over a pair of relation schemas R(A1, . . . , Ak, . . . , Am) and R′(A′

1
, . . . , A′

n)
in S, S has a foreign key component m such that:

• m(name) = Ak,

• m(in) = R, and

• m(refer) = R′.

5 From Schema to Data Exchange

In this section we propose a transformation process that generates a data ex-
change from a given schema exchange setting.

5.1 Metaroutes and Value Correspondences

Before discussing the transformation process, two preliminary notions are needed.
First of all, in order to convert the schema exchange setting into a data exchange
setting, we need to keep track of the correspondences between the source schema
and the solution of the schema exchange problem. This can be seen as an ap-
plication of the data provenance problem to schema exchange. To this end, by
extending to our context a notion introduced in [11], we make use of metaroutes
to describe the relationships between source and target metadata.

Definition 5. Let S be an e-schema and Σ be a set of dependencies. A metaroute
for S is an expression of the form:

I0 →σ1,h1
I1 . . . In−1 →σn,hn

In

where I0 ⊆ S and, for each Ii−1 →σi,hi
Ii (1 ≤ i ≤ n), it is the case that Ii is the

result of the application of a chase step on Ii−1 based on the dependency σi ∈ Σ

and the homomorphism hi.

Note that, since a reduced number of elements are involved in schema ex-
change, we can store all the metaroutes and we do not need to compute them
partially and incrementally as in [11].

Metaroutes and homomorphisms are then used to derive value correspon-
dences between source and target schemas.

Definition 6. A value correspondence over two schemas S and S′ is a triple
v = (t ∈ R, t′ ∈ R′, t.Ai = t′.Aj) where R ∈ S, R′ ∈ S′, and Ai = Aj is a set of
equalities over the attributes of R and R′, respectively.



5.2 The S-D transformation process

Given a relational database over a schema S1 and schema exchange setting
(T1, T2, ΣC1C2

) such that the encoding S1 of S1 is an instance of T1, we aim
at generating a target database over a schema S2 such that the encoding S2 of
S2 is a universal solution for S1. We call such generation process S-D transfor-
mation and it can be summarized as follows.

1. S1 is encoded into an e-schema S1;
2. the chase procedure is applied to S1 using ΣC1C2

and metaroutes are gener-
ated during the execution of the procedure: each chase step based on the de-
pendency σi ∈ Σ and the homomorphism hi adds an element Ii−1 →σi,hi

Ii
to the metaroute;

3. the result S2 of the chase procedure is decoded into a schema S2;
4. for each attribute A occurring in S2: (i) we select the metaroute I0 →σ1,h1

I1 . . . In−1 →σn,hn
In such that A occur in In, and (ii) A is annotated in S1

and S2 with h−1(A), where h = h1 ◦ . . . ◦ hn;
5. the annotations of the attributes in S1 and S2 are used to derive value

correspondences between them;
6. a data exchange setting is generated from S1 and S2 using the generated

value correspondences, on the basis of the method presented in [19].

Relation (
nameAttributeKey (

name )
Attribute (

name ))
Relation (

nameAttributeKey (
name )

AttributeFKey (
name)

Attribute (
name ))

Relation (
name
AttributeKey (

name )
Attribute (

name ))

T1 T2

Fig. 2. Schema exchange scenario for Example 5.

Example 5. Let us consider the schema exchange setting described graphically
in Figure 2 and represented by the following set of tgds ΣC1,C2

:

{ v1 = Relation(nr),AttributeKey(nk, nr),Attribute(na, nr),Relation(n′r),
AttributeKey(n′k, n

′

r),Attribute(n′a, n
′

r),AttributeFKey(nf , n
′

r, nr) →
Relation(n′r),AttributeKey(n′k, n

′

r),Attribute(n′a, n
′

r),Attribute(nf , n
′

r),
Attribute(na, n

′

r) }



Intuitively, the only constraint occurring in ΣC1,C2
specifies that the target

is obtained by joining two source relations according to a foreign key defined
between them. Now consider the following source schema:

S = {DEPT(id, dname), EMP(id, ename, dep)}

ΣS = { DEPT(x1, x2), DEPT(x1, x
′

2
) → (x2 = x′

2
),

EMP(x1, x2, x3), EMP(x1, x
′

2
, x′

3
) → (x2 = x′

2
, x3 = x′

3
),

EMP(x1, x2, x3) → DEPT(x3, x
′

1
)}

The encoding of S is the e-schema S that follows:

Relation

name

s1 DEPT

s2 EMP

AttributeKey

name in

s3 id DEPT

s4 id EMP

Attribute

name in

s5 dname DEPT

s6 ename EMP

AttributeFKey

name in refer

s7 dep EMP DEPT

Let {s1, . . . , s7} be the e-components of S. The application of the chase based
on the given tgd produces the set of e-schema components {t1, . . . , t5}:

Relation

name

t1 EMP

AttributeKey

name in

t2 id EMP

Attribute

name in

t3 ename EMP

t4 dep EMP

t5 dname EMP

The metaroute generated by this chase step is: {s1, . . . , s7} →v1,h1
{t1, . . . , t5},

where h1 is the homomorphism:

{ nr 7→ DEPT, nk 7→ id, na 7→ dname, n′r 7→ EMP, n′k 7→ id, n′a 7→ ename, nf 7→ dep}

The chase ends successfully and produces an e-schema S′ whose decoding is the
schema (S′, ΣS′) where:

S′ = {EMP(id, ename, dep, dname)}

ΣS′ = { DEPT(x1, x2, x3, x4), DEPT(x1, x
′

2
, x′

3
, x′

4
) → (x2 = x′

2
, x3 = x′

3
, x4 = x′

4
)}

Now, on the basis of the above metaroute, source and target schema can be
annotated as follows:

S = {DEPT(id[nk], dname[na]), EMP(id[n′k], ename[n′a], dep[nf ])}
S′ = {EMP(id[n′k], ename[n′a], dep[nf ], dname[na])}

The value correspondences between S and S′ easily follow:

vc1 = (d ∈ S.DEPT, e ∈ S′.EMP, d.dname = e.dname)
vc2 = (e ∈ S.EMP, e′ ∈ S′.EMP, e.id = e′.id, e.ename = e′.ename, e.dep = e′.dep)



EMP (
id
ename
dep
dname)

DEPT (
id
dname )

EMP (
id
ename
dep)

S S’

Fig. 3. Data exchange scenario for Example 5.

We then obtain the data mapping scenario reported graphically in Figure 3. In
the spirit of [19] we are now able to automatically generate a data exchange
setting. Given the source schema S, the target schema S′ with its constraints,
and the value correspondences we obtain the following tgd:

t1 = S.EMP(ss, en, d), S.DEPT(d, dn) → S′.EMP(ss, en, d, dn)

A number of general results can be shown. First, the fact that the output of
the S-D process is a “correct” result, that is, the solution of the data exchange
problem reflects the semantics of the schema exchange problem given as input.
In order to introduce the concept of correctness in this context, a preliminary
notion is needed.

Given a tgd t, an encoding of t is the tgd obtained by applying the encoding
procedure defined in Section 4 considering the atoms of the formula as they were
relational schemas and using the dependencies in ΣS for the left side of t and the
dependencies ΣS′ for the right side of t. Note that the tgd we obtain is defined
on templates.

For instance, given the tgd t1 of the example above, the encoding of t1 is the
following tgd on templates:

v2 = Relation(EMP),AttributeKey(ss, EMP),Attribute(en, EMP),
AttributeFKey(d, EMP, DEPT),Relation(DEPT),AttributeKey(d, DEPT),
Attribute(dn, DEPT) → Relation(EMP),AttributeKey(ss, EMP),
Attribute(en, EMP),Attribute(d, EMP),Attribute(dn, EMP)

This tgd v2 is different from the original tgd v1 for the schema exchange
scenario described in Example 5. However, it can be verified that they generate
the same output S′ on the given input S. This exactly captures the fact that the
data exchange problem obtained as output fulfils the semantics of the schema
exchange problem given as input.

This intuition is captured by the following correctness result.

Theorem 2. Let (S,S′, ΣSS′) be the output of the S-D transformation process
when (T1, T2, ΣC1C2

) and S are given as input and let Σ be the set of s-t tgds



obtained by encoding the s-t tgds in ΣSS′ . The e-schema S′ is a universal solution
of the schema exchange setting (T1, T2, Σ).

The following completeness result can also be shown. We say that a data ex-
change setting is constant-free if no constants are used in formulas.

Theorem 3. Any constant-free data exchange setting can be obtained from the
S-D transformation process over some schema exchange setting.

6 Conclusion and Future work

We have introduced the schema exchange problem, a generalization of data ex-
change. This problem consists of taking a schema that matches a source tem-
plate, and generating a new schema for a target template, on the basis of a set
of dependencies defined over the two templates. To tackle this problem, we have
presented a method for the generation of a “correct” solution of the problem
and a process aimed at automatically generating a data exchange setting from
a schema exchange solution.

We believe that several interesting directions of research can be pursued
within this framework. We just sketch some of them.

– Expressive power of the framework. A challenging issue to be investigated
is the precise identification of the class of schema and data transformations
that can be defined with the framework we have defined. This is clearly
related with the formulas used to express the mappings between templates.
For instance, it is an open problem to identify the formalism needed to
express a schema exchange that operates over a specific number of columns.

– Metaquerying. A template is actually a schema and it can therefore be
queried. A query over a template is indeed a meta query since it operates
over meta-data. There are a number of meta-queries that are meaningful.
For instance, we can retrieve with a query over a template the pairs of rela-
tions that can be joined, being related by a foreign key. Also, we can verify
whether there is a join path between two relations.

– Special class of solutions. Given a schema exchange problem, can we ver-
ify whether all the solutions of the problem satisfy some relevant property?
For instance, we would like to obtain only relations that are acyclic or sat-
isfy some normal form. We are also investigating under which conditions
a schema exchange problem generates a data exchange setting with certain
properties, e.g., the fact that the dependencies belong to some relevant class.

– Combining data and metadata. The framework we have presented can be
extended to support mappings and constraints involving data and metadata
at the same time. This scenario also allows the user to specify the transfor-
mation of metadata into data and vice versa. For instance, we could move
the name of a relational attribute into a tuple of a relation.



References

1. P. Atzeni, P. Cappellari, P. A. Bernstein. Model-independent schema and data
translation. In EDBT, pages 368–385, 2006.

2. C. Beeri, M. Y. Vardi. A Proof Procedure for Data Dependencies. J. ACM,
31(4):718–741, 1984.

3. P. A. Bernstein. Applying Model Management to Classical Meta Data Problems.
In CIDR, pages 209–220, 2003.

4. P. A. Bernstein and S. Melnik. Model Management 2.0: Manipulating Richer
Mappings. In SIGMOD, pages 1–12, 2007.

5. P. A. Bernstein, A. Y. Levy, and R. A. Pottinger. A Vision for Management of
Complex Models. SIGMOD Record, 29(4):55–63, December 2000.

6. P. A. Bernstein and E. Rahm. Data Warehouse Scenarios for Model Management.
In ER, pages 1–15, 2000.

7. D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya. An Annotation Man-
agement System for Relational Databases. In VLDB, pages 900-911, 2004.

8. S. Bowers, L. M. L. Delcambre. The uni-level description: A uniform framework
for representing information in multiple data models. In ER, pages 45–58, 2003.

9. P. Buneman, S. Khanna, and W. C. Tan. Why and Where: A Characterization of
Data Provenance. In ICDT, pages 316–330, 2001.

10. P. Buneman, S. Khanna, and W. C. Tan. On Propagation of Deletion and Anno-
tations Through Views. In PODS, pages 150–158, 2002.

11. L. Chiticariu, W. C. Tan Debugging Schema Mappings with Routes. In VLDB,
pages 79–90, 2006.

12. R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting to the core. ACM

Trans. Database Syst., 30(1):174–210, 2005.
13. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and

Query Answering. Theor. Comput. Sci., 336(1):89–124, 2005.
14. F. Geerts, A. Kementsietsidis, and D. Milano. MONDRIAN: Annotating and

querying databases through colors and blocks. In ICDE, pages 82–93, 2006.
15. L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. SchemaSQL: An extension

to SQL for multidatabase interoperability. ACM Trans. Database Syst., 26(4):476-
519, 2001.

16. P. McBrien and A. Poulovassilis. Data Integration by Bi-Directional Schema Trans-
formation Rules. In ICDE, pages 227–238, 2003.

17. G. Mihaila, L. Raschid, and M.-E. Vidal. Querying “quality of data” metadata.
In IEEE META-DATA, 1999.

18. P. Papotti and R. Torlone. Heterogeneous Data Translation through XML Con-
version. J. Web Eng., 4(3):189–204, 2005.

19. L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, R. Fagin. Translating Web
Data. In VLDB, pages 598–609, 2002.

20. C. M. Wyss and E. Robertson. Relational Interoperability. TODS, 30:2, 2005.


