Teaching a Schema Trandator to Produce O/R Views

Peter Mork, Philip A. Bernsteify and Sergey Melnfk

The MITRE Corporation antMicrosoft Research
pmork@mitre.org, {philbe, melnik}@microsoft.com

Abstract. This paper describes a rule-based algorithm toveleai relational
schema from an extended entity-relationship moQetk. work is based on an
approach by Atzeni and Torlone in which the solE&R model is imported
into a universal metamodel, a series of transfaomsitare performed to elimi-
nate constructs not appearing in the relationabmetel, and the result is ex-
ported. Our algorithm includes novel features @t needed for practical ob-
ject to relational mapping systems: First, it gates forward- and reverse-
views that transform instances of the source mmtelinstances of the target
and back again. These views automate the objeetdtional (O/R) mapping.
Second, it supports a flexible mapping of inheghierarchies to flat relations
that subsumes and extends prior approaches. Thipdppagates incremental
updates of the source model into incremental ugdateéhe target. We prove
the algorithm’s correctness and demonstrate itstipedity in an implementa-
tion.

1. Introduction

Object-to-relational (O/R) mapping systems are noainstream technology. The
Java Data Objects (JDO) specification is suppobigdnany vendors of Enterprise
Java Beans [20]. The Hibernate system is in widegpuse [17]. Ruby on Rails in-
cludes the Active Record package [29]. And Micrbgetently released an ER-to-
relational mapper in the next version of ADO.NET. [1

Developers often start building new applicationsdiegigning a conceptual model
E of the application and translating it into a riglagl schemd to persist the data. In
JDO and Hibernatek: is expressed as a set of Java classes. In ADO.BES ex-
pressed in the Entity Data Model (EDM), a variahthe extended entity-relationship
(EER) model [6]. Thus, the object-oriented (OO) stoncts inE can include inheri-
tance, associations, complex types, and nestedctolts, all of which have to be
mapped to relational structures.

The problem of translating schemas between metdsjode schema definition
languages, has received attention in [2][3][9][28][25][26]. However, published
approaches lack solutions to several issues thateguired for practical applications:
bidirectional semantic mappings, flexible tranglatiof inheritance hierarchies, and
incremental schema modification. These problemsanetrivial. They require archi-
tectural and algorithmic advances, which are théreabject of this paper. A pre-
liminary, short description of the work reportedéappears in [5].

2 Peter Mork, Philip A. Bernstein, Sergey Melnik

Our basic strategy follows the rule-based apprazchtzeni and Torlone in [2].
Using this approach, we define a universal metairtbaé has all of the main model-
ing constructs in the metamodels of interest, in @ase EER and relational. New
constructs can be added to the universal metantod&ipport a new metamodel or
extend an existing one. We then define a colleatibtransformation rules. For ex-
ample, one simple rule transforms an entity type aacomplex type (e.g., a relation).
The goal is to execute a series of transformatibesrwhose composition eliminates
from the source model all modeling constructs absethe target metamodel. The
result of thistranslation step is exported into the desired syntax.

Our first contribution is the generation of instadevel transformations between
the source schema and generated target schemae Whkile are solutions to this
problem (e.g., [3][25][26]), they require passihg instances through an intermediate
generic representation. This is impractical fogéadatabases and does not generate
the view definitions that are required to drive Ef®Relational mapping systems. We
take a different approach. We augment each tramstion rule applied in the transla-
tion step to generate not only target schema eltnimrt also forward- and reverse-
views that describe how each eliminated constrlithhe source model is represented
in the target. We have proved that these viewscanect, i.e., do not lose informa-
tion, and give one example proof in this paper.

The series of transformation rules executed irtrdmeslation step produces a series
of elementary views. These views are composed iel unfolding to generate the
final forward- and reverse-views between the soaraktarget schemas. The correct-
ness of the composition is ensured by the correstoé the elementary views. The
composed views are expressed in terms of the walvaretamodel. They are fed into
a component that translates them into the natiygpimg language.

Our second contribution is a rich set of transfdromes for inheritance mapping. It
allows the data architect to decide on the numbeelations used for representing a
sub-class hierarchy and to assign each direct hagrited property of a class inde-
pendently to any relation. These transformatiof@aab per-class choice of inheri-
tance mapping strategy. They subsume all inhegtamapping strategies we know of,
including horizontal and vertical partitioning [22heir combinations, and many new
strategies. The transformations are driven by a saticture called a mapping matrix.
We present algorithms for populating mapping megritom per-class annotations of
the inheritance hierarchy and generating provaldyect elementary views. The
complexity of inheritance mapping is encapsulatedisingle transformation rule.
Since the final views are obtained by compositiohgeritance mappings do not inter-
fere with mapping strategies for other EER consstuc

Our third contribution is a technique for propaggtincremental updates of the
source model into incremental updates of the tarfetdo this, we ensure that an
unchanged target object has the same id eachttisigénerated, so we can reuse the
previous version instead of creating a new ones @kioids losing a user’s customiza-
tions of the target and makes incremental upddtusy This practical requirement
arises when the schema translation process isagtiege. A data architect analyzes
different translation choices, switching back aodh between the source and target
schemas, which may be large and thus require damefgcreen layout. Since it is
unacceptable to regenerate the target schema scatdlithe layout information after
changes in the schema translation, incrementalteiapagation is required.

Teaching a Schema Translator to Produce O/R Vievs

Finally, we discuss the implementation of our Of&nslation algorithm. We de-
veloped an extensible, rule-driven core that carcumtomized to specific model-
translation tasks with moderate effort. To suppldficient rule execution, we wrap
the native meta-model APIs so that the rules direnanipulate the objects represent-
ing the model elements, avoiding the conversiorajtgmften incurred by using rule-
based systems.

The rest of this paper is structured as followstie 2 describes our universal
metamodel. Section 3 specifies our syntax for faangations and gives an example
correctness proof for one of them. Section 4 dbssrhow we support multiple strat-
egies for mapping inheritance hierarchies intoti@ha. Section 5 explains how we do
incremental updating. Section 6 discusses our im@teation. Section 7 discusses
related work and Section 8 is the conclusion.

2. METAMODEL

Before we can define any transformation rules, wednto describe the universal
metamodel in which they are expressed. The univemnséamodel we use in this
paper, called, is similar to the universal metamodel in [2¥] supports most of the
standard constructs found in popular metamodelsygmto illustrate our techniques.
It is not intended to be complete, i.e., captuteofithe features of rich metamodels
such as XSD or SQL with complex constraints angligais, but it can easily be ex-
tended to incorporate additional features.

Table 1 lists the basic constructs Uf and examples of their use in popular
metamodels. We base our discussion of the semaoftitison its relational schema
shown in Fig. 1. A detailed description and forismmantics fofil appear in [24].

In U there are three simple types: Atomic types aréeddkxicals, which we
assume to be uniform across all metamodels. Theainémg simple types are
collections, eithetists or sets of some base type. For example, in SQL, apart from
lexicals, the only simple type is a set whose Igse is a tuple.

Complex types are eithatructured types (e.g., relations) abstract types (e.g.,
entities). Complex types are related to other typesttributes andcontainment. For
an attributeA The domain ofA is the complex type on which is defined, and the
range ofA is the type associated with. An attribute can have minimum and
maximum cardinality constraints. For example, inLSfery attribute’s domain must
be a structured type and its maximum cardinalitystmhe one. A containment is

Table 1. Relationships among common metamodels

Construct SQL EER Java XSb

Lexical Type int, varchar scalar int, string | integer, string
Structured Type tuple element

Abstract Type entity class complex type

List Type array list

Set Type table

Attribute column attribute, relationshig field attribute
Containment aggregation nesting

4 Peter Mork, Philip A. Bernstein, Sergey Melnik

Smpletypesinclude lexicals and collections:
LexicalType(TypelD, TypeName)
ListType(TypelD, TypeName, BaseType)
SetType(TypelD, TypeName, BaseType)
Complex types can be structured or abstract:
StructuredType(TypelD, TypeName)
AbstractType(TypelD, TypeName)
Complex types havattributes and can be nested:
Attribute(AttrID, AttrName, Domain, Range, MinCard, MaxCard)
Containment(ConlID, AtirName, Parent, Child, MinCard, MaxCard)
Domain/Parent must be a complex type.
Range/Child can be any type.
Min/MaxCard areZero, One or N and apply to the range/child.

A key indicates a set of attributes that identify a clempbject
KeyConstraint(KeyID, TypelD, IsPrimary)
TypelD references the type for which this is a key
Primary indicates if this is the primary key for the type.
KeyAttribute(KeyAttriD, KeylID, AttrID)
KeylD references the key for which this is an attribute.
AttriD references an attribute of the associated type.

An inclusion dependency establishes a subset relationship:
InclusionDependency(incID, TypelD, KeylD)
TypelD references the type for which this dependency holds
KeylD references the associated key.
InclusionAttribute(IncAttriD, IncID, AttrlD, KeyAttrID)
IncID references the inclusion for which this is an bitre.
AttriD references an attribute of the associated type.
KeyAttriD: references a key attribute of the key of the sugdype.

Generalization is used to extend a type or construct a union:
Generalization(GenlID, TypelD, IsDisjoint, IsTotal)

A type can serve as the parent for multiple geisatibns.

Disjoint and Total tells whether children are disfand cover the parent.
Specialization(SpecID, GenlID, TypelD)
GenlD references the parent generalization.
TypelD references the associated specialized type.

Fig. 1. Relational schema for universal metamdiel

similar to an attribute; it establishes a (namedjcsural relationship between the
parent type and the child type such that each msthnce of the child type is nested
within an instance of the parent type.

The constraints supported B¥ include keyconstraints, inclusiomlependencies
and generalizations. Eadley constraint consists of a set of attributes that uniquely
identify instances of some complex type. Multipfmdidate keys can be defined for a
complex type, but at most one primary key can bmee. Aninclusion dependency
establishes a relationship between a key and anotimeplex type. For each attribute
in an inclusion dependency there is a corresponditripute in the related key. For
any instance of a model containing an inclusionesiepncy, the projection of the

Teaching a Schema Translator to Produce O/R Vidws

inclusion attributes must be a subset of the ptigie®f the key attributes. Finally, a
generalization establishes a relationship between a complex (tyy@esupertype) and
a set of more specialized subtypes. Each subtyperite any attributes or
containment relationships associated with the syper

3. TRANSFORMATIONS

Using the Atzeni-Torlone approach, schema tramslidtias four steps: (1) manually
or automatically generate a valid transformatioanptonsisting of a sequence of
transformations (2) import the source model (Rrislation step] execute the trans-
formations in the plan, and (4) export the redultthis section and the next, we ex-
plain step (3), the transformations, which is theeaf the algorithm and where most
of our innovations lie. Due to lack of space, watardescription of step (1), our A*-
based algorithm for automatic generation of a faansation plan; it appears in [24].
We briefly discuss steps (2) and (4) in Sectiom énaplementation.

3.1. Defining a Transformation

Each step of a transformation plan is a transfaonahat removes certain constructs
from the model and generates other constructs yws definitions. Atransforma-
tionis a triple of the form B, F, R> whereD is a set of rules that expresses a model
transformationF is a rule that produces an elementary forward \iest expresses
the target model as a view over the source,Rirsda rule that produces an elementary
reverse view that expresses the source as a vientlo target.

Rules inD contain predicates, each of which is a construtt.iEach rule is of the
form “<body>= <head>", where <body> and <head> are conjuncidpsedicates.
For example, the following is a simplified versiohthe rule that replaces an abstract
type, such as a class definition, by a structuypd,tsuch as relation definition:

AbstractType(id, name) = StructuredType(newAS(id), name)

AbstractType and StructuredType are predicates from Fig. 1, ailandname are vari-
ables. The Skolem functiorwAS(id) generates a new type ID for the structured type
definition based on the abstract typéls Skolem function names are prefixed by
“new” to aid readability.

The semantics of a rule b with bodyb andn terms in the head is defined by a
Datalog program witm rules, each with one term in the head impliecbbiror ex-
ample,Axx, y) = B(X), C(f(y)) is equivalent to the Datalog progratx) :- A, ¥) and
C(f(y)) - AKX,). We chose our rule syntax because it is less gertimn Datalog when
many rules have the same body, which arises aftemi transformations. In essence,
each rule is a tuple-generating dependency [1&]sarcond-order dependency without
equalities [12], if the Skolem functions are coesatl existentially quantified.

For some rules, expressing them in logic is impcattbecause they are too ver-
bose or hard to understand. Such rules can berimepieed in an imperative language.
But for succinctness and clarity, we use only tiggd notation in this section.

6 Peter Mork, Philip A. Bernstein, Sergey Melnik

Some of the rules in each model transformaboalso populate a binary predicate
Map, whose transitive closure identifies all of theménts derived from a given
source element. For example, addimap to the rule that replaces an abstract type by
a structured type, we get:

AbstractType(id, name) = StructuredType(newAS(id), name), Map(id, newAS(id))

Map(id, newAS(id)) says that the element identified klyis mapped to a new element
identified bynewAS(id).

After executing all of the transformations, we @tract from the transitive clo-
sure ofMap those tuples that relate source elements to talgetents. Tools that
display the source and target models can use thjgpimg to offer various user-
oriented features, such as the ability to navigatek and forth between correspond-
ing elements or to copy annotations such as layow$ or comments.

Rules add tuples to the head predicates but neletedthem. Since we need to de-
lete tuples that correspond to constructs beintaced in a model, we use a unary
predicateDelete that identifies elements to delete. After all sutef a transformation
are executed, a non-rule-based post-processingistetes the elements identified in
Delete predicates. For example, in the rule that replaceabstract type by a struc-
tured type, the predicaBzlete removes the abstract type being replaced, asifsilo

AbstractType(id, name) = StructuredType(newAS(id), name), Map(id, newAS(id)), Delete(id)

The rules in a model transformati@hare schema-level mappings. Forward- and
reverse-views are instance-level mappings. Theigatgb and variables in a view are
variables in the rules @. For example, a simplified version of the forwaidw for
replacing an abstract type by a structured tygedfs) = newASJid|(x)". This rule says
that if x is the identifier of an instance (i.e., an objagtthe abstract type identified
by id, then it is also the identifier of an instance.(ia tuple) of the structured type
identified bynewASJid]. Notice that we use the same identifier to dehetedifferent
types of items, namely objects and tuples, whidibkrs us to express instance-level
mappings between them.

To generate such views in rules, we can defineigateb that create their compo-
nents, such as the following:

ViewHead(newRule(newAS(id)), newPredicate(id, "x"))

ViewBody(newRule(newAS(id)), newPredicate(newAS(id), "x"))

We can then conjoin these to the head of the haereplaces an abstract type by a
structured type. However, in this paper we will tise simpler and more readable
notation ‘d(x) = newAS][id](x)".

We represent a model before and after a transf@amas anodel graph. Its nodes
correspond to simple and complex types. Its edgagspond to attributes. For ex-
ample, on the left side of Fig. R is a structured type with attributeksanda. The
value ofk is a lexical type and the value @fis a structured typ8 with attributesh
andc. An instance of a model graph isiastance graph, which is comprised of a set
of values for each node and a set of value pairedoh edge. A view defines how to
populate the nodes and edges of one instance fjaptihose of another.

A transformation icorrect if the forward-view converts every instankgof the
source schema into a valid instarigeof the target schema, and the reverse-view
convertslt back intols without loss of information. That is, the compusitof the
forward- and reverse-views is the identity. Unl[Rg13], we do not require the con-
verse; there may be instances of the target mbd¢ldannot be converted into in-

Teaching a Schema Translator to Produce O/R Viéivs

stances of the source. Our definition of corredrigsnore stringent than [26], which
requires only that the forward view generates @\abktance of the target.

Sections 3.2-3.3 define two of the main transfoionatto convert from EER to
SQL. For each transformation, we give its modehgfarmation and its forward-
Ireverse-views. We write the views as instancesframations and omit the verbose
rule predicates that would generate them. Sincéotfaeard- and reverse-views for the
first transformation are inverses of each otherremness is immediately apparent.
We give a detailed correctness argument for thresfoamation of Section 3.3.

3.2. Convert Abstract to Structured Type

This transformation replaces each abstract typh wistructured type. To preserve
object identity, a newid attribute is added to the structured type, unfleesabstract
type already included a primary key. The modeldfamation rules are as follows:
AbstractType(id, name)
= StructuredType(newAS(id), name), Map(id, newAS(id)), Delete(id)

AbstractType(id, name), -KeyConstraint(_, id, “True”)
= Attribute(newOID(id), “oid”, newAS(id), “Int”, “ 17, “ 1),

KeyConstraint(newASKey(id), newAS(id), “True”),

KeyAttribute(newASKeyAttr (i), newASKey(id), newOID(id))

We are careful in our use of negation, as ley€onstraint above, to ensure that
stratification is possible.

The forward view isid(x) = newAS[id](x), newOID[id](x, newlD(x)). The last predi-
cate says thatewOID[id] is an attribute whose value for the tuplis newlD(x).

The reverse view istewAS[id](x) = id(x). Notice that we do not need to map back
the newoid attribute of the structured type, since it is needed for information
preservation of the source abstract type. It is édiately apparent that the forward-
and reverse-views are inverses of each other amcblare correct.

3.3. Remove Structured Attribute

This transformation replaces an attribu
a that references a structured typeall
of whose attributes are lexicals. It re
placesa by lexical attributes that uni-
quely identify a tuple of. If S has a
primary key, thera is replaced by the key attributes ®fand there is an inclusion
dependency from the new attributes to that keyefitse,a is replaced by all ab’s
attributes. (If the latter is desired eversifias a primary key, then a user-defined tag
ona can be used to ask that the latter rule be applidwe transformation is applied
iteratively to eliminate nested types.

For example, consider three structured typess andT (see Fig. 2)R references
S using attributea and has primary kely(anint). S has no primary key, but it has two
attributesb (anint) andc (which referenced). T has a primary key attributk (an

Fig. 2. Removing structured attributes

8 Peter Mork, Philip A. Bernstein, Sergey Melnik

Int). Applying the transformation t8.c replaces that attribute I§.d and adds an
inclusion dependency fros.d to T.d. Now all attributes of are lexicals. So we can
apply the transformation again to repl&e by R.b andr.d.
The model transformation rules are as follows (we an underscore in a slot for
an existential variable that appears only oncéénrtle, to avoid useless variables):
StructuredType(domain, name),
Attribute(id, _, domain, range, _, “One”), — LexicalType(range, _)
= MixedTypeHelper(domain, name)

Attribute(id, name1, domain, range1, min1, “One”),

StructuredType(range 1, name), —MixedTypeHelper(range1, name),

Attribute(aftr, name2, range1, range2, min2, “One”), Min(min1, min2, min)

= Attribute(newSA(id, attr), newName(name1, name2), domain, range2, min, “One”) ,
Map(id, newSA(id, attr)), Delete(id)

Attribute(id, _, _, range, _, “One”), KeyAttribute(keyAttr, key, id), StructuredType(range, _)
= KeyAttribute(newSAKeyAttr(keyAttr, attr), key, newSA(id, attr)),
Map(keyAttr, newSAKeyAttr(keyAttr, attr))

The first rule identifies all “mixed” structured ggs—those types that reference
another complex (i.e., non-lexical) type. In FigS 2s a mixed type, but is a “leaf”
type. The second rule replaces an attribiadettfat references a leaf type (suchcps
with the attributesnewSA(id, attr)) of the leaf type (in this cash. The third rule up-
dates any key constraints that referenced thettiithiete to reference the new attrib-
ute. After the first iterationS becomes a leaf type, and attributes that referénce
(such as) are replaced by attributes ®f Thus,a is replaced with attributdsandd.

For eachid and aftr that satisfy the second model transformation riflere is a
forward view:

id[x, 2], attr{z, y] = newSA(id, attr)[x,]

In the following reverse view, eithedtr: ... attrc are the attributes in the key of
structured typeange?, or range1 has no key anklattributes in total:

newSA(id, attri)[x, t1], attr(s, t), ..., newSA(id, attr)[x, |, attr(s, &) = attr]x, s]

To explain the above view definitions and argueértberrectness, we simplify the
notation by replacing the tern attri, andnewSA(id, attr) in the view definitions by
the symbols, b, andab;, yielding the following:

a(r, s), bi(s, t) = abi(r, 1) Il forward views

abi(r, t1), ba(s, t), ... ab(r, &), bk(s, &) = a(r, s) Il reverse view

StructureS hasn attributesk of which are key attributes (if there is a keyheTat-
tribute R.a that refers to the structufeis replaced by new attributes that correspond
one-to-one with the attributes 8f To show that the forward- and reverse-views are
correct, we need to show that their compositiaiésidentity. We form the composi-
tion by substituting the forward view for eaath in the reverse view, yielding:

a(r, s1), ba(s1, t1), ba(s, t), ..., a(r, s«), be(sk, &), bk(s, &) = a(r, s)
Sincea is a functiona(r, s)=a(r, s;) for all ij. Sos1 =s2 = ... =s«. Replacing thai's by
s1we get:

a(r, s1), ba(s1, t), ba(s, t), ..., a(r, s1), bk(s1, &), bx(s, &) = a(r, s)
Sincebs, ... by is either a key or comprises all the attributes, ofie haves = s1. Re-
placing thesi's by swe get:

Teaching a Schema Translator to Produce O/R Viéws

a(r, s), bi(s, t), ..., bx(s, &) =a(r, s)
Since there must exist values for..., & in s, the above rule reducesd(, s) :- a(r, s),
which is the identity.

3.4. Additional Transfor mations

In addition to the transformations in Sections 3.2- we have a transformation to
replace a multi-valued attribute by a join relatimd another to eliminate contain-
ments. They are quite simple, like converting astralot type to a structured type, and
are described in detail in [24]. We also implemdrtransformations to address more
target metamodels. We provide a brief summary ofesof them:

Convert structured types to abstract types. Thissfiormation is the inverse of the
one presented in Section 3.2.

Replace an attribute with a maximum cardinalityNoby a new attribute with a
maximum cardinality oDne. If the range of the old attribute wésthe range of the
new attribute is a set df The difference between the old and new attribigesyi-
dent when the attribute participates in a key aairgt A multi-valued attribute pro-
vides multiple unique key values, one for each eabfi the attribute; a set-valued
attribute provides a single key value, namely,stteitself.

Replace a list of with a set of indexed structures. The new striectuype has
two attributes)ndex andValue. The range of the former isteger and the latter i§.
This transformation creates an explicit associatietween values and their original
positions in the list.

Stratify sets. This transformation takes a setet§ and converts it into a set of in-
dexed structures; each nested set is assignedjaeuidentifier, which is associated
with the values in that set. This transformatioméeded to support the nested rela-
tional model.

Remove multiple-containment. If tydeis contained in multiple parent types, then
create a new specializationTofEach old containment relationship is transforrimea
a new containment that references exactly one efnéw specializations df. For
example, if typé is contained in botB andC, then create typd$A andC-A, which
are contained iB andC, respectively.

3.5. Composing Transformations

The execution of a transformation plan is a sege@fn transformations. The first
transformation takes the initial modwe} as input and the last transformation produces
the final modelm, as output. Our goal is to generate a forward Wewthat defines

m, as a function o, and a reverse vieWg that definesn, as a function of,. Giv-

en the forward- and reverse-views, this can be dncrementally. The initial trans-
formation fromm, to my, defines the initial view®F andVg. Suppose we have for-
ward- and reverse-viewg: andV for the firsti-1 transformations. For th&' trans-
formation, its forward view; and reverse view, are composed withi and Vg, i.e.,

VE o vy andVyo V;, using ordinary view unfolding, thereby generatihtgandVi.

10 Peter Mork, Philip A. Bernstein, Sergey Melnik

Table 2. A mapping matrix from classes to relations

Person Customer Full-Time Part-Time
P id, name id, name id, name
© id, name, accouni
E id, salary, hire, exempt id, salary, hire
PT id, hours
rel {P} {C} {P, E} {P, E, PT}
attr* | id, name | id, name, accoun{ id, name, salary, hire, exemyg id, name, salary, hire, hours

4. INHERITANCE MAPPINGS

So far, we have assumed that all instances of engsource model construct are
transformed using the same transformation rule. nde consider a more general
strategy for mapping inheritance hierarchies oftralos types into structured types
that allows the user to customize the transformat8ince this is the familiar object-
to-relational mapping problem, we use the termsscénd relation instead of abstract
type and structured type.

Several strategies for mapping classes to relataiss. For example, consider the
inheritance hierarchy in Fig. 3. Typical strategfes mapping these classes to flat
relations include the following [17]: relation psoncrete class (a.k.a. horizontal parti-
tioning), in which each relation contains one catufor every attribute, inherited or
otherwise; relation per subclass (a.k.a. vertigatifooning), in which each relation
contains a column only for the class’ directly defi attributes; and relation per hier-
archy, in which one relation stores all classefwaidiscriminator column to indicate
which rows are in which concrete classes.

These simple strategies reflect only a few of theage possibilities. For example,
in Fig. 3, the designer has indicated that theesysshould partition Person (and its

subclasses) using a horizontal strategy)(However, Employee (and its subclasses)

should be partitioned vertically§(, except for Full-Time whose attributes should be
stored with those of the base clagg.(
Based on these declarations, we

automatically generate the inher Person (<>) ETplayels
tance mapping shown in Table : i'r?arﬁzmﬁﬁﬁgey Other dlasses
Each column of this table corre '? are concrete.

sponds to a class. Each of the first
rows corresponds to a database re
tion. (The rowsrd and attr* are
discussed below.) Reading down
column, we can easily verify tha
every concrete class’ (non-key | |
attributes are stored in some relatio Full-Time (©) Part-Time
Reading across a row, we can d - exempt: boolean| | - hours: number
termine the relational structure. Fc

example, because of horizontal partFig- 3. An inheritance hierarchy

Employee ({)
- salary: currency

Teaching a Schema Translator to Produce O/R VieMs

tioning, relation C contains all attributes (diracd inherited) of Customer. Similarly,
vertical partitioning is used for Employee, so Blie only relation to contain salary
and hire information.

For a given hierarchy, |& be the set of all classes in the (source) hieyaachl let
R be the set of target relations. The predicatgioflicates thak is a direct instance
of ceC. Similarly, r§) indicates thak is a tuple of eR.

A mapping matrixM describes how to map the attributes of classesttibutes of
relations. The mapping matrix contains one coluomeiach concreteeC and one
row for eactreR. Each celM[r, c] of the mapping matrix indicates which attributes
of c appear irr. For example, to map a class’s direct and intebrtitributes to one
relation (a.k.a., horizontal partitioning), alltbie attributes of appear in a single cell
of M. To flatten a hierarchyR contains a single relation, sbhas just one row.

To explain the construction of view definitions fmdvi, we need some additional
notation: PK(c) returns the primary key a, attr*(c) returns the direct and indirect
attributes ofc, rel(c) returns the relations used to store instances(ibfe non-empty
cells of columnc), andr.a refers to attribute of relationr. Flagged is the set of all
relations that containféag attribute, the values of which are type ident#fieFhe type
identifier ofc is Typel D(c).

The forward-view for this transformation can besdity inferred fromM. For each
attributea in a cellM[r, c] the forward-view is: o), ak, y) = r(x), r.af, y). The re-
verse-view is more complex and is based on theviatlg constraints oM.

a) (UMIr,c]=attr * (c)
reR
b) r e re(c) > PK(c) c M[r,c]
c) rée(c) =re(c;) > ¢ =c v re(c,) c Flagged

Constraint (a) says that every attributecomust appear in some relation. Con-
straint (b) guarantees that an instance sfored in multiple relations can be recon-
structed using its primary key, which we assume lsarused to uniquely identify
instances. Constraint (c) says that if two distitlasses have the same(c) value,
then each of them is distinguished by a type iBlagged.

To test these constraints in our example, condiuerlast two rows of Table 2.
Constraint (a) holds since every attribute in thi&tedm row appears in the correspond-
ing column ofM. Constraint (b) holds becaugtappears in every non-empty cell.
Constraint (c) holds because no two classes haveaime signature.

Constraint (c) guarantees that the mapping is tibler so there exists a correct re-
verse-view for the mapping. There are two cases:aFgivenceC, either there is
another clasg’ with rel(c¢) = rd(c), or not. If so, then there existse (rel(c)
Flagged), so we can useflag to identify instances af.

r(x), r.flag(x, TypelD(c)) = c(x)

Otherwise,rel(c) is unique, so the instances of c are thosedt®ain allrel(c) rela-
tions and in no other relation, that is:

AN TX) A I(X) = C{X
rerel(c) ()rqrel(c)_‘ () ()

In relational algebra, this is the join of aéirel(c) composed with the anti-semijoin of
rerel(c), which can be further simplified exploiting theciusion dependencies be-
tween the relations irel(c). In both cases, the reverse view is an invershefor-

12 Peter Mork, Philip A. Bernstein, Sergey Melnik

ward view. The reverse-view for a given attribigaead directly from the mapping
matrix. It is simply the union of its appearanae

{ra(x, y) =ca(x,y) | ceC, reR acM[cr] }
The mapping matrisM is very general, but can be hard to populate tisfgahe re-
quired constraints (a)-(c) above. So instead ofngsksers to populat®l, we offer
them easy-to-understand class annotations fromhaics populated automatically.

Each class can be annotated by one of three sastdy <, or &. Strategy{ does
vertical partitioning, the default strategy: eachdrited property is stored in the rela-

tion associated with the ancestor class that defineStrategy<> yields horizontal
partitioning: the direct instances of the classstoeed in one relation, which contains
all of its inherited properties. Strategymeans that no relation is created: the data is
stored in the relation for the parent class. Thatey selection propagates down the
inheritance hierarchy, unless overridden by anotiieategy in descendant classes.
These annotations exploit the flexibility of theha@mitance mapping matrices only
partially, but are easy to communicate to schersaders.

Let strategyf) be the strategy choice for clasd-or a given annotated schema, the
mapping matrix is generated by the procedRwspulateMappingMatrix in Fig. 4 (for
brevity, we focus on strategy annotations for @assnly, omitting attributes). The

root classes must be annotatedjasr <. For every root class PopulateMappingMa-
trix(c, undefined) should be called. After that, for each two equhiimns of the matrix
(if such exist), the first relation from the toptbe matrix that has a non-empty cell in
those columns is added to Flagged.
The steps of the algorithm are as follows:

Each class labeled horizontal or vertical requiteswn relation

A relation that contains concrete classnust includec’s key so that can be

reassembled from all relations that store itstattes.

This is the definition of horizontal partitioning

These are the attributesothat need to be assigned to some relation

These attributes have already been assigned tatemne, so use that relation.

The remaining attributes ofare assigned ts target relation

Now populate the matrix far's children

N

NooA~®

Teaching a Schema Translator to Produce O/R Vied8s

procedure PopulateMappingMatrix(c: class, r: target relation)

if (strategy(c) € {{ ,<>}) then r = (new relation) end if 1
if (c is concrete) then
M[r, c] = M[r, c] (key attributes of c) 12
if (strategy(c) = <)
then M[r, ¢] = M[r, c] U (declared and inherited attributes of c) I3
else
toPlace = attrs = (declared and inherited non-key attributes of c) 114

for each relation r, created for ancestor class of c, traversing bottom-up
for each cell M[r,, p] do

M[rs,] = M[ry, c] L (M[r», p] M toPlace) 115
toPlace = toPlace — M[r», p]
end for
end for
M[r, c] =M[r, c] U toPlace /16
end if
end if
for each child ¢ of c do PopulateMappingMatrix(c’, r) end for ni
return

Fig. 4. PopulateMappingMatrix generates a mapping matomfan annotated schema

5. INCREMENTAL UPDATING

Translating a model between metamodels can be taraative process, where the
user incrementally revises the source model andloous mapping options, such as
the strategy for mapping inheritance. Typicallyyser wants to immediately view
how design choices affect the generated result.syiseem could simply regenerate
the target model from the revised input. Howevhrs regeneration loses any cus-
tomization the user performed on the target, sicleh@nging the layout of a dia-
grammatic view of the model or adding comments. d&e improve the user’s ex-
perience in such scenarios by translating modedssirateful fashion: the target model
is updated incrementally instead of being re-cab@tem scratch by each modifica-
tion. This incremental updating also improves penance. For example, our imple-
mentation uses a main memory object-oriented databgstem, in which a full re-
generation of the target schema from a large souamel can take a minute or so.

Let my be a source model amd|, ..., m, be a series of target model snapshots ob-
tained by an application of successive transfonati(i.e., a transformation plan).
Each transformation is a function that may addedete schema elements. ligbe a
function that returns new elementsnm given the old ones im. Sincef; uses Sko-
lem functions to generate new elements, whenevarciives the same elements as
input, it produces the same outputs. Clearly, imgla series of such functiofis ...,

f, preserves this property. That is, re-running thigre series of transformations on

14 Peter Mork, Philip A. Bernstein, Sergey Melnik

My yields precisely the samme, as the previous run, as the functions in effecheall
generated schema elements.

Now suppose the user modifies producingmy. Whenmy' is translated into a
target model, the same sequence of transformasamsecuted as before. In this way,
no new objects in the target model are createthtbunchanged objects in the source
model. Previously-created objects are re-used; thdiy properties are updated. For
example, renaming an attribute in the source modetes renaming of some target
model elements (e.g., attribute or type nhames)nbutew target objects are created.

The mechanism above covers incremental updates.tBeletion is addressed as
follows. Let m, be the schema generated from Before applying the transforma-
tions tomy', a shallow copynepy Of My is created which identifies all of the objects in
m,. All transformations are re-run oy’ to producemy,'. If an element is deleted from
my when creatingny’, then some elements previously presentig, might not ap-
pear inm,. These target elements can be identified by compan,, to m,'. They
are marked as “deleted,” but are not physicallpasgd of. If they appear im, at
some later run, the elements are resurrected bgviegthe “deleted” marker. Thus,
the properties of generated objects are preserped deletion and resurrection. In
our implementation, for small changes to the souarodel, this incremental regenera-
tion of the target takes a fraction of a second.

6. IMPLEMENTATION

Our implementation runs inside an integrated depraknt environment. It has a
graphical model editor and an in-memory objectrdgd database system (OODB)
that simplifies data sharing between tools and sdpundo/redo and transactions.

The EER model and schemas are stored as objetite i@ODB. We wrote rela-
tional wrappers that expose an updateable view®fobjects. The wrappers are ge-
neric code that use reflection and on-the-fly gatest intermediate language code.
We then wrote rules that translate between thosppars and the relational represen-
tation of . As others have noted [2][23][25], this translatis very straightforward,;
since there is a 1:1 mapping between constructiseofource and target metamodels
and universal metamodel (i.@l), the translation rules are trivial.

We wrote our own rules engine, partly becauseroitdtions on the functionality
of Datalog engines that were available to us amtlypbecause we wanted native
support for rules with compound heads (see Se@&joit supports Skolem functions
and user-defined functions. We used the latteeteate forward- and reverse-views.

The size of our implementation is summarized in Bigviewed best in the elec-
tronic version in color). The rule engine is mdnart half of our code. It includes the
calculus representation, in-memory processing, wiafolding, and parser. The main
routines include the rules and plan generator (dest in [24]). We coded a few
rules in C#, such as the rule to remove structat&ibutes since the recursion was
hard to understand. The logic for mapping inhedéastructures into relations in-
cludes populating the mapping matrix from classasaiions and generating reverse-
views with negation when necessary. The import/exputines include 120 lines of
rules; the rest is in C#.

Teaching a Schema Translator to Produce O/R Viels

O U-Metamodel representation
B Rule execution engine

O Main ModelGen routines

O Other imperative code

B Mapping inheritance structures

O Import/export for EER & SQL

B SQL generation

Fig. 5. Code size (in lines of code)

time (ms) Execution steps:

B Export the model

267 B Remove inheritance

1000 = (imperative)

O In-line non-lexical references
(imperative)

800 234 B Add keys (imperative)

@ Delete attributes referencing

dangling types

B Update references to objects
mapped to new objects

145 O Replace multi-valued attrs. with

400 jointable

O Remove containment

600

200 4 B Remove multiple containment

16 O Load the model

M1 M2 M3 M4

Fig. 6. Execution times in milliseconds
Our implementation is relatively fast. Executioméis for four models are shown
in Fig. 6. These models use a custom EER medelather rich one. For example, it
permits a class to contain multiple classes, ramgius to use our transformation that
eliminates multiple containment. The number of @ata in each model is shown
above each bar. The execution time was measumailliseconds and averaged over
30 runs on a 1.5 GHz machine. The largest mode|,ddderates 32 relationsot a
huge model, but the result fills many screens.

7. RELATED WORK

The problem of translating data between metamagtets back to the 1970’s. Early
systems required users to specify a schema-specipping between a given source
and target schema (e.g., EXPRESS [30]). Later, iRbak and Reiner described
schema translation as one use of their databasgndesrkbench [28]. It is generic

but manual (the user selects the transformatidgtssiniversal metamodel is less ex-

16 Peter Mork, Philip A. Bernstein, Sergey Melnik

pressive (no inheritance, attributed relationshipsollections), and mappings are not
automatically generated.

Atzeni and Torlone [2] showed how to automatica@gnerate the target schema.
They introduced the idea of a repertoire of tramefions over models expressed in a
universal metamodel (abbr. UMM), where each tramsébion replaces one construct
by others. They used a UMM based on one proposdduliyand King in [19]. They
represented transformation signatures as graphgramsgformation semantics was
hidden in imperative procedures. They did not gaeeinstance-level transforma-
tions, or even schema-level mappings between s@mdetarget models, which are
main contributions of our work.

Two recent projects have extended Atzeni and Tetfowork. In [25], Papotti and
Torlone generate instance translations via thréa-clapy steps: (1) copy the source
data into XML, in a format that expresses their UM®)) use XQuery to reshape the
XML expressed in the source model into XML expreélsisethe target model; and (3)
copy the reshaped data into the target system.[Rjkéransformations are imperative
programs. In [3], Atzeni et al. use a similar 3astechnique, except transformations
are Datalog rules: (1) copy the source databasdlieir relational data dictionary; (2)
reshape the data using SQL queries that expressld®e and (3) copy it to the target.

In contrast to the above two approaches, we gengratv definitions thatlirectly
map the source and target models in both direcoiscould drive a data transfor-
mation runtime such as [1][17]. The views provideess to the source data using the
target model, or vice versa, without copying antads all. If they were executed as
data transfer programs, they would move data frouice to target in just one copy
step, not three. This is more time efficient andids the use of a staging area, which
is twice the size of the database itself to accodat®the second step of reshaping
the data. Moreover, neither of the above projeffes fiexible mapping of inheritance
hierarchies or incremental updating of models, Whie major features our solution.

Transformation strategies from inheritance hier@ho relations, such as hori-
zontal and vertical partitioning, are well known5]fR2]. However, as far as we
know, no published strategies allow arbitrary camabibns of vertical and horizontal
partitioning at each node of an inheritance hiénartike the one we proposed here.

Hull's notion of information capacity [18] is commly used for judging the in-
formation preservation of schema transformatiom$18] a source and target schema
are equivalent if there exists an invertible mappietween their instances. Our for-
ward- and reverse-views are examples of such mggpin

Using a UMM called GER, Hainaut has explored schemmsformations for EER
and relational schemas in a sequence of papersisgatwo decades. He presented
EER and relational transformations in [13]. Althbugstance transformations were
mentioned, the focus was on schema transformatimssance mappings for two
transformations are presented in [14] as algelegpressions. In this line of work,
instance transformations are mainly used for ge¢imgravrappers in evolution and
migration scenarios. An updated and more complegeréption of the framework is
in [16].

Poulovasilis and McBrien [27] introduce a universatamodel, based on a hyper-
graph. They describe schema transformation steph#tve associated instance trans-
formations. Boyd and McBrien [9] apply and enritiese transformations for Mod-
elGen. Although they do give a precise semanticgHe transformations, it is quite

Teaching a Schema Translator to Produce O/R Vigiws

low-level (e.g., add a node, delete an edge). Toeyot explain how to abstract them
to a practical query language, nor do they desarbienplementation.

Another rule-based approach was proposed by Baavetelcambre [7][8]. They
focus on the power and convenience of their UMMj-Livel Descriptions, which
they use to define model and instance structutesy Suggest using Datalog to query
the set of stored models and to test the conformahmodels to constraints.

Barsalou and Gagopadhyay [4] give a language (UBIM) to express multiple
metamodels. They use it to produce query schenthsiaws for heterogeneous data-
base integration. Issues of automated schema atemslbetween metamodels and
generation of inheritance mappings are not covered.

Claypool and Rundensteiner [10] describe operatoensform schema structures
expressed in a graph metamodel. They say the operean be used to transform
instance data, but give no details.

8. CONCLUSION

In this paper, we described a rule-driven platfdhat can translate an EER model
into a relational schema. The main innovationslageability to (i) generate provably-
correct forward and reverse view definitions betwélee source and target models,
(i) map inheritance hierarchies to flat structumsa more flexible way, and (iii)
incrementally generate changes to the target muatetd on incremental changes to
the source model. We implemented the algorithm @achonstrated that it is fast
enough for interactive editing and generation oflele. We embedded it in a tool for
designing object to relational mappings. Commerigdloyment is now underway.

9. REFERENCES

[1] ADO.NET, http://msdn.microsoft.com/data/ref/adonetnext/

[2] Atzeni, P. and R. Torlone. Management of Multipledéls in an Extensible Database
Design Tool EDBT 1996, 79-95

[3] Atzeni, P., P. Cappellari and P. Bernstein. Modal@éodel Independent Schema
TranslationEDBT 2006, 368-385

[4] Barsalou, T. and D. Gangopadhyay. M(DM): An Opesmiework for Interoperation of
Multimodel Multidatabase System€DE 1992, 218-227

[5] Bernstein, P., S. Melnik, P. Mork: Interactive StizeTranslation with Instance-Level
Mappings (demo), VLDB 2005, 1283-1286

[6] Blakeley, J., S. Muralidhar, A. Nori. The ADO.NETtify Framework: Making the Con-
ceptual Level Real, ER 2006, LNCS 4215, 552-565

[7] Bowers, S., L.M.L. Delcambre. On Modeling Conforroaffior Flexible Transformation
over Data Modelg{nowl. Transformation for the Semantic Web (at 15" ECAI), 19-26

[8] Bowers, S. and L.M.L. Delcambre. The Uni-Level Drggon: A Uniform Framework for
Representing Information in Multiple Data Model®® B003, LNCS 2813, 45-58

18 Peter Mork, Philip A. Bernstein, Sergey Melnik

[9] Boyd, M. and McBrien, P. Comparing and Transfornid@ween Data Models Via an
Intermediate Hypergraph Data Mod&IData Semantics IV: 69-109 (2005)

[10] Claypool, K.T. and E.A. Rundensteiner. Sangam: &n§formation Modeling Frame-
work. DASFAA 2003: 47-54

[11] Fagin, R.: Multivalued Dependencies and a New Nofoam for Relational Databases.
ACM TODS2(3): 262-278 (1977)

[12] Fagin, R., P. G. Kolaitis, L. Popa, and W.C. Taamposing Schema Mappings: Second-
Order Dependencies to the Rescd@M TODS 30(4): 994-1055 (2005)

[13] Hainaut, J-L. Entity-Generating Schema Transforamatifor Entity-Relationship Models.
ER 1991: 643-670

[14] Hainaut, J-L.. Specification preservation in scheéraasformations—Application to se-
mantics and statisticBata Knowl. Eng. 16(1): 99-134 (1996)

[15] Hainaut, J-L, J-M Hick, V. Englebert, J. Henrardgdd. Roland. Understanding the Im-
plementation of IS-A RelationER 1996, 42-57

[16] Hainaut, J-L., The Transformational Approach todbase Engineering. Benerative
and Transformational Tech. in Software Eng. LNCS 4143: 89-138, 2006

[17] Hibernate http://ww.hibernate.org/

[18] Hull, R. Relative Information Capacity of Simple|Rtonal Database Schema®AM J.
Comput. 15(3): 856-886 (1986)

[19] Hull, R. and R. King. Semantic Database Modelingv8y, Applications and Research
IssuesACM Comp. Surveys 19(3): 201-260 (1987)

[20] Java Data Objectbttp://java.sun.com/products/jdo

[21] Jeusfeld, M.A. and Johnen, U.A. An Executable Métalel for Re-Engineering of Data-
base Schemahnt. J. Cooperative Inf. Syst. 4(2-3): 237-258 (1995)

[22] Keller, A.M., R. Jensen, and S. Agrawal. Persige®oftware: Bridging Object-Oriented
Programming and Relational DatabasS&MOD 1993, 523-528

[23] Kensche, D., C. Quix, M. A. Chatti, and M. JarkeR&Me. A Generic Role Based Me-
tamodel for Model Manageme®TM Conferences (2) 2005: 1206-1224

[24] Mork P., Bernstein, P.A., S. Melnik: A Schema Tiatw that Produces Object-to-
Relational Views. Technical Report MSR-TR-200748#p://research.microsoft.com.

[25] Papotti, P. and R. Torlone. An Approach to Hetenegeis Data Translation based on
XML Conversion.CAi SE Workshops (1) 2004: 7-19

[26] Papotti, P. and R. Torlone. Heterogeneous DataslEtion through XML Conversiod.
of Web Eng 4,3: 189-204 (2005)

[27] Poulovassilis, A. and McBrien, P. A General Forf@mework for Schema Transforma-
tion. Data Knowi. Eng. 28(1): 47-71 (1998)

[28] Rosenthal, A. and D. Reiner. Tools and Transfomwnat— Rigorous and Otherwise-
for Practical Database DesighCM TODS19(2): 167-211 (1994)

[29] Ruby on Railshttp://api.rubyonrails.org/

[30] Shu, N.C., B. Housel, R. Taylor, S. Ghosh, and MnMLEXPRESS: A Data EXtraction,
Processing, and REStructuring Systé&@M TODS2(2): 134-174(1977)

