
Teaching a Schema Translator to Produce O/R Views

Peter Mork1, Philip A. Bernstein2, and Sergey Melnik2

1The MITRE Corporation and 2Microsoft Research
pmork@mitre.org, {philbe, melnik}@microsoft.com

Abstract. This paper describes a rule-based algorithm to derive a relational
schema from an extended entity-relationship model. Our work is based on an
approach by Atzeni and Torlone in which the source EER model is imported
into a universal metamodel, a series of transformations are performed to elimi-
nate constructs not appearing in the relational metamodel, and the result is ex-
ported. Our algorithm includes novel features that are needed for practical ob-
ject to relational mapping systems: First, it generates forward- and reverse-
views that transform instances of the source model into instances of the target
and back again. These views automate the object-to-relational (O/R) mapping.
Second, it supports a flexible mapping of inheritance hierarchies to flat relations
that subsumes and extends prior approaches. Third, it propagates incremental
updates of the source model into incremental updates of the target. We prove
the algorithm’s correctness and demonstrate its practicality in an implementa-
tion.

1. Introduction

Object-to-relational (O/R) mapping systems are now mainstream technology. The
Java Data Objects (JDO) specification is supported by many vendors of Enterprise
Java Beans [20]. The Hibernate system is in widespread use [17]. Ruby on Rails in-
cludes the Active Record package [29]. And Microsoft recently released an ER-to-
relational mapper in the next version of ADO.NET [1].

Developers often start building new applications by designing a conceptual model
E of the application and translating it into a relational schema R to persist the data. In
JDO and Hibernate, E is expressed as a set of Java classes. In ADO.NET, E is ex-
pressed in the Entity Data Model (EDM), a variant of the extended entity-relationship
(EER) model [6]. Thus, the object-oriented (OO) constructs in E can include inheri-
tance, associations, complex types, and nested collections, all of which have to be
mapped to relational structures.

The problem of translating schemas between metamodels, or schema definition
languages, has received attention in [2][3][9][16][23][25][26]. However, published
approaches lack solutions to several issues that are required for practical applications:
bidirectional semantic mappings, flexible translation of inheritance hierarchies, and
incremental schema modification. These problems are non-trivial. They require archi-
tectural and algorithmic advances, which are the main subject of this paper. A pre-
liminary, short description of the work reported here appears in [5].

2 Peter Mork, Philip A. Bernstein, Sergey Melnik

Our basic strategy follows the rule-based approach of Atzeni and Torlone in [2].
Using this approach, we define a universal metamodel that has all of the main model-
ing constructs in the metamodels of interest, in our case EER and relational. New
constructs can be added to the universal metamodel to support a new metamodel or
extend an existing one. We then define a collection of transformation rules. For ex-
ample, one simple rule transforms an entity type into a complex type (e.g., a relation).
The goal is to execute a series of transformation rules whose composition eliminates
from the source model all modeling constructs absent in the target metamodel. The
result of this translation step is exported into the desired syntax.

Our first contribution is the generation of instance-level transformations between
the source schema and generated target schema. While there are solutions to this
problem (e.g., [3][25][26]), they require passing the instances through an intermediate
generic representation. This is impractical for large databases and does not generate
the view definitions that are required to drive EER-to-relational mapping systems. We
take a different approach. We augment each transformation rule applied in the transla-
tion step to generate not only target schema elements but also forward- and reverse-
views that describe how each eliminated construct of the source model is represented
in the target. We have proved that these views are correct, i.e., do not lose informa-
tion, and give one example proof in this paper.

The series of transformation rules executed in the translation step produces a series
of elementary views. These views are composed via view unfolding to generate the
final forward- and reverse-views between the source and target schemas. The correct-
ness of the composition is ensured by the correctness of the elementary views. The
composed views are expressed in terms of the universal metamodel. They are fed into
a component that translates them into the native mapping language.

Our second contribution is a rich set of transformations for inheritance mapping. It
allows the data architect to decide on the number of relations used for representing a
sub-class hierarchy and to assign each direct or inherited property of a class inde-
pendently to any relation. These transformations allow a per-class choice of inheri-
tance mapping strategy. They subsume all inheritance mapping strategies we know of,
including horizontal and vertical partitioning [22], their combinations, and many new
strategies. The transformations are driven by a data structure called a mapping matrix.
We present algorithms for populating mapping matrices from per-class annotations of
the inheritance hierarchy and generating provably correct elementary views. The
complexity of inheritance mapping is encapsulated in a single transformation rule.
Since the final views are obtained by composition, inheritance mappings do not inter-
fere with mapping strategies for other EER constructs.

Our third contribution is a technique for propagating incremental updates of the
source model into incremental updates of the target. To do this, we ensure that an
unchanged target object has the same id each time it is generated, so we can reuse the
previous version instead of creating a new one. This avoids losing a user’s customiza-
tions of the target and makes incremental updating fast. This practical requirement
arises when the schema translation process is interactive. A data architect analyzes
different translation choices, switching back and forth between the source and target
schemas, which may be large and thus require careful on-screen layout. Since it is
unacceptable to regenerate the target schema and discard the layout information after
changes in the schema translation, incremental update propagation is required.

Teaching a Schema Translator to Produce O/R Views 3

Finally, we discuss the implementation of our O/R translation algorithm. We de-
veloped an extensible, rule-driven core that can be customized to specific model-
translation tasks with moderate effort. To support efficient rule execution, we wrap
the native meta-model APIs so that the rules directly manipulate the objects represent-
ing the model elements, avoiding the conversion penalty often incurred by using rule-
based systems.

The rest of this paper is structured as follows. Section 2 describes our universal
metamodel. Section 3 specifies our syntax for transformations and gives an example
correctness proof for one of them. Section 4 describes how we support multiple strat-
egies for mapping inheritance hierarchies into relations. Section 5 explains how we do
incremental updating. Section 6 discusses our implementation. Section 7 discusses
related work and Section 8 is the conclusion.

2. METAMODEL

Before we can define any transformation rules, we need to describe the universal
metamodel in which they are expressed. The universal metamodel we use in this
paper, called U, is similar to the universal metamodel in [21]. U supports most of the
standard constructs found in popular metamodels, enough to illustrate our techniques.
It is not intended to be complete, i.e., capture all of the features of rich metamodels
such as XSD or SQL with complex constraints and triggers, but it can easily be ex-
tended to incorporate additional features.

Table 1 lists the basic constructs of U and examples of their use in popular
metamodels. We base our discussion of the semantics of U on its relational schema
shown in Fig. 1. A detailed description and formal semantics for U appear in [24].

In U there are three simple types: Atomic types are called lexicals, which we
assume to be uniform across all metamodels. The remaining simple types are
collections, either lists or sets of some base type. For example, in SQL, apart from
lexicals, the only simple type is a set whose base type is a tuple.

Complex types are either structured types (e.g., relations) or abstract types (e.g.,
entities). Complex types are related to other types via attributes and containment. For
an attribute A The domain of A is the complex type on which A is defined, and the
range of A is the type associated with A. An attribute can have minimum and
maximum cardinality constraints. For example, in SQL every attribute’s domain must
be a structured type and its maximum cardinality must be one. A containment is

Table 1. Relationships among common metamodels

Construct SQL EER Java XSD

Lexical Type int, varchar scalar int, string integer, string
Structured Type tuple element
Abstract Type entity class complex type

List Type array list
Set Type table
Attribute column attribute, relationship field attribute

Containment aggregation nesting

4 Peter Mork, Philip A. Bernstein, Sergey Melnik

similar to an attribute; it establishes a (named) structural relationship between the
parent type and the child type such that each such instance of the child type is nested
within an instance of the parent type.

The constraints supported by U include key constraints, inclusion dependencies
and generalizations. Each key constraint consists of a set of attributes that uniquely
identify instances of some complex type. Multiple candidate keys can be defined for a
complex type, but at most one primary key can be defined. An inclusion dependency
establishes a relationship between a key and another complex type. For each attribute
in an inclusion dependency there is a corresponding attribute in the related key. For
any instance of a model containing an inclusion dependency, the projection of the

Simple types include lexicals and collections:
 LexicalType(TypeID, TypeName)
 ListType(TypeID, TypeName, BaseType)
 SetType(TypeID, TypeName, BaseType)

Complex types can be structured or abstract:
 StructuredType(TypeID, TypeName)
 AbstractType(TypeID, TypeName)
Complex types have attributes and can be nested:
 Attribute(AttrID, AttrName, Domain, Range, MinCard, MaxCard)
 Containment(ConID, AttrName, Parent, Child, MinCard, MaxCard)

 Domain/Parent must be a complex type.

 Range/Child can be any type.

 Min/MaxCard are Zero, One or N and apply to the range/child.

A key indicates a set of attributes that identify a complex object:
 KeyConstraint(KeyID, TypeID, IsPrimary)

 TypeID references the type for which this is a key.
 Primary indicates if this is the primary key for the type.

 KeyAttribute(KeyAttrID, KeyID, AttrID)
 KeyID references the key for which this is an attribute.

 AttrID references an attribute of the associated type.

An inclusion dependency establishes a subset relationship:
 InclusionDependency(IncID, TypeID, KeyID)

 TypeID references the type for which this dependency holds.
 KeyID references the associated key.

 InclusionAttribute(IncAttrID, IncID, AttrID, KeyAttrID)
 IncID references the inclusion for which this is an attribute.
 AttrID references an attribute of the associated type.

 KeyAttrID: references a key attribute of the key of the superset type.

Generalization is used to extend a type or construct a union:
 Generalization(GenID, TypeID, IsDisjoint, IsTotal)
A type can serve as the parent for multiple generalizations.
Disjoint and Total tells whether children are disjoint and cover the parent.
 Specialization(SpecID, GenID, TypeID)

 GenID references the parent generalization.

 TypeID references the associated specialized type.

Fig. 1. Relational schema for universal metamodel U

Teaching a Schema Translator to Produce O/R Views 5

inclusion attributes must be a subset of the projection of the key attributes. Finally, a
generalization establishes a relationship between a complex type (the supertype) and
a set of more specialized subtypes. Each subtype inherits any attributes or
containment relationships associated with the supertype.

3. TRANSFORMATIONS

Using the Atzeni-Torlone approach, schema translation has four steps: (1) manually
or automatically generate a valid transformation plan consisting of a sequence of
transformations (2) import the source model (3) [translation step] execute the trans-
formations in the plan, and (4) export the result. In this section and the next, we ex-
plain step (3), the transformations, which is the core of the algorithm and where most
of our innovations lie. Due to lack of space, we omit a description of step (1), our A*-
based algorithm for automatic generation of a transformation plan; it appears in [24].
We briefly discuss steps (2) and (4) in Section 6 on Implementation.

3.1. Defining a Transformation

Each step of a transformation plan is a transformation that removes certain constructs
from the model and generates other constructs plus view definitions. A transforma-
tion is a triple of the form <D, F, R> where D is a set of rules that expresses a model
transformation, F is a rule that produces an elementary forward view that expresses
the target model as a view over the source, and R is a rule that produces an elementary
reverse view that expresses the source as a view over the target.

Rules in D contain predicates, each of which is a construct in U. Each rule is of the
form “<body> ⇒ <head>”, where <body> and <head> are conjunctions of predicates.
For example, the following is a simplified version of the rule that replaces an abstract
type, such as a class definition, by a structured type, such as relation definition:

AbstractType(id, name) ⇒ StructuredType(newAS(id), name)
AbstractType and StructuredType are predicates from Fig. 1, and id and name are vari-
ables. The Skolem function newAS(id) generates a new type ID for the structured type
definition based on the abstract type’s id. Skolem function names are prefixed by
“new” to aid readability.

The semantics of a rule in D with body b and n terms in the head is defined by a
Datalog program with n rules, each with one term in the head implied by b. For ex-
ample, A(x, y) ⇒ B(x), C(f(y)) is equivalent to the Datalog program B(x) :- A(x, y) and
C(f(y)) :- A(x, y). We chose our rule syntax because it is less verbose than Datalog when
many rules have the same body, which arises often in our transformations. In essence,
each rule is a tuple-generating dependency [11] or a second-order dependency without
equalities [12], if the Skolem functions are considered existentially quantified.

For some rules, expressing them in logic is impractical, because they are too ver-
bose or hard to understand. Such rules can be implemented in an imperative language.
But for succinctness and clarity, we use only the logic notation in this section.

6 Peter Mork, Philip A. Bernstein, Sergey Melnik

Some of the rules in each model transformation D also populate a binary predicate
Map, whose transitive closure identifies all of the elements derived from a given
source element. For example, adding Map to the rule that replaces an abstract type by
a structured type, we get:

AbstractType(id, name) ⇒ StructuredType(newAS(id), name), Map(id, newAS(id))
Map(id, newAS(id)) says that the element identified by id is mapped to a new element
identified by newAS(id).

After executing all of the transformations, we can extract from the transitive clo-
sure of Map those tuples that relate source elements to target elements. Tools that
display the source and target models can use this mapping to offer various user-
oriented features, such as the ability to navigate back and forth between correspond-
ing elements or to copy annotations such as layout hints or comments.

Rules add tuples to the head predicates but never delete them. Since we need to de-
lete tuples that correspond to constructs being replaced in a model, we use a unary
predicate Delete that identifies elements to delete. After all rules of a transformation
are executed, a non-rule-based post-processing step deletes the elements identified in
Delete predicates. For example, in the rule that replaces an abstract type by a struc-
tured type, the predicate Delete removes the abstract type being replaced, as follows:
 AbstractType(id, name) ⇒ StructuredType(newAS(id), name), Map(id, newAS(id)), Delete(id)

The rules in a model transformation D are schema-level mappings. Forward- and
reverse-views are instance-level mappings. The predicates and variables in a view are
variables in the rules of D. For example, a simplified version of the forward-view for
replacing an abstract type by a structured type is “ id(x) ⇒ newAS[id](x)”. This rule says
that if x is the identifier of an instance (i.e., an object) of the abstract type identified
by id, then it is also the identifier of an instance (i.e., a tuple) of the structured type
identified by newAS[id]. Notice that we use the same identifier to denote two different
types of items, namely objects and tuples, which enables us to express instance-level
mappings between them.

To generate such views in rules, we can define predicates that create their compo-
nents, such as the following:

ViewHead(newRule(newAS(id)), newPredicate(id, "x"))
ViewBody(newRule(newAS(id)), newPredicate(newAS(id), "x"))

We can then conjoin these to the head of the rule that replaces an abstract type by a
structured type. However, in this paper we will use the simpler and more readable
notation “id(x) ⇒ newAS[id](x)” .

We represent a model before and after a transformation as a model graph. Its nodes
correspond to simple and complex types. Its edges correspond to attributes. For ex-
ample, on the left side of Fig. 2, R is a structured type with attributes k and a. The
value of k is a lexical type and the value of a is a structured type S with attributes b
and c. An instance of a model graph is an instance graph, which is comprised of a set
of values for each node and a set of value pairs for each edge. A view defines how to
populate the nodes and edges of one instance graph from those of another.

A transformation is correct if the forward-view converts every instance IS of the
source schema into a valid instance IT of the target schema, and the reverse-view
converts IT back into IS without loss of information. That is, the composition of the
forward- and reverse-views is the identity. Unlike [9][13], we do not require the con-
verse; there may be instances of the target model that cannot be converted into in-

Teaching a Schema Translator to Produce O/R Views 7

stances of the source. Our definition of correctness is more stringent than [26], which
requires only that the forward view generates a valid instance of the target.

Sections 3.2–3.3 define two of the main transformations to convert from EER to
SQL. For each transformation, we give its model transformation and its forward-
/reverse-views. We write the views as instance transformations and omit the verbose
rule predicates that would generate them. Since the forward- and reverse-views for the
first transformation are inverses of each other, correctness is immediately apparent.
We give a detailed correctness argument for the transformation of Section 3.3.

3.2. Convert Abstract to Structured Type

This transformation replaces each abstract type with a structured type. To preserve
object identity, a new oid attribute is added to the structured type, unless the abstract
type already included a primary key. The model transformation rules are as follows:
 AbstractType(id, name)
 ⇒ StructuredType(newAS(id), name), Map(id, newAS(id)), Delete(id)
 AbstractType(id, name), ¬KeyConstraint(_, id, “True”)
 ⇒ Attribute(newOID(id), “oid”, newAS(id), “Int”, “ 1”, “ 1”),
 KeyConstraint(newASKey(id), newAS(id), “True”),
 KeyAttribute(newASKeyAttr(id), newASKey(id), newOID(id))

We are careful in our use of negation, as in ¬KeyConstraint above, to ensure that
stratification is possible.

The forward view is: id(x) ⇒ newAS[id](x), newOID[id](x, newID(x)). The last predi-
cate says that newOID[id] is an attribute whose value for the tuple x is newID(x).

The reverse view is: newAS[id](x) ⇒ id(x). Notice that we do not need to map back
the new oid attribute of the structured type, since it is not needed for information
preservation of the source abstract type. It is immediately apparent that the forward-
and reverse-views are inverses of each other and hence are correct.

3.3. Remove Structured Attribute

This transformation replaces an attribute
a that references a structured type S all
of whose attributes are lexicals. It re-
places a by lexical attributes that uni-
quely identify a tuple of S. If S has a
primary key, then a is replaced by the key attributes of S and there is an inclusion
dependency from the new attributes to that key. Otherwise, a is replaced by all of S’s
attributes. (If the latter is desired even if S has a primary key, then a user-defined tag
on a can be used to ask that the latter rule be applied.) The transformation is applied
iteratively to eliminate nested types.

For example, consider three structured types: R, S and T (see Fig. 2). R references
S using attribute a and has primary key k (an Int). S has no primary key, but it has two
attributes b (an Int) and c (which references T). T has a primary key attribute d (an

R

S

T
int

int

int

k
a

b
c

d

R

S

T
int

int

int

k

b
d

d

⇒

d
b

Fig. 2. Removing structured attributes

8 Peter Mork, Philip A. Bernstein, Sergey Melnik

Int). Applying the transformation to S.c replaces that attribute by S.d and adds an
inclusion dependency from S.d to T.d. Now all attributes of S are lexicals. So we can
apply the transformation again to replace R.a by R.b and R.d.

The model transformation rules are as follows (we use an underscore in a slot for
an existential variable that appears only once in the rule, to avoid useless variables):
 StructuredType(domain, name),
 Attribute(id, _, domain, range, _, “One”), ¬ LexicalType(range, _)
 ⇒ MixedTypeHelper(domain, name)
 Attribute(id, name1, domain, range1, min1, “One”),
 StructuredType(range1, name), ¬MixedTypeHelper(range1, name),
 Attribute(attr, name2, range1, range2, min2, “One”), Min(min1, min2, min)
 ⇒ Attribute(newSA(id, attr), newName(name1, name2), domain, range2, min, “One”) ,
 Map(id, newSA(id, attr)), Delete(id)
 Attribute(id, _, _, range, _, “One”), KeyAttribute(keyAttr, key, id), StructuredType(range, _)
 ⇒ KeyAttribute(newSAKeyAttr(keyAttr, attr), key, newSA(id, attr)),
 Map(keyAttr, newSAKeyAttr(keyAttr, attr))

The first rule identifies all “mixed” structured types—those types that reference
another complex (i.e., non-lexical) type. In Fig. 2 S is a mixed type, but T is a “leaf”
type. The second rule replaces an attribute (id) that references a leaf type (such as c)
with the attributes (newSA(id, attr)) of the leaf type (in this case d). The third rule up-
dates any key constraints that referenced the old attribute to reference the new attrib-
ute. After the first iteration, S becomes a leaf type, and attributes that reference it
(such as a) are replaced by attributes of S. Thus, a is replaced with attributes b and d.

For each id and attri that satisfy the second model transformation rule, there is a
forward view:

 id[x, z], attri[z, y] ⇒ newSA(id, attri)[x, y]
In the following reverse view, either attr1 … attrk are the attributes in the key of

structured type range1, or range1 has no key and k attributes in total:
newSA(id, attr1)[x, t1], attr1(s, t1), ..., newSA(id, attrk)[x, tk], attrk(s, tk) ⇒ attr[x, s]
To explain the above view definitions and argue their correctness, we simplify the

notation by replacing the terms id, attri, and newSA(id, attri) in the view definitions by
the symbols a, bi, and abi, yielding the following:

a(r, s), bi(s, t) ⇒ abi(r, t) // forward views
ab1(r, t1), b1(s, t1), ... abk(r, tk), bk(s, tk) ⇒ a(r, s) // reverse view
Structure S has n attributes, k of which are key attributes (if there is a key). The at-

tribute R.a that refers to the structure S is replaced by new attributes that correspond
one-to-one with the attributes of S. To show that the forward- and reverse-views are
correct, we need to show that their composition is the identity. We form the composi-
tion by substituting the forward view for each abi in the reverse view, yielding:

 a(r, s1), b1(s1, t1), b1(s, t1), ..., a(r, sk), bk(sk, tk), bk(s, tk) ⇒ a(r, s)
Since a is a function, a(r, si)=a(r, sj) for all i,j. So s1 = s2 = … = sk. Replacing the si’s by
s1 we get:

 a(r, s1), b1(s1, t1), b1(s, t1), ..., a(r, s1), bk(s1, tk), bk(s, tk) ⇒ a(r, s)
Since b1, … bk is either a key or comprises all the attributes of s, we have s = s1. Re-
placing the s1’s by s we get:

Teaching a Schema Translator to Produce O/R Views 9

 a(r, s), b1(s, t1), ..., bk(s, tk) ⇒ a(r, s)
Since there must exist values for t1, ..., tk in s, the above rule reduces to a(r, s) :- a(r, s),
which is the identity.

3.4. Additional Transformations

In addition to the transformations in Sections 3.2-3.3, we have a transformation to
replace a multi-valued attribute by a join relation and another to eliminate contain-
ments. They are quite simple, like converting an abstract type to a structured type, and
are described in detail in [24]. We also implemented transformations to address more
target metamodels. We provide a brief summary of some of them:

Convert structured types to abstract types. This transformation is the inverse of the
one presented in Section 3.2.

Replace an attribute with a maximum cardinality of N by a new attribute with a
maximum cardinality of One. If the range of the old attribute was T, the range of the
new attribute is a set of T. The difference between the old and new attributes is evi-
dent when the attribute participates in a key constraint. A multi-valued attribute pro-
vides multiple unique key values, one for each value of the attribute; a set-valued
attribute provides a single key value, namely, the set itself.

Replace a list of T with a set of indexed structures. The new structured type has
two attributes, Index and Value. The range of the former is Integer and the latter is T.
This transformation creates an explicit association between values and their original
positions in the list.

Stratify sets. This transformation takes a set of sets and converts it into a set of in-
dexed structures; each nested set is assigned a unique identifier, which is associated
with the values in that set. This transformation is needed to support the nested rela-
tional model.

Remove multiple-containment. If type T is contained in multiple parent types, then
create a new specialization of T. Each old containment relationship is transformed into
a new containment that references exactly one of the new specializations of T. For
example, if type A is contained in both B and C, then create types B-A and C-A, which
are contained in B and C, respectively.

3.5. Composing Transformations

The execution of a transformation plan is a sequence of n transformations. The first
transformation takes the initial model m0 as input and the last transformation produces
the final model mn as output. Our goal is to generate a forward view VF that defines
mn as a function of m0 and a reverse view VR that defines m0 as a function of mn. Giv-
en the forward- and reverse-views, this can be done incrementally. The initial trans-
formation from m0 to m1 defines the initial views VF and VR. Suppose we have for-
ward- and reverse-views VF and VR for the first i-1 transformations. For the ith trans-
formation, its forward view vf and reverse view vr are composed with VF and VR, i.e.,

VF � vf and VR � vr, using ordinary view unfolding, thereby generating VF and VR.

10 Peter Mork, Philip A. Bernstein, Sergey Melnik

4. INHERITANCE MAPPINGS

So far, we have assumed that all instances of a given source model construct are
transformed using the same transformation rule. We now consider a more general
strategy for mapping inheritance hierarchies of abstract types into structured types
that allows the user to customize the transformation. Since this is the familiar object-
to-relational mapping problem, we use the terms class and relation instead of abstract
type and structured type.

Several strategies for mapping classes to relations exist. For example, consider the
inheritance hierarchy in Fig. 3. Typical strategies for mapping these classes to flat
relations include the following [17]: relation per concrete class (a.k.a. horizontal parti-
tioning), in which each relation contains one column for every attribute, inherited or
otherwise; relation per subclass (a.k.a. vertical partitioning), in which each relation
contains a column only for the class’ directly defined attributes; and relation per hier-
archy, in which one relation stores all classes with a discriminator column to indicate
which rows are in which concrete classes.

These simple strategies reflect only a few of the storage possibilities. For example,
in Fig. 3, the designer has indicated that the system should partition Person (and its

subclasses) using a horizontal strategy (�). However, Employee (and its subclasses)

should be partitioned vertically (�), except for Full-Time whose attributes should be
stored with those of the base class (∅).

Based on these declarations, we
automatically generate the inheri-
tance mapping shown in Table 2.
Each column of this table corre-
sponds to a class. Each of the first 4
rows corresponds to a database rela-
tion. (The rows rel and attr* are
discussed below.) Reading down a
column, we can easily verify that
every concrete class’ (non-key)
attributes are stored in some relation.
Reading across a row, we can de-
termine the relational structure. For
example, because of horizontal parti-

Person (�)
- id: primary key
- name: string

Customer
- account: currency

Employee (�)
- salary: currency
- hire: date

Full-Time (∅)
- exempt: boolean

Part-Time
- hours: number

Employee is
abstract.
Other classes
are concrete.

Fig. 3. An inheritance hierarchy

Table 2. A mapping matrix from classes to relations

 Person Customer Full-Time Part-Time

P id, name id, name id, name
C id, name, account
E id, salary, hire, exempt id, salary, hire

PT id, hours
rel {P} {C} {P, E} {P, E, PT}

attr* id, name id, name, account id, name, salary, hire, exempt id, name, salary, hire, hours

Teaching a Schema Translator to Produce O/R Views 11

tioning, relation C contains all attributes (direct and inherited) of Customer. Similarly,
vertical partitioning is used for Employee, so E is the only relation to contain salary
and hire information.

For a given hierarchy, let C be the set of all classes in the (source) hierarchy and let
R be the set of target relations. The predicate c(x) indicates that x is a direct instance
of c∈C. Similarly, r(x) indicates that x is a tuple of r∈R.

A mapping matrix M describes how to map the attributes of classes to attributes of
relations. The mapping matrix contains one column for each concrete c∈C and one
row for each r∈R. Each cell M[r, c] of the mapping matrix indicates which attributes
of c appear in r. For example, to map a class’s direct and inherited attributes to one
relation (a.k.a., horizontal partitioning), all of the attributes of c appear in a single cell
of M. To flatten a hierarchy, R contains a single relation, so M has just one row.

To explain the construction of view definitions from M, we need some additional
notation: PK(c) returns the primary key of c, attr*(c) returns the direct and indirect
attributes of c, rel(c) returns the relations used to store instances of c (the non-empty
cells of column c), and r.a refers to attribute a of relation r. Flagged is the set of all
relations that contain a flag attribute, the values of which are type identifiers. The type
identifier of c is TypeID(c).

The forward-view for this transformation can be directly inferred from M. For each
attribute a in a cell M[r, c] the forward-view is: c(x), a(x, y) ⇒ r(x), r.a(x, y). The re-
verse-view is more complex and is based on the following constraints on M.

a)
U

Rr

cattrcrM
∈

=)(*],[

b) r ∈ rel(c) → PK(c) ⊆ M[r,c]
c) rel(c1) = rel(c2) → c1 = c2 ∨ rel(c1) ⊆ Flagged

Constraint (a) says that every attribute of c must appear in some relation. Con-
straint (b) guarantees that an instance of c stored in multiple relations can be recon-
structed using its primary key, which we assume can be used to uniquely identify
instances. Constraint (c) says that if two distinct classes have the same rel(c) value,
then each of them is distinguished by a type id in Flagged.

To test these constraints in our example, consider the last two rows of Table 2.
Constraint (a) holds since every attribute in the bottom row appears in the correspond-
ing column of M. Constraint (b) holds because id appears in every non-empty cell.
Constraint (c) holds because no two classes have the same signature.

Constraint (c) guarantees that the mapping is invertible, so there exists a correct re-
verse-view for the mapping. There are two cases: For a given c∈C, either there is
another class c′ with rel(c′) = rel(c), or not. If so, then there exists r ∈ (rel(c)∩
Flagged), so we can use r.flag to identify instances of c:

r(x), r.flag(x, TypeID(c)) ⇒ c(x)
Otherwise, rel(c) is unique, so the instances of c are those that are in all rel(c) rela-
tions and in no other relation, that is:

c(x)r(x)r(x) ⇒¬∧∧
∉∈ rel(c)rcrelr)(

In relational algebra, this is the join of all r∈rel(c) composed with the anti-semijoin of
r∉rel(c), which can be further simplified exploiting the inclusion dependencies be-
tween the relations in rel(c). In both cases, the reverse view is an inverse of the for-

12 Peter Mork, Philip A. Bernstein, Sergey Melnik

ward view. The reverse-view for a given attribute is read directly from the mapping
matrix. It is simply the union of its appearances in M:

{ r.a(x, y) ⇒ c.a(x, y) | c∈C, r∈R, a∈M[c,r] }
The mapping matrix M is very general, but can be hard to populate to satisfy the re-
quired constraints (a)-(c) above. So instead of asking users to populate M, we offer
them easy-to-understand class annotations from which M is populated automatically.

Each class can be annotated by one of three strategies: �, �, or ∅. Strategy � does
vertical partitioning, the default strategy: each inherited property is stored in the rela-

tion associated with the ancestor class that defines it. Strategy � yields horizontal
partitioning: the direct instances of the class are stored in one relation, which contains
all of its inherited properties. Strategy ∅ means that no relation is created: the data is
stored in the relation for the parent class. The strategy selection propagates down the
inheritance hierarchy, unless overridden by another strategy in descendant classes.
These annotations exploit the flexibility of the inheritance mapping matrices only
partially, but are easy to communicate to schema designers.

Let strategy(c) be the strategy choice for class c. For a given annotated schema, the
mapping matrix is generated by the procedure PopulateMappingMatrix in Fig. 4 (for
brevity, we focus on strategy annotations for classes only, omitting attributes). The

root classes must be annotated as � or �. For every root class c, PopulateMappingMa-
trix(c, undefined) should be called. After that, for each two equal columns of the matrix
(if such exist), the first relation from the top of the matrix that has a non-empty cell in
those columns is added to Flagged.

The steps of the algorithm are as follows:
1. Each class labeled horizontal or vertical requires its own relation
2. A relation that contains concrete class c must include c’s key so that c can be

reassembled from all relations that store its attributes.
3. This is the definition of horizontal partitioning
4. These are the attributes of c that need to be assigned to some relation
5. These attributes have already been assigned to a relation rp, so use that relation.
6. The remaining attributes of c are assigned to c’s target relation
7. Now populate the matrix for c’s children

Teaching a Schema Translator to Produce O/R Views 13

5. INCREMENTAL UPDATING

Translating a model between metamodels can be an interactive process, where the
user incrementally revises the source model and/or various mapping options, such as
the strategy for mapping inheritance. Typically, a user wants to immediately view
how design choices affect the generated result. The system could simply regenerate
the target model from the revised input. However, this regeneration loses any cus-
tomization the user performed on the target, such as changing the layout of a dia-
grammatic view of the model or adding comments. We can improve the user’s ex-
perience in such scenarios by translating models in a stateful fashion: the target model
is updated incrementally instead of being re-created from scratch by each modifica-
tion. This incremental updating also improves performance. For example, our imple-
mentation uses a main memory object-oriented database system, in which a full re-
generation of the target schema from a large source model can take a minute or so.

Let m0 be a source model and m1, …, mn be a series of target model snapshots ob-
tained by an application of successive transformations (i.e., a transformation plan).
Each transformation is a function that may add or delete schema elements. Let fi be a
function that returns new elements in mi+1 given the old ones in mi. Since fi uses Sko-
lem functions to generate new elements, whenever it receives the same elements as
input, it produces the same outputs. Clearly, invoking a series of such functions f1, …,
fn preserves this property. That is, re-running the entire series of transformations on

 procedure PopulateMappingMatrix(c: class, r: target relation)
 if (strategy(c) ∈ {�,�}) then r = 〈new relation〉 end if // 1
 if (c is concrete) then

 M[r, c] = M[r, c] ∪ 〈key attributes of c〉 // 2
 if (strategy(c) = �)
 then M[r, c] = M[r, c] ∪ 〈declared and inherited attributes of c〉 // 3

 else
 toPlace = attrs = 〈declared and inherited non-key attributes of c〉 // 4

 for each relation rp created for ancestor class of c, traversing bottom-up
 for each cell M[rp, p] do
 M[rp, c] = M[rp, c] ∪ (M[rp, p] ∩ toPlace) // 5
 toPlace = toPlace – M[rp, p]
 end for

 end for
 M[r, c] = M[r, c] ∪ toPlace // 6

 end if
 end if
 for each child c′ of c do PopulateMappingMatrix(c′, r) end for // 7
 return
Fig. 4. PopulateMappingMatrix generates a mapping matrix from an annotated schema

14 Peter Mork, Philip A. Bernstein, Sergey Melnik

m0 yields precisely the same mn as the previous run, as the functions in effect cache all
generated schema elements.

Now suppose the user modifies m0 producing m0′. When m0′ is translated into a
target model, the same sequence of transformations is executed as before. In this way,
no new objects in the target model are created for the unchanged objects in the source
model. Previously-created objects are re-used; only their properties are updated. For
example, renaming an attribute in the source model causes renaming of some target
model elements (e.g., attribute or type names), but no new target objects are created.

The mechanism above covers incremental updates to m0. Deletion is addressed as
follows. Let mn be the schema generated from m0. Before applying the transforma-
tions to m0′, a shallow copy mcopy of mn is created which identifies all of the objects in
mn. All transformations are re-run on m0′ to produce mn′. If an element is deleted from
m0 when creating m0′, then some elements previously present in mcopy might not ap-
pear in mn′. These target elements can be identified by comparing mcopy to mn′. They
are marked as “deleted,” but are not physically disposed of. If they appear in mn at
some later run, the elements are resurrected by removing the “deleted” marker. Thus,
the properties of generated objects are preserved upon deletion and resurrection. In
our implementation, for small changes to the source model, this incremental regenera-
tion of the target takes a fraction of a second.

6. IMPLEMENTATION

Our implementation runs inside an integrated development environment. It has a
graphical model editor and an in-memory object-oriented database system (OODB)
that simplifies data sharing between tools and supports undo/redo and transactions.

The EER model and schemas are stored as objects in the OODB. We wrote rela-
tional wrappers that expose an updateable view of the objects. The wrappers are ge-
neric code that use reflection and on-the-fly generated intermediate language code.
We then wrote rules that translate between those wrappers and the relational represen-
tation of U. As others have noted [2][23][25], this translation is very straightforward;
since there is a 1:1 mapping between constructs of the source and target metamodels
and universal metamodel (i.e., U), the translation rules are trivial.

We wrote our own rules engine, partly because of limitations on the functionality
of Datalog engines that were available to us and partly because we wanted native
support for rules with compound heads (see Section 3). It supports Skolem functions
and user-defined functions. We used the latter to generate forward- and reverse-views.

The size of our implementation is summarized in Fig. 5 (viewed best in the elec-
tronic version in color). The rule engine is more than half of our code. It includes the
calculus representation, in-memory processing, view unfolding, and parser. The main
routines include the rules and plan generator (described in [24]). We coded a few
rules in C#, such as the rule to remove structured attributes since the recursion was
hard to understand. The logic for mapping inheritance structures into relations in-
cludes populating the mapping matrix from class annotations and generating reverse-
views with negation when necessary. The import/export routines include 120 lines of
rules; the rest is in C#.

Teaching a Schema Translator to Produce O/R Views 15

Our implementation is relatively fast. Execution times for four models are shown
in Fig. 6. These models use a custom EER model―a rather rich one. For example, it
permits a class to contain multiple classes, requiring us to use our transformation that
eliminates multiple containment. The number of elements in each model is shown
above each bar. The execution time was measured in milliseconds and averaged over
30 runs on a 1.5 GHz machine. The largest model, M4, generates 32 relations―not a
huge model, but the result fills many screens.

7. RELATED WORK

The problem of translating data between metamodels goes back to the 1970’s. Early
systems required users to specify a schema-specific mapping between a given source
and target schema (e.g., EXPRESS [30]). Later, Rosenthal and Reiner described
schema translation as one use of their database design workbench [28]. It is generic
but manual (the user selects the transformations), its universal metamodel is less ex-

500

67001500

300

1100

800
900

U-Metamodel representation

Rule execution engine

Main ModelGen routines

Other imperative code

Mapping inheritance structures

Import/export for EER & SQL

SQL generation

Fig. 5. Code size (in lines of code)

0

200

400

600

800

1000

1200

M1 M2 M3 M4

time (ms)

Export the model

Remove inheritance
(imperative)
In-line non-lexical references
(imperative)
Add keys (imperative)

Delete attributes referencing
dangling types
Update references to objects
mapped to new objects
Replace multi-valued attrs. with
join table
Remove containment

Remove multiple containment

Load the model

Execution steps:

16

145

234

267

Fig. 6. Execution times in milliseconds

16 Peter Mork, Philip A. Bernstein, Sergey Melnik

pressive (no inheritance, attributed relationships, or collections), and mappings are not
automatically generated.

Atzeni and Torlone [2] showed how to automatically generate the target schema.
They introduced the idea of a repertoire of transformations over models expressed in a
universal metamodel (abbr. UMM), where each transformation replaces one construct
by others. They used a UMM based on one proposed by Hull and King in [19]. They
represented transformation signatures as graphs but transformation semantics was
hidden in imperative procedures. They did not generate instance-level transforma-
tions, or even schema-level mappings between source and target models, which are
main contributions of our work.

Two recent projects have extended Atzeni and Torlone’s work. In [25], Papotti and
Torlone generate instance translations via three data-copy steps: (1) copy the source
data into XML, in a format that expresses their UMM; (2) use XQuery to reshape the
XML expressed in the source model into XML expressed in the target model; and (3)
copy the reshaped data into the target system. Like [2], transformations are imperative
programs. In [3], Atzeni et al. use a similar 3-step technique, except transformations
are Datalog rules: (1) copy the source database into their relational data dictionary; (2)
reshape the data using SQL queries that express the rules; and (3) copy it to the target.

In contrast to the above two approaches, we generate view definitions that directly
map the source and target models in both directions and could drive a data transfor-
mation runtime such as [1][17]. The views provide access to the source data using the
target model, or vice versa, without copying any data at all. If they were executed as
data transfer programs, they would move data from source to target in just one copy
step, not three. This is more time efficient and avoids the use of a staging area, which
is twice the size of the database itself to accommodate the second step of reshaping
the data. Moreover, neither of the above projects offer flexible mapping of inheritance
hierarchies or incremental updating of models, which are major features our solution.

Transformation strategies from inheritance hierarchies to relations, such as hori-
zontal and vertical partitioning, are well known [15][22]. However, as far as we
know, no published strategies allow arbitrary combinations of vertical and horizontal
partitioning at each node of an inheritance hierarchy, like the one we proposed here.

Hull’s notion of information capacity [18] is commonly used for judging the in-
formation preservation of schema transformations. In [18] a source and target schema
are equivalent if there exists an invertible mapping between their instances. Our for-
ward- and reverse-views are examples of such mappings.

Using a UMM called GER, Hainaut has explored schema transformations for EER
and relational schemas in a sequence of papers spanning two decades. He presented
EER and relational transformations in [13]. Although instance transformations were
mentioned, the focus was on schema transformations. Instance mappings for two
transformations are presented in [14] as algebraic expressions. In this line of work,
instance transformations are mainly used for generating wrappers in evolution and
migration scenarios. An updated and more complete description of the framework is
in [16].

Poulovasilis and McBrien [27] introduce a universal metamodel, based on a hyper-
graph. They describe schema transformation steps that have associated instance trans-
formations. Boyd and McBrien [9] apply and enrich these transformations for Mod-
elGen. Although they do give a precise semantics for the transformations, it is quite

Teaching a Schema Translator to Produce O/R Views 17

low-level (e.g., add a node, delete an edge). They do not explain how to abstract them
to a practical query language, nor do they describe an implementation.

Another rule-based approach was proposed by Bowers and Delcambre [7][8]. They
focus on the power and convenience of their UMM, Uni-Level Descriptions, which
they use to define model and instance structures. They suggest using Datalog to query
the set of stored models and to test the conformance of models to constraints.

Barsalou and Gagopadhyay [4] give a language (i.e., UMM) to express multiple
metamodels. They use it to produce query schemas and views for heterogeneous data-
base integration. Issues of automated schema translation between metamodels and
generation of inheritance mappings are not covered.

Claypool and Rundensteiner [10] describe operators to transform schema structures
expressed in a graph metamodel. They say the operators can be used to transform
instance data, but give no details.

8. CONCLUSION

In this paper, we described a rule-driven platform that can translate an EER model
into a relational schema. The main innovations are the ability to (i) generate provably-
correct forward and reverse view definitions between the source and target models,
(ii) map inheritance hierarchies to flat structures in a more flexible way, and (iii)
incrementally generate changes to the target model based on incremental changes to
the source model. We implemented the algorithm and demonstrated that it is fast
enough for interactive editing and generation of models. We embedded it in a tool for
designing object to relational mappings. Commercial deployment is now underway.

9. REFERENCES

[1] ADO.NET, http://msdn.microsoft.com/data/ref/adonetnext/

[2] Atzeni, P. and R. Torlone. Management of Multiple Models in an Extensible Database
Design Tool. EDBT 1996, 79-95

[3] Atzeni, P., P. Cappellari and P. Bernstein. ModelGen: Model Independent Schema
Translation. EDBT 2006, 368-385

[4] Barsalou, T. and D. Gangopadhyay. M(DM): An Open Framework for Interoperation of
Multimodel Multidatabase Systems. ICDE 1992, 218-227

[5] Bernstein, P., S. Melnik, P. Mork: Interactive Schema Translation with Instance-Level
Mappings (demo), VLDB 2005, 1283-1286

[6] Blakeley, J., S. Muralidhar, A. Nori. The ADO.NET Entity Framework: Making the Con-
ceptual Level Real, ER 2006, LNCS 4215, 552-565

[7] Bowers, S., L.M.L. Delcambre. On Modeling Conformance for Flexible Transformation
over Data Models, Knowl. Transformation for the Semantic Web (at 15th ECAI), 19-26

[8] Bowers, S. and L.M.L. Delcambre. The Uni-Level Description: A Uniform Framework for
Representing Information in Multiple Data Models. ER 2003, LNCS 2813, 45-58

18 Peter Mork, Philip A. Bernstein, Sergey Melnik

[9] Boyd, M. and McBrien, P. Comparing and Transforming Between Data Models Via an
Intermediate Hypergraph Data Model. J. Data Semantics IV: 69-109 (2005)

[10] Claypool, K.T. and E.A. Rundensteiner. Sangam: A Transformation Modeling Frame-
work. DASFAA 2003: 47-54

[11] Fagin, R.: Multivalued Dependencies and a New Normal Form for Relational Databases.
ACM TODS 2(3): 262-278 (1977)

[12] Fagin, R., P. G. Kolaitis, L. Popa, and W.C. Tan. Composing Schema Mappings: Second-
Order Dependencies to the Rescue. ACM TODS 30(4): 994-1055 (2005)

[13] Hainaut, J-L. Entity-Generating Schema Transformations for Entity-Relationship Models.
ER 1991: 643-670

[14] Hainaut, J-L.. Specification preservation in schema transformations—Application to se-
mantics and statistics. Data Knowl. Eng. 16(1): 99-134 (1996)

[15] Hainaut, J-L, J-M Hick, V. Englebert, J. Henrard, and D. Roland. Understanding the Im-
plementation of IS-A Relations. ER 1996, 42-57

[16] Hainaut, J-L., The Transformational Approach to Database Engineering. In Generative
and Transformational Tech. in Software Eng. LNCS 4143: 89-138, 2006

[17] Hibernate, http://www.hibernate.org/

[18] Hull, R. Relative Information Capacity of Simple Relational Database Schemata. SIAM J.
Comput. 15(3): 856-886 (1986)

[19] Hull, R. and R. King. Semantic Database Modeling: Survey, Applications and Research
Issues. ACM Comp. Surveys 19(3): 201-260 (1987)

[20] Java Data Objects, http://java.sun.com/products/jdo

[21] Jeusfeld, M.A. and Johnen, U.A. An Executable Meta Model for Re-Engineering of Data-
base Schemas. Int. J. Cooperative Inf. Syst. 4(2-3): 237-258 (1995)

[22] Keller, A.M., R. Jensen, and S. Agrawal. Persistence Software: Bridging Object-Oriented
Programming and Relational Databases. SIGMOD 1993, 523-528

[23] Kensche, D., C. Quix, M. A. Chatti, and M. Jarke: GeRoMe. A Generic Role Based Me-
tamodel for Model Management. OTM Conferences (2) 2005: 1206-1224

[24] Mork P., Bernstein, P.A., S. Melnik: A Schema Translator that Produces Object-to-
Relational Views. Technical Report MSR-TR-2007-36. http://research.microsoft.com.

[25] Papotti, P. and R. Torlone. An Approach to Heterogeneous Data Translation based on
XML Conversion. CAiSE Workshops (1) 2004: 7-19

[26] Papotti, P. and R. Torlone. Heterogeneous Data Translation through XML Conversion. J.
of Web Eng 4,3: 189-204 (2005)

[27] Poulovassilis, A. and McBrien, P. A General Formal Framework for Schema Transforma-
tion. Data Knowl. Eng. 28(1): 47-71 (1998)

[28] Rosenthal, A. and D. Reiner. Tools and Transformations ― Rigorous and Otherwise ―
for Practical Database Design. ACM TODS 19(2): 167-211 (1994)

[29] Ruby on Rails, http://api.rubyonrails.org/

[30] Shu, N.C., B. Housel, R. Taylor, S. Ghosh, and V. Lum. EXPRESS: A Data EXtraction,
Processing, and REStructuring System. ACM TODS 2(2): 134-174(1977)

