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Abstract. Schema mappings come in different flavors: simple correspondences
are produced by schema matchers, intensional mappings are used for schema
integration. However, the execution of mappings requires a formalization based
on the extensional semantics of models. This problem is aggravated if multiple
metamodels are involved. In this paper we present extensional mappings, that
are based on second order tuple generating dependencies, between models in
our Generic Role-based Metamodel GeRoMe. By using a generic metamodel,
our mappings support data translation between heterogeneous metamodels. Our
mapping representation provides grouping functionalities that allow for complete
restructuring of data, which is necessary for handling nested data structures such
as XML and object oriented models. Furthermore, we present an algorithm for
mapping composition and optimization of the composition result. To verify the
genericness, correctness, and composability of our approach we implemented a
data translation tool and mapping export for several data manipulation languages.

1 Introduction

Information systems often contain components that are based on different models or
schemas of the same or intersecting domains of discourse. These different models of
related domains are described in modeling languages (or metamodels) that fit certain re-
quirements of the components such as representation power or tractability. For instance,
a database may use SQL or an object oriented modeling language. A web service de-
scribed in XML Schema may be enriched with semantics by employing an ontology of
the domain. All these different types of models have to be connected by mappings stat-
ing how the data represented in one model is related to the data represented in another
model. Integrating these heterogeneous models requires different means of manipula-
tion for models and mappings which is the goal of a Model Management system. [3]. It
should provide operators such as Match that computes a mapping between two models
[17], ModelGen that transforms models between modeling languages [1], or Merge that
integrates two models based on a mapping in between [16].

An important issue in a model management system is the representation of map-
pings which can be categorized as intensional and extensional mappings. Intensional
mappings deal with the intended semantics of a model and are used, for example, in
schema integration [16]. If the task is data translation or data integration, extensional
mappings have to be used [9]. In this paper, we will deal only with extensional mappings
as our goal is to have a generic representation for executable mappings.

An extensional mapping can be represented as two queries which are related by
some operator (such as equivalent or subset) [9]. As the query language depends on



the modeling language being used, the question of mapping representation is tightly
connected to the question how models are represented. In schema matching systems,
which often represent the models as directed labeled graphs, mappings are represented
as pairs of model elements with a confidence value which indicates their similarity
[17]. Such mappings can be extended to path morphisms on tree schemas which can
be translated into an executable form but have limited expressivity [12]. Other existing
mapping representation rely on the relational model, e.g. tuple generating dependencies
(tgds), GLAV mappings [11] or second order tgds [4]. For a nested relational model, a
nested mapping language has been proposed [5].

Each mapping representation has its strengths and weaknesses regarding the re-
quirements for a mapping language [3]: (i) mappings should be able to connect models
of different modeling languages; (ii) the mapping language should support complex
expressions between sets of model elements (m:n mappings); (iii) support for the nest-
ing of mappings (to avoid redundant mapping specificiations) and nested data struc-
tures should be provided; (iv) mappings should have a rich expressiveness while being
generic across modeling languages; (v) mappings should support the data translation be-
tween the instances of the connected models. While the mapping representations men-
tioned above fulfill these requirements for the (nested) relational model, they fail at be-
ing generic as they do not take into account other modeling languages. The goal of this
paper is to define a mapping representation which is generic across several modeling
languages and still fulfills the requirements regarding expressiveness and executability.
This allows for a generic implementation of model management operators which deal
with these mappings. Furthermore, each mapping language has its own characteristics
regarding questions such as composability, invertability, decidability, and ability to be
executed. Using a generic mapping representation, such questions can be addressed
once for the generic mapping representation and do not have to be reconsidered for
each combination mapping and modeling language.

A prerequisite for a generic representation of mappings is a generic representation
of models. We developed the role based generic metamodel GeRoMe [7]. It provides
a generic, but yet detailed representation of data models originally represented in dif-
ferent metamodels and is the basis for our model management system GeRoMeSuite
[8]. GeRoMeSuite provides a framework for holistic generic model management; un-
like other model management systems it is neither limited by nature to certain modeling
languages nor to certain model management operators. The generic mapping language
shown here is the basis for the data translation component of GeRoMeSuite and can be
translated into a specific data manipulation language such as SQL.

The main contributions of our work define also the structure of the paper. After re-
viewing related work in section 2, we will define in section 3 a generic mapping repre-
sentation based on the semantics of GeRoMe. We adapt second order tuple generating
dependencies (SO tgds, [4]) originally defined for relational models to mappings be-
tween GeRoMe models which also allow for complex grouping and nesting of data. To
show the usefulness and applicability of our mapping representation, we will present in
section 4 an algorithm for mapping composition, and, in section 5, algorithms to trans-
late our generic mapping representation into executable mappings. The evaluation of
our approach with several examples of the recent literature is shown in section 6.



2 Background

Mappings: Extensional mappings are defined as local-as-view (LAV), global-as-view
(GAV), source-to-target tuple generating dependencies (s-t tgds) [9,12], second order
tuple generating dependencies (SO tgds) [4], or similar formalisms.

Clio [6] defines mappings over a nested relational model to support mappings be-
tween relational databases and XML data. However, it would still be difficult to extend
this mapping representation to express a mapping between other models, such as UML
models, because there is simply no appropriate query language. On the other hand, it is
always possible to compose these mappings, because the composition of such mappings
is equivalent to the composition of queries [14].

Besides being not generic, another drawback of these basic mappings is pointed out:
they do not reflect the nested structure of the data [5]. This leads to an inefficient exe-
cution of the mappings and redundant mapping specifications as parts of the mapping
have to be repeated for different nesting levels. Furthermore, the desired grouping of the
target data cannot be specified using basic mappings which leads to redundant data in
the target. Fuxman et al. [5] proposed a nested mapping language which addresses these
problems. The desired nesting and grouping of data can be expressed in the mapping
specification. Another form of basic mappings based on a Prolog-like representation is
used by Atzeni et al. [1]. These mappings are generic as they are based on a generic
metamodel, but they require the data to be imported to the generic representation as
well. This leads to an additional overhead during execution of the mappings.
Mapping Composition: In general, the problem of composing mappings has the fol-
lowing formulation: given a mapping M12 from model S1 to model S2, and a mapping
M23 from model S2 to model S3, derive a mapping M13 from model S1 to model S3

that is equivalent to the successive application of M12 and M23 [4].
Mapping composition has been studied only for mappings which use the Relational

Data Model as basis. Fagin et al. [4] proposed a semantics of the Compose operator
that is defined over instance spaces of schema mappings. To this effect, M13 is the
composition ofM12 andM23 means that the instance space ofM13 is the set-theoretical
composition of the instance spaces of M12 and M23. Under this semantics, which we
will also adopt in this paper, the mapping composition M13 is unique up to logical
equivalence. Fagin et al. also explored the properties of the composition of schema
mappings specified by a finite set of s-t tgds. They proved that the language of s-t tgds
is not closed under composition. To ameliorate the problem, they introduced the class
of SO tgds and proved that (i) SO tgds are closed under composition by showing a
mapping composition algorithm; (ii) SO tgds form the smallest class of formulas (up to
logical equivalence) for composing schema mappings given by finite sets of s-t tgds; and
(iii) given a mapping M and an instance I over the source schema, it takes polynomial
time to calculate the solution J which is an instance over the target schema and which
satisfies M . Thus, SO tgds are a good formalization of mappings.

Another approach for mapping composition uses expressions of the relational alge-
bra as mappings [2]. The approach uses an incremental algorithm which tries to replace
as many symbols as possible from the “intermediate” model. As the result of mapping
composition cannot be always expressed as relational algebra expressions, the algorithm
may fail under certain conditions which is inline with the results of [4].



Executable mappings: Executable mappings are necessary in many meta-data inten-
sive applications, such as database wrapper generation, message translation and data
transformation [12]. While many model management systems were used to generate
mappings that drive the above applications, few of them were implemented using ex-
ecutable mappings. Because executable mappings usually drive the transformation of
instances of models, Melnik et al. [12] specified a semantics of each operator by re-
lating the instances of the operator’s input and output models. They also implemented
two model management system prototypes to study two approaches to specifying and
manipulating executable mappings. In the first implementation, they modified Rondo’s
[13] language to define path morphisms and showed that it is possible to generate ex-
ecutable mappings in a form of relational algebra expressions. On the positive side,
this system works correctly whenever the input is specified using path morphisms, and
the input is also closed under operators which return a single mapping. However, the
expressiveness of path morphisms is very limited. To overcome this limitation, they
developed a new prototype called Moda [12] in which mappings are specified using
embedded dependencies. The expressiveness is improved in the second implementa-
tion, but it suffers from the problem that embedded dependencies are not closed under
composition. Because of this problem, the output of the Compose operator may not be
representable as an embedded dependency and thus a sequence of model management
operators may not be executable in the system. Although they further developed a script
rewriting procedure to ameliorate this problem, it has not been completely solved.

3 Mapping Representation

Before we define the representation of mappings for GeRoMe models, we first present
the main concepts of GeRoMe using an example (section 3.1). As mappings relate in-
stances of models, we have to define how instances of a GeRoMe model can be repre-
sented, i.e. defining a formal semantics for GeRoMe as described in section 3.2. This
representation forms the basis for our mapping representation presented in section 3.3.

3.1 The Generic Metamodel GeRoMe

Our representation of mappings is based on the generic role based metamodel GeRoMe
[7], which we will introduce briefly here. GeRoMe provides a generic but detailed rep-
resentation of models originally expressed in different modeling languages. In GeRoMe
each model element of a native model (e.g. an XML schema or a relational schema) is
represented as an object that plays a set of roles which decorate it with features and
act as interfaces to the model element. Fig. 1 shows an example of a GeRoMe model
representing an XML schema.

The grey boxes in fig. 1 denote model elements, the attached white boxes represent
the roles played by the model elements. XML Schema is in several aspects different
from “traditional” modeling languages such as EER or the Relational Metamodel. The
main concept of XML Schema “element” represents actually an association between the
nesting and the nested complex type. This is true for all elements except those which
are allowed as root element of a document. In the GeRoMe representation of an XML
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Fig. 1. GeRoMe representation of an XML schema

schema, the root element is an association between the schema node and the top-level
complex type, as there is no complex type in which the root element is nested. In the
example of fig. 1 1, the element University is an association between the model
element Schema and the complex type UniType. The fact that the University
element is an association is described by the Association (As) role which connects the
ObjectSet (OS) roles of Schema and UniType via two anonymous model elements
playing a CompositionEnd (CE) and an ObjectAssociationEnd (OE) role, respectively.
The same structure is used for the element Student which is an association between
the complex types UniType and StudType. The two complex types have also at-
tributes; therefore, they play also the Aggregate (Ag) role which links these model el-
ements to their attributes. The model elements representing attributes play an Attribute
(At) role which refers also to the type of the attributes which are, in this example, simple
domains denoted by the Domain (D) role.

It is important to emphasize that this representation is not to be used by end users.
Instead, it is a representation employed internally by model management applications,
with the goal to generically provide more information to model management operators
than a simple graph based model.

3.2 GeRoMe Semantics: Instances of a GeRoMe Model

Before we can formally define GeRoMe mappings, we first need to define the formal
semantics of GeRoMe instances. Our mappings are second-order tuple generating de-
pendencies (SO tgds) which requires that the instances are represented as a set of logical
facts. In addition, the semantics should also capture all the structural information that
is necessary to reflect the semantics of the model. To fulfill both requirements, the se-
mantics should contain facts that record literal values of an instance of a model and
also facts that describe the structure of that instance. To record the literal values of an
instance, value predicates are used to associate literal values with objects. To describe
the structure of an instance, we identify Attribute and Association as the roles which
essentially express the structure of instances.

1 XML documents may have only one root element. Thus, the schema needs to have another
element “Universities” to allow for a list of universities in the XML document. For reasons
of simplicity, we omitted this extra element in our example and assume that XML documents
may have multiple elements at the top-level.



<University uname="RWTH">
<Student sname="John"

ID="123"/>
</University>

inst(#0,Schema),
inst(#1,UniType), av(#1,uname,‘RWTH’),
inst(#2,StudType),
av(#2,sname,‘John’), av(#2,ID, 123),
inst(#3,University), inst(#4,Student),
part(#3,parentU ,#0), part(#3,childU ,#1),
part(#4,parentS ,#1), part(#4,childS ,#2)

Fig. 2. XML document and its representation as GeRoMe instance

Definition 1 (Interpretation of a GeRoMe model) Let M be a GeRoMe model with
A being the set of all literal values, and T the set of all abstract identifiers {id1, . . . , idn}.
An interpretation I of M is a set of facts DM , where:

– ∀ objects (represented by the abstract identifier idi) which are an instance of model
element m: inst(idi,m) ∈ DM ,

– ∀ elementsm playing a Domain role and ∀ values v in this domain: {value(idi, v),
inst(idi,m)} ⊆ DM (idi is an abstract ID of an object representing the value v).

– ∀ elementsm playing an Aggregate role and having the attribute a, and the instance
idi has the value v ∈ A for that attribute: {attr(idi, a, idv), value(idv, v)} ⊆
DM .

– ∀ model elements m playing an Association role in which the object with identifier
o participates for the association end ae: part(idi, ae, o) ∈ DM .

Thus, each “feature” of an instance object is represented by a separate fact. The abstract
IDs connect these features so that the complete object can be reconstructed. For the
example from fig. 1, an instance containing a university and a student is defined as
show in fig. 2. As the predicates attr and value often occur in combination, we use the
predicate av as a simplification: av(id1, a, v) ⇔ ∃id2attr(id1, a, id2)∧ value(id2, v).
In addition, we labeled the association ends with “parent” and “child” to make clear
which association end is referred to. The first inst-predicate defines an instance of
the schema element which represents the XML document itself. Then, two instances
of the complex types and their attributes are defined. The last three lines define the
associations and the relationships between the objects defined before.

As the example shows, association roles and attribute roles are not only able to
define flat structures, e.g. tables in relational schemas, but also hierarchical structures,
e.g. element hierarchies in XML schemas. Compared to the original definition of SO
tgds, which were only used to represent tuples of relational tables, our extension to the
original SO tgds significantly improves the expressiveness of SO tgds.

3.3 Formal Definition of GeRoMe Mappings

Based on the formal definition of GeRoMe instances, the definition of GeRoMe map-
pings as SO tgds is straightforward. We extend the definition of a mapping between two
relational schemas in [4] to the definition of a mapping between two GeRoMe models:
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IDs connect these features so that the complete object can be reconstructed. For the
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Based on the formal definition of GeRoMe instances, the definition of GeRoMe map-
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∃f, g ∀o0, o1, o2, o3, o4, u, s, i
inst(o1,University) ∧ part(o1,parentU , o0) ∧ part(o1,childU , o2) ∧
inst(o3,Student) ∧ part(o3,parentS , o2) ∧ part(o3,childS , o4) ∧
av(o2,uname, u) ∧ av(o4,sname, s) ∧ av(o4,ID, i) →

inst(f(u),University) ∧ inst(g(i),Student),
av(f(u),uname, u) ∧ av(g(i),sname, s) ∧ av(g(i),ID, i) ∧ av(g(i),uni, u)

Fig. 4. Mapping between XML and relational schema

Definition 2 (GeRoMe Mapping) A GeRoMe model mapping is a tripleM = (S,T, Σ),
where S and T are the source model and the target model respectively, and where Σ is
a set of formulas of the form:

∃f((∀x1(ϕ1 → ψ1)) ∧ . . . ∧ (∀xn(ϕn → ψn)))

where f is a collection of function symbols, and where each ϕi is a conjunction of
atomic predicates and/or equalities over constants defined in S and variables, and ψi

is a conjunction of atomic predicates over constants defined on T, variables, and func-
tion symbols. Valid atomic predicates are those defined in def. 1. Furthermore, we re-
quire that every element name in these atomic predicates is a constant, i.e. the second
arguments of inst, attr and part predicates are constants.

To show an example of a mapping between models originally represented in two
different modeling languages, we define in fig. 3 a GeRoMe model representing a re-
lational schema that corresponds to the XML schema in fig. 1. The schema contains
two relations University(uname) and Student(id,sname,uni). The keys
uname and id are defined in GeRoMe using separate model elements representing the
key constraint. These model elements play an Injective (Inj) role to indicate that an
attribute is unique, and an Identifier (Id) role to specify the aggregate for which the at-
tribute is the key. The foreign key constraint between Student and University is
also represented by a separate model element which plays a Foreign Key (FK) role. The
FK role points to a Reference (Ref) role which is played by the attribute that references
the key of the other relation.

Now, we can define a mapping using the XML schema as source and the relational
schema as target (cf. fig. 4). The predicates in the conditional part of the rule correspond
to the instance predicates shown in fig. 2, now just with variables instead of constants.
A remark has to be made about the variables o0 to o4: these variables represent abstract
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set of formulas of the form: ∃f((∀x1(ϕ1 → ψ1))∧ . . .∧(∀xn(ϕn → ψn))) where f is a
collection of function symbols, and where each ϕi is a conjunction of atomic predicates
and/or equalities over constants defined in S and variables, and ψi is a conjunction of
atomic predicates over constants defined on T, variables, and function symbols. Valid
atomic predicates are those defined in def. 1. Furthermore, we require that every ele-
ment name in these atomic predicates is a constant, i.e. the second arguments of inst,
attr and part predicates are constants.

To show an example of a mapping between models originally represented in two
different modeling languages, we define in fig. 3 a GeRoMe model representing a re-
lational schema that corresponds to the XML schema in fig. 1. The schema contains
two relations University(uname) and Student(id,sname,uni). The keys
uname and id are defined in GeRoMe using separate model elements representing the
key constraint. These model elements play an Injective (Inj) role to indicate that an
attribute is unique, and an Identifier (Id) role to specify the aggregate for which the at-
tribute is the key. The foreign key constraint between Student and University is
also represented by a separate model element which plays a Foreign Key (FK) role. The
FK role points to a Reference (Ref) role which is played by the attribute that references
the key of the other relation.

Now, we can define a mapping using the XML schema as source and the relational
schema as target (cf. fig. 4). The predicates in the conditional part of the rule correspond
to the instance predicates shown in fig. 2, now just with variables instead of constants.
A remark has to be made about the variables o0 to o4: these variables represent abstract
identifiers (to be named abstract variables in the following), their main function is to
describe (implicitly) the structure of the source data; in the example we can see, that
the student element o3 is nested under the university element o1. In other approaches
for mapping representation (e.g. [5]), this is done by nesting different sub-expressions
of a query. Although nested mappings are easier to understand, they are less expressive



than SO tgds [5]. In addition, several tasks dealing with mappings such as composition,
inverting, optimization, and reasoning have to be reconsidered for nested mappings (e.g.
it is not clear how to compose nested mappings and whether the result composing two
nested mappings can be expressed as a nested mapping). As our approach is based on
SO tgds, we can leverage the results for SO tgds for our generic mapping representation.

Similarly to the abstract variables on the source side, the functions f and g represent
abstract identifiers on the target side and therefore describe the structure of the gener-
ated data in the target. We will call such functions (which generate abstract identifiers)
in the following abstract functions. Abstract functions can be understood as Skolem
functions which do not have an explicit semantics; they are interpreted by syntactical
representation as term. Please note that abstract variables and abstract functions just
specify the structure of data, there will be no values assigned to abstract variables or
evaluation of abstract functions during the execution of a mapping. Instead, as we will
present in section 5, abstract identifiers and functions determine the structure of the
generated code to query the source and to insert the data in the target.

To describe the structure of the target data, it is important to know which values
are used to identify an object. According to the definition of the relational schema,
universities are identified by their name (u) and students by their ID (i); that is why we
use u and i as arguments of the abstract functions f and g. We will explain below that
for nested data these functions will usually have more than one argument.

In addition to abstract functions, a mapping can also contain “normal” functions for
value conversions or some other kind of data transformation (e.g. concatenation of first
and last name). While executing a mapping, these functions must be actually evaluated
to get the value which has to be inserted into the target.

The example shows also that only variables representing values occur on both sides
of the implication. Abstract variables will be used only on the source side of a mapping
as they refer only to source objects, abstract functions will appear only on the target
side as they refer only to objects in the target. This implies that for the execution of the
mapping, we need to maintain a table with the values extracted from the source, and
then generate the target data using these values according to the mapping.
Grouping and Nesting: The generation of complex data structures which can be ar-
bitrarily nested is an important requirement for a mapping representation. In order to
show that our mapping language is able to express complex restructuring operations
in a data transformation, we use an example that transforms relational data into XML.
The relational schema is as in fig. 3 with the exception that we now assume that stu-
dents may study at multiple universities. To have a schema in 3NF, we add a relation
Studies with two foreign keys uni and id. The foreign key from the Student re-
lation is removed. On the target side, the data should be organized with students at the
top level, and the list of universities nested under each student. The mapping between
the updated relational and XML schemas is shown in fig. 5.

The source side is almost identical with the target side of the previous mapping: the
abstract functions f and g have been replaced with the abstract variables o1 and o2; a
variable o3 for the Studies relation and the corresponding av predicates have been
added. On the target side, we first generate an instance of the Student element; as
students are identified by their ID, the abstract function f has only i as argument. f ′(i)



∃f, f ′, g, g′, d ∀o1, o2, o3, u, s, i
inst(o1,University) ∧ inst(o2,Student), inst(o3,Studies)
av(o1,uname, u) ∧ av(o2,sname, s) ∧ av(o2,ID, i) ∧ av(o3,uni, u) ∧ av(o3,id, i) →

inst(f(i),Student) ∧ part(f(i),parentS , d()) ∧ part(f(i),childS , f
′(i)) ∧

av(f ′(i),sname, s) ∧ av(f ′(i),ID, i) ∧
inst(g(i, u),University) ∧ part(g(i, u),parentU , f

′(i)) ∧
part(g(i, u),childU , g

′(i, u)) ∧ av(g′(i, u),uname, u)

Fig. 5. Mapping from relational data to XML

represents an instance of StudType2 for which we also define the attribute values
of sname and ID. Thus, if a student studies at more than one university and therefore
occurs multiple times in the result set of the source, only one element will be created for
that student and all universities will be correctly grouped under the Student element.

On the other hand, we must make sure that there is more than one University
element for each university, as the universities have to be repeated for each student. This
is guaranteed by using both identifiers (of the nesting element Student and the nested
element University, i and u) as arguments of the abstract function g. Finally, we
assign a value to the attribute uname of the instance g′(i, u) of UniType, similarly as
before for the instance of StudType.
Constructing Mappings: Our mappings have a rich expressivity, but are hard to un-
derstand in their formal representation, even for an information system developer who
is used to working with modeling and query languages. As mentioned above, GeRoMe
should not replace existing modeling languages, users will still use the modeling lan-
guage that fits best their needs. GeRoMe is intended as an internal metamodel for model
management applications. This applies also to the GeRoMe mappings, users will not de-
fine mappings using the SO tgds as defined above, rather they will use a user interface
in which they can define the mappings graphically.

As part of our model management system GeRoMeSuite [8], we are currently devel-
oping mapping editors for the various forms of mappings. In these mapping editors, the
models are visualized as trees (based on the hierarchy of associations and aggregations),
and the mapping can be defined by connecting elements of the trees. However, such a
visualization of models and mappings has limited expressivity (it roughly corresponds
to the path morphisms and tree schemas used in Rondo [13]) as not every model can
be easily visualized as a tree. Even an XML schema can break up the tree structure by
having references between complex types.

Our current design for an editor for extensional mappings also visualizes models
as trees. In addition, mappings as nested structures to represent their possibly complex
grouping and nesting conditions. Still, an appropriate representation of complex map-

2 The inst predicate has been omitted as it is redundant: f ′(i) is declared as a child of a
Student element; thus, it has to be an instance of StudType according to the schema
definition.

Fig. 5. Mapping from relational data to XML

represents an instance of StudType2 for which we also define the attribute values
of sname and ID. Thus, if a student studies at more than one university and therefore
occurs multiple times in the result set of the source, only one element will be created for
that student and all universities will be correctly grouped under the Student element.

On the other hand, we must make sure that there is more than one University
element for each university, as the universities have to be repeated for each student. This
is guaranteed by using both identifiers (of the nesting element Student and the nested
element University, i and u) as arguments of the abstract function g. Finally, we
assign a value to the attribute uname of the instance g′(i, u) of UniType, similarly as
before for the instance of StudType.
Constructing Mappings: Our mappings have a rich expressivity, but are hard to un-
derstand in their formal representation, even for an information system developer who
is used to working with modeling and query languages. As mentioned above, GeRoMe
should not replace existing modeling languages, users will still use the modeling lan-
guage that fits best their needs. GeRoMe is intended as an internal metamodel for model
management applications. This applies also to the GeRoMe mappings, users will not de-
fine mappings using the SO tgds as defined above, rather they will use a user interface
in which they can define the mappings graphically.

As part of our model management system GeRoMeSuite [8], we are currently devel-
oping mapping editors for the various forms of mappings. In these mapping editors, the
models are visualized as trees (based on the hierarchy of associations and aggregations),
and the mapping can be defined by connecting elements of the trees. However, such a
visualization of models and mappings has limited expressivity (it roughly corresponds
to the path morphisms and tree schemas used in Rondo [13]) as not every model can
be easily visualized as a tree. Even an XML schema can break up the tree structure by
having references between complex types.

Our current design for an editor for extensional mappings also visualizes models
as trees. In addition, mappings as nested structures to represent their possibly complex
grouping and nesting conditions. Still, an appropriate representation of complex map-
pings is an active research area [18], and we have to evaluate whether our design will
be accepted by users.

2 The inst predicate has been omitted as it is redundant: f ′(i) is declared as child of a Student
element; thus, it is an instance of StudType according to the schema definition.



4 Mapping Composition

Composition of mappings is required for many model management tasks [2]. In a data
integration system using the global-as-view (GAV) approach, a query posed to the in-
tegrated schema is rewritten by composing it with the mapping from the sources to
the integrated schema. Schema evolution is another application scenario: if a schema
evolves, the mappings to the schema can be maintained by composing them with an
“evolution” mapping between the old and the new schema.

According to [4], the composition of two mappings expressed as SO tgds can be
also expressed as SO tgd. In addition, the algorithm proposed in [4] guarantees, that
predicates in the composed SO tgd must appear in the two composing mappings. Thus,
the composition of two GeRoMe mappings is always definable by a GeRoMe mapping.
It is important that GeRoMe mappings are closed under composition, because otherwise
the Compose operator may not return a valid GeRoMe mapping.

In the following, we will first show the adaptation of the algorithm of [4] to GeRoMe,
which enables mappings between heterogeneous metamodels. In the second part of this
section, we address an inherent problem of the composition algorithm, namely that the
size of the composed mapping is exponential in the size of the input mappings. We
have developed some optimization techniques which reduce the size of the composed
mapping using the semantic information given in the mapping or model.
Composition Algorithm: The composition algorithm shown in fig. 6 takes two GeRoMe
mappingsM12 andM23 as input. The aim is to replace predicates on the left hand side
(lhs) of Σ23, which refer to elements in S2, with predicates of the lhs of Σ12, which
refer only to elements in S1. As the first step, we rename the predicates in such a way
that the second argument (which is always a constant) becomes part of the predicate
name. This lets us avoid considering the constant arguments of a predicate when we are
looking for a “matching” predicate, we can just focus on the predicate name. Then, we
replace each implication in Σ12 with a set of implications which just have one predi-
cate on the right hand side (rhs). We put the normalized implications from Σ12 with the
updated predicate names into S12. For the implications in Σ23, we just need to change
the predicate names, and then we insert them into S23.

The next step performs the actual composition of the mappings. As long as we have
an implication in S23 with a predicate P.c(y) in the lhs that refers to S2, we replace it
with every lhs of a matching implication from S12. Moreover, we have to add a set of
equalities which reflect the unification of the predicates P.c(y) and P.c(ti).

During the composition step, the size of the resulting mapping may grow exponen-
tially. As a first step towards a simpler result, we remove in the next step the variables
which were originally in M23. This reduces the number of equalities in the mapping.
The final step creates the composed mapping as one formula from the set of implica-
tions S23. The following theorem states that the algorithm produces actually a correct
result. Due to space restrictions, we cannot show the proof of the theorem (the full proof
is given in [10]), it is based on the correctness of the composition algorithm in [4].

Theorem 3 Let M12 = (S1,S2, Σ12) and M23 = (S2,S3, Σ23) be two GeRoMe
mappings. Then the algorithm Compose(M12,M23) returns a GeRoMe mappingM13 =
(S1,S3, Σ13) such that M13 = M12 ◦M23.



Input: Two GeRoMe mappings M12 = (S1,S2, Σ12) and M23 = (S2,S3, Σ23)
Output: A GeRoMe mapping M13 = (S1,S3, Σ13)

Initialization: Initialize S12 and S23 to be empty sets.
Normalization: Replace in Σ12 and Σ23 predicates P (x, c, y) (or P (x, c)) where P ∈

{inst, attr, av, part} with P.c(x, y) (or P.c(x)); replace implications in Σ12 of the form
φ → p1 ∧ . . . ∧ pn with a set of implications φ → p1, . . . , φ → pn. Put the resulting
implications into S12 and S23, respectively.

Composition: Repeat until all predicates on the lhs of implications in S23 do not refer to S2:
Let χ be an implication of the form ψ → φ ∈ S23 with a predicate P.c(y) in ψ and
φ1(x1) → P.c(t1), . . . , φn(xn) → P.c(tn) be all the implications in S12 with predicate
P.c on the rhs (x, y and ti being vectors of variables and terms, respectively). If there is
no such implication, remove χ from S23 and consider the next predicate. Remove χ from
S23. For each implication φi(xi) → P.c(ti), create a copy of this implication using new
variable names, and replace P.c(y) in ψ with φi(xi)∧θi where θi are the component-wise
equalities of y and ti and add the new implication to S23.

Remove Variables: Repeat until all variables originally from Σ23 are removed: For each im-
plication χ in S23, select an equality y = t introduced in the previous step and replace all
occurences of y in χ by t.

Create Result: Let S23 = {χ1, . . . , χr}. Replace the predicates with their original form (e.g.
P.c(x, y) with P (x, c, y)). Then, Σ13 = ∃g(∀z1χ1 ∧ . . . ∧ ∀zrχr) with g being the set
of function symbols appearing in S23 and zi being all the variables appearing in χi.

Fig. 6. Algorithm Compose

Semantic Optimization of the Composition Result: We realized that the composed
mapping has on the lhs many similar sets of predicates. The reason for this is that we
replace a predicate in S23 with a conjunction of predicates in S12 and the same set of
predicates in S12 may appear multiple times. Although the result is logically correct,
the predicates on the lhs of the composition seems to be duplicated. We show in the
following that both undesired implications and duplicated predicates can be removed.

A detailed inspection of our mapping definition reveals that only variables repre-
senting values correspond to values in an instance of the underlying model. All other
arguments are either constants which correspond to names in a model or terms which
correspond to abstract identifiers that identify GeRoMe objects. These abstract identi-
fiers and the functions that return an abstract identifier are interpreted only syntactically.
Thus, we are able to formulate the following conditions for abstract functions:

∀f∀g∀x∀y(f 6= g) → f(x) 6= g(y), f, g are abstract functions
∀x∀y(f(x) = f(y) → x = y), f is an abstract function

The first statement says that different abstract functions have different ranges. Using this
statement, we can remove implications which have equalities of the form f(x) = g(y)
on the lhs, because they never can become true. The second statement says that an
abstract function is a bijection, i.e. whenever two results of an abstract function are
equal, then the inputs are equal, too. This statement can be used to reduce the number
of predicates in the composed mapping, e.g. if f(o) = f(p) is contained in the lhs of
an implication, then we can infer that o = p and therefore replace all occurences of o
with p (or vice versa). This will produce identical predicates in the conjunction, dupli-
cates can then be removed without changing the logical meaning of the formula. Other
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predicates in S12 may appear multiple times. Although the result is logically correct,
the predicates on the lhs of the composition seems to be duplicated. We show in the
following that both undesired implications and duplicated predicates can be removed.

A detailed inspection of our mapping definition reveals that only variables repre-
senting values correspond to values in an instance of the underlying model. All other
arguments are either constants which correspond to names in a model or terms which
correspond to abstract identifiers that identify GeRoMe objects. These abstract identi-
fiers and the functions that return an abstract identifier are interpreted only syntactically.
Thus, we are able to formulate the following conditions for abstract functions:

∀f∀g∀x∀y(f 6= g) → f(x) 6= g(y), f, g are abstract functions
∀x∀y(f(x) = f(y) → x = y), f is an abstract function

The first statement says that different abstract functions have different ranges. Using this
statement, we can remove implications which have equalities of the form f(x) = g(y)
on the lhs, because they never can become true. The second statement says that an
abstract function is a bijection, i.e. whenever two results of an abstract function are
equal, then the inputs are equal, too. This statement can be used to reduce the number
of predicates in the composed mapping, e.g. if f(o) = f(p) is contained in the lhs of
an implication, then we can infer that o = p and therefore replace all occurences of o
with p (or vice versa). This will produce identical predicates in the conjunction, dupli-
cates can then be removed without changing the logical meaning of the formula. Other
optimizations use the constraint information of the model to reduce the complexity of
the composed mapping, e.g. keys or cardinality constraints.



5 Mapping Execution

In this section we first describe the architecture of our data translation tool before we
explain how we generate queries from a set of generic mappings and how we use these
queries to produce target data from source data.

Fig. 7 shows the architecture of our data translation tool. Given the mapping and the
source model as input, the code generator produces queries against the source schema.
An implementation of this component must be chosen, so that it produces queries in the
desired data manipulation language. In the same way, the target model code generator
produces updates from the mapping and the target GeRoMe model.

Given the generated queries and updates the query executor produces variable as-
signments from the evaluation of the queries against the source data. The update ex-
ecutor then receives these generic variable assignments as input and produces the target
data. Hence, components related to source and target respectively are only loosely cou-
pled to each other by the variable assignments whereas the query/update generator and
the executor components have to fit to each other.

Our query generation is based on the model transformations between native meta-
models and GeRoMe. We now exemplarily introduce our algorithm for generating XQue-
ries from our generic mappings (cf. fig. 8). However, our tool transforms data arbitrarily
between relational and XML schemas; these generation and execution components can
also be replaced by components that handle other metamodels (e.g. OWL or UML).

The element hierarchy T describes the structure that is queried for, the condition set
P contains select and join conditions and the return set R assigns XQuery variables for
values of attributes and simple typed elements in the source side of the mapping. The
last step uses the computed data to produce the actual XQuery where fname will be
replaced with the actual XML file name when the query is executed.

We now generate an XQuery from the mapping in fig. 4 that can be used to query the
document in fig. 2. In fig. 4, we omitted the term specifying the document element for
brevity and simplicity. Assume the lhs of the mapping contains a term inst(o0, Schema).
Then o0 is the variable referencing the document element. Therefore, we put (o0, /) as
the root into T and also into Open.

Now, we construct the element hierarchy T . For (o0, /) in Open the required pat-
tern is satisfied by the subformula inst(o1,University)∧part(o1,parentU , o0)∧
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Fig. 7. The architecture of the data translation tool



Input: An implication χ in an SO tgd Σ with source schema σ
Output: A set of XQuery queries over σ.

Initialization: T = Open = Close = R = ∅
Find document variable: This is the only variable symbol S that occurs in a term of the form

inst(S,Schema) on the lhs of χ where Schema is the name of the schema element. Add
(S, “/”) as the root to T and add it to Open.

Construct element hierarchy T : Repeat the following until Open = ∅. Let (X, path) ∈
Open. For each subformula inst(Id, name) ∧ part(Id, ae1, X) ∧ part(Id, ae2, Y ) on
the lhs of χ where Id, X, and Y are variable symbols, name, ae1 and ae2 are GeRoMe
element names, and there is no path′ with (Y, path′) ∈ Close, add (Y, path/name) to
Open and add it as a child to (X, path) in T with label name. Finally, remove (X, path)
from Open and add it to Close.

Construct return set R: For each term av(X, a, V ) on the lhs of χ, where X , V are variable
symbols, a is a constant name of an attribute, and (X, path) ∈ T , add (V , “$X/@a”)
to R. For each term value(X, V ) on the lhs of χ, where X , V are variable symbols and
(X, path) ∈ T , add (V , “$X/text()”) to R.

Construct condition set P : V1 = V2 on the lhs of χ with (V1, path1) ∈ R∧(V2, path2) ∈ R
specifies an explicit join condition. Add “path1 eq path2” to P . If (V, path1) ∈ R ∧
(V, path2) ∈ R this specifies an implicit join condition. Add “path1 eq path2” to P . For
each term value(V, c) on the lhs of χ, where c is a constant, add “V eq c” to P .

Produce XQuery: Let T = (doc, “/”)[(e1,1, p1,1, l1,1)[(e2,1, p2,1, l2,1)[. . .], . . . ,
(e2,k2 , p2,k2 , l2,k2)]] be the computed element tree, where (e, p, l)[. . . , (e′, p′, l′), . . .]
means (e′, p′) is a child of (e, p) with label l′ in T . Let (v1, path1), (v2, path2),
. . . , (vn, pathn) ∈ R, and p1,1, p2, . . . , pn ∈ P . The XQuery query for χ is:

for $e1,1 in fn:doc( fname)/l1
for $e2,1 in $e1,1/l2,1 ...
for $e2,k2 in $e1,1/l2,k2

for $e3,1 in $e2,i3,1 /l3,1 ...
where p1 and p2 and . . . and pn

return <result> < v1 >path1</v1 > . . . < vn >pathn</vn > </result>

Fig. 8. Algorithm XQueryGen

part(o1,childU , o2) We add (o2, /University) to Open and also add it to T as
a child of (o0, /) with label University. As no other subformula satisfies the pattern,
we remove (o0, /) fromOpen and add it toClose. We getOpen = {(o2, /University)},
T = (o0, /)[(o2, /University,University)] and Close = {(o0, /)}. We repeat
the step for (o2, /University). The result for T after this step is (o0, /)[(o2, /Univer-
sity,University)[(o4, /University/Student,Student)]]. The last iteration
does not add any elements.

Three variables on the lhs of χ are assigned by the query, u, s and i. Accord-
ing to the rules described in the algorithm, we add (u, /University/@uname),
(s, /University/Student/@sname) and (i, /University/Student/@ID)
to the return set R. There are no join or select conditions in the mapping, therefore,
the condition set for this mapping remains empty. The assignments to the variables u,
s and i that are returned by the query are used as input when executing the rhs of the
mapping. The XQuery generated from χ is:

for $o2 in fn:doc( fname)/University

Fig. 8. Algorithm XQueryGen
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to the return set R. There are no join or select conditions in the mapping, therefore,
the condition set for this mapping remains empty. The assignments to the variables u,
s and i that are returned by the query are used as input when executing the rhs of the
mapping. The XQuery generated from χ is:

for $o2 in fn:doc( fname)/University
for $o4 in $o2/Student



return <result>
<u>$o2/@uname</u> <s>$o4/@sname</s> <i>$o4/@ID</i>

</result>

6 Evaluation

Correctness and Performance: To evaluate mapping composition we used nine com-
position problems drawn from recent literature [4,12,14]. The original mappings had to
be translated manually into our representation before composing. The results of com-
position were logically equivalent to the documented results. The same set of problems
had been used to evaluate the performance of our implementation. As was proven in
[4] the computation time of composition may be exponential in the size of the input
mappings. Fig. 9 displays the time performance of our composition implementation.

NI12 MP23 IC TT(ms)
3 3 2 200
6 4 3 420
6 4 4 605
3 3 1 372
5 5 1 391
5 5 1 453
7 7 4 1324
15 6 99 16122
15 9 288 100170

Note: NI12: the number of implications in the nor-
malized S12

MP23: the maximum number of predicates in
each implication in Σ23

IC: the number of implications in the un-
optimized composition

TT: the total run time of running the compo-
sition algorithm 200 times.

Fig. 9. Time performance of the composition algorithm

The upper bound of the number of implications in the non-optimized composition
is O(

∑
i(I

Pi)), where I is the number of implications in the normalized Σ12 and Pi

is the number of source predicates in each implication in Σ23. In the second step of
our composition algorithm, a predicate on the left hand side of χ can have at most I
matched implications in S23. Since only one implication is generated for each matched
implication, after replacing the predicate, the number of implications in S23 will in-
crease at most at the factor of I . Repeat the same reasoning for every source predicate
in Σ23 will lead to the stated upper bound. In table 9, we listed, for each test case, the
I , the maximum of Pi, the size of the un-optimized composition and its running time.
It can be seen that the execution time may indeed be exponential in the size of input
mappings. Even though composing mappings may be expensive, the performance is
still reasonable. It takes about 80 milliseconds to run a test that generates in total 99
implications and about half a second for a test which generates 288 implications.

To evaluate mapping execution we defined seven test cases between relational data-
bases and XML documents. The performance was linear in the size of the output and
thus, our framework does not impose a significant overhead to data exchange tasks.
These tests included also executing the composition of two mappings from a relational
to an XML Schema and back. The result was an identity mapping and execution of the



optimized result was about twice as fast as subsequent execution of the mappings. Our
tests showed that our mapping execution yields the desired results satisfying both, the
logical formalisms and the grouping semantics specified in the mappings. All tests were
run on a Windows XP machine with a P4 2.4GHz CPU and 512MB memory.
Comparison with other Mapping Representations: Source-to-target tuple-generating-
dependencies (s-t tgds) and GLAV assertions are used to specify mappings between re-
lational schemas. They are strict subsets of our adaptation of SO tgds. Every s-t tgd has
a corresponding GeRoMe mapping but not vice versa. GeRoMe mappings can express
nested data structures, e.g. XML data, while s-t tgds can not.

Path-conjunctive constraints [15] are an extension of s-t tdgs for dealing with nested
schemas. However, they may suffer from several problems [5]. First, the same set of
paths may be duplicated in many formulas which induces an extra overhead on map-
ping execution. Second, grouping conditions cannot be specified, leading to incorrect
grouping of data. Nested mappings [5] extend path-conjunctive constraints to address
the above problems. Nested mappings merge formulas sharing the same set of high level
paths into one formula, which causes mapping execution to generate less redundancy in
the target. In addition, nested mappings provide a syntax to specify grouping conditions.
Compared to nested mappings, GeRoMe mappings are also able to handle nested data
and specify arbitrary grouping conditions for elements. Furthermore, the language of
SO tgds is a superset of the language of nested mappings [5]. Since every SO tgd speci-
fied for relational schemas can be transformed into a corresponding GeRoMe mapping,
our mapping language is more expressive than the nested mapping language.

Like path-conjunctive constraints, a GeRoMe mapping cannot be nested into an-
other GeRoMe mapping. Therefore, a common high-level context has to be repeated in
different formulas of a GeRoMe mapping. Again, this leads to less efficient execution.
However, duplication in target data is overcome by grouping conditions. We may also
borrow from the syntax of nested mappings to allow nested mapping definitions.

7 Conclusion

In this paper we introduced a rich mapping representation for mappings between models
given in our Generic Role-based Metamodel GeRoMe [7]. Our mapping language is
closed under composition as it is based on second order tuple-generating dependencies
[4]. The mapping language is generic as it can be used to specify mappings between
any two models represented in our generic metamodel. Moreover, mappings can be
formulated between semistructured models such as XML schemas and are not restricted
to flat models like relational schemas. Another feature of the proposed language is that
it allows for grouping conditions that enable intensive restructuring of data, a feature
also supported by nested mappings [5] which are not as expressive as SO tgds.

To verify the correctness and usefulness of our mapping representation we im-
plemented an adapted version of the composition algorithm for second order tuple-
generating dependencies [4]. Furthermore, we developed a tool that exports our map-
pings to queries and updates in the required data manipulation language and then uses
them for data translation. As an example, we showed an algorithm that translates the lhs
of a generic mapping to a query in XQuery. The components for mapping export and



execution can be arbitrarily replaced by implementations for the required metamodel.
The evaluation showed that both, mapping composition and mapping execution, yield
the desired results with a reasonable time performance.

In the future we will develop techniques for visualizing our mappings with the
goal to implement a graphical editor for generic, composable, structured extensional
mappings. This editor will be integrated into our holistic model management system
GeRoMeSuite [8]. We will also investigate the relationship between our extensional
mappings and intensional mappings that are used for schema integration [16].
Acknowledgements: The work is supported by the Research Cluster on Ultra High-
Speed Mobile Information and Communcation UMIC (www.umic.rwth-aachen.de).
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