Minimizing Human Effort
in Reconciling Match Networks

Nguyen Quoc Viet Hung', Tri Kurniawan Wijaya', Zoltan Mikl6s?, Karl Aberer!,
Eliezer Levy?, Victor Shafran®, Avigdor Gal*, and Matthias Weidlich?

! Ecole Polytechnique Fédérale de Lausanne
2 Université de Rennes 1
3 SAP Research Israel
4 Technion — Israel Institute of Technology

Abstract. Schema and ontology matching is a process of establishing corre-
spondences between schema attributes and ontology concepts, for the purpose of
data integration. Various commercial and academic tools have been developed to
support this task. These tools provide impressive results on some datasets. How-
ever, as the matching is inherently uncertain, the developed heuristic techniques
give rise to results that are not completely correct. In practice, post-matching
human expert effort is needed to obtain a correct set of correspondences. We study
this post-matching phase with the goal of reducing the costly human effort. We
formally model this human-assisted phase and introduce a process of matching
reconciliation that incrementally leads to identifying the correct correspondences.
We achieve the goal of reducing the involved human effort by exploiting a network
of schemas that are matched against each other. We express the fundamental
matching constraints present in the network in a declarative formalism, Answer
Set Programming that in turn enables to reason about necessary user input. We
demonstrate empirically that our reasoning and heuristic techniques can indeed
substantially reduce the necessary human involvement.

1 Introduction

Schema and ontology matching is the process of establishing correspondences between
the attributes and ontology concepts, for the purpose of data integration. There is a large
body of work on techniques to support the schema and ontology matching task and
numerous commercial and academic tools, called matchers, have been developed in
recent years [4, 21, 10]. Even though those matchers achieve impressive performance on
some datasets, they cannot be expected to yield a completely correct result since they rely
on heuristic techniques. In practice, data integration tasks often include a post-matching
phase, in which correspondences are reviewed and validated by experts.

User involvement in an integration process is still an open challenge [23], with
the main difficulty being the design of a burdenless post-matching phase. In this work
we propose a method, in which a matcher introduces a user with carefully selected
correspondences, aiming at the minimization of user involvement in the integration
process. The proposed algorithm is based on automatic constraint violation detection
using Answer Set Programming (ASP).

Brown Wisconsin

Berkeley test_scores Q

subject 0‘

Otestscores

Wisconsin

subject_score Miami

TOEFL_SCORE

Fig. 1. Violations of network-level constraints in real-world Web schemas.

We focus on a setting in which matching is conducted for a network of related
schemas that are matched against each other. In this setting, we streamline the potentially
chaotic post-matching phase as a structured reconciliation of conflicting correspon-
dences in the network. The notion of matching networks is interesting in its own right
and is beneficial in many real world scenarios, see for example [24]. In principle, a
matching network enables collaborative integration scenarios, and scenarios where a
monolithic mediated schema approach is too costly or simply infeasible. In our work,
having a network of multiple schemas enables introducing network-level consistency
constraints, thereby increasing the potential for guided improvement of the matching
process. Namely, we go beyond the common practice of improving and validating match-
ings by considering a pair of schemas. Instead, we consider network-level consistency
constraints as a means to improve the matchings over the entire network. We consider
network-level constraints that are fundamental, domain-independent and, therefore, are
expected to hold universally in any matching network. The process of network recon-
ciliation automatically detects constraint violations in the network, and minimizes the
user effort by identifying the most critical violations that require user feedback, thus
supporting and guiding a human user in the post-matching phase.

In constructing the proposed mechanism we separate the task into two parts. The first,
which can be considered a “design time” process, involves the encoding of constraints
the violation of which indicates a “suspicious” correspondence. Such constraints are
defined in a meta-level to be applied to newly introduced schemas. This process requires
highly skilled matching specialists and we show several examples of such constraints
in this work. The “run-time” part of the process involves an interactive system through
which a user is introduced with correspondences that violate the pre-defined constraints.
Such correspondences are validated by the domain expert, followed by a new iteration
of constraint violation detection.

As an illustrating example, consider the matching of university application forms. A
schema matching network is created by establishing pairwise matchings between the
schemas. Clearly, these matchings shall obey certain constraints. The pairwise schema
matching, for instance, often ensures the 1 : 1 correspondence constraint: each attribute
corresponds to at most a single attribute in another schema.

Figure 1 illustrates the notion of network-level constraints we investigate in this
work. Figure 1(left) introduces a violation of a cycle constraint: If the matchings form a
cycle across multiple schemas, then the attribute correspondences should form a closed
cycle. In our example, subject in the Brown schema is connected to another attribute
score of the same schema by a network-wide path of correspondences. Figure 1(right)

illustrates another constraint violation based on a directed relation between attributes
within a schema, for instance, a composition relation in an XML schema. The dependency
constraint requires that the relation between attributes within a schema is preserved
by network-wide paths of correspondences. This constraint is satisfied for the pairwise
matching between schemas Wisconsin and Brown. In contrast, it is violated on the
network level, once schema Miami is taken into account.

Detecting and eliminating violations of such constraints is a tedious task because of
the sheer amount of violations usually observed and the need to inspect large parts of the
matching network. Our techniques can automatically detect such constraint violations,
minimize the necessary feedback steps for resolving the violations, as well as detect
erroneous feedback in most cases. The main contribution of this work can be summarized
as follows:

We introduce the concept of matching networks, a generalization of the pairwise
schema matching setting.

We define a model for reconciliation in matching networks.

— We present a framework that allows expressing generic matching constraints in a
declarative form, using Answer Set Programs (ASP). This expressive declarative
formalism enables us to formulate a rich set of matching constraints.

We propose a heuristic for validation ordering in a schema network setting.

We conducted experiments with real-world schemas, showing that the proposed
algorithm outperforms naive methods of choosing correspondences for feedback
gathering, reducing user input by up to 40%.

The rest of the paper is organized as follows. The next section introduces our
model and formalizes the addressed problem. Section 3 shows how reconciliation of
matching networks is implemented using answer set programming. Using this framework,
we propose approaches to minimize human involvement in Section 4. Report on our
empirical evaluation is given in Section 5. Finally, we review our contribution in the
light of related work in Section 6, before Section 7 concludes the paper.

2 Model and Problem Statement

In this section, we introduce matching networks (Section 2.1), a model of the reconcilia-
tion process (Section 2.2), and the reconciliation problem definition (Section 2.3).

2.1 Matching Networks

A schema s = (As, d5) is a pair, where A; = {aq, ..., an, } is a finite set of artributes
and 6, C A, x A is a relation capturing attribute dependencies. This model largely
abstracts from the peculiarities of schema definition formalisms, such as relational or
XML-based models. As such, we do not impose specific assumptions on ds, which may
capture different kinds of dependencies, e.g., composition or specialization of attributes.

Let S = {s1, ..., 8, } be a set of schemas that are built of unique attributes (V1 < i #
J<n A, NAg, = () and let As denote the set of attributes in S, i.e., As = |J, As,.
The interaction graph G g represents which schemas need to be matched in the network.

Therefore, the vertices in V (Gs) are labeled by the schemas from S and there is an edge
between two vertices, if the corresponding schemas need to be matched.

An attribute correspondence between a pair of schemas s1, so € S is an attribute pair
{a,b},suchthata € A, and b € A,,. A valuation function associates a value in [0, 1] to
an attribute correspondence. Candidate correspondences c; ; (for a given pair of schemas
s;,5; € S)is a set of attribute correspondences, often consisting of correspondences
whose associated value is above a given threshold. The set of candidate correspondences
C for an interaction graph G's consists of all candidates for pairs corresponding to its
edges, i.e. C = U(S“SJ)GE(GS) ci j. C is typically the outcome of first-line schema
matchers [12]. Most such matchers generate simple 1 : 1 attribute correspondences,
which relate an attribute of one schema to at most one attribute in another schema. In
what follows, we restrict ourselves to 1 : 1 candidate correspondences for simplicity
sake. Extending the proposed framework to more complex correspondences can use
tools that were proposed in the literature, e.g., [13].

A schema matching for G is a set D of attribute correspondences D C C'. Such
schema matching is typically generated by second-line matchers, combined with human
validation, and should adhere to a set of predefined constraints I" = {1, ..., v, }. Such
constraints may require, for example, that at least 80% of all attributes are matched. A
schema matching D is valid if it satisfies all of the constraints in .

Combining the introduced notions, we define a matching network to be a quadruple
(S8,Gs, I, C), where S is a set of schemas (of unique attributes), G's a corresponding
interaction graph, I” a set of constraints, and C' a set of candidate correspondences.

2.2 Reconciliation Process

The set of candidate correspondences C' aims at serving as a starting point of the
matching process and typically violates the matching constraint set . In this section, we
model the reconciliation process under a set of predefined constraints I (see Section 3)
as an iterative process, where in each step a user asserts the correctness of a single
correspondence. Starting with the result of a matcher, a set of correspondences, called
an active set, is continuously updated by: (1) selecting an attribute correspondence
c € C, (2) eliciting user input (approval or disapproval) on the correspondence ¢, and (3)
computing the consequences of the feedback and updating the active set. Reconciliation
halts once the goal of reconciliation (e.g., eliminating all constraint violations) is reached.
It is worth noting that in general, a user may add missing correspondences to C' during
the process. For simplicity, we assume here that all relevant candidate correspondences
are already included in C'.

Each user interaction step is characterized by a specific index ¢. Then, D; denotes the
set of correspondences considered to be true in step ¢ dubbed the active set. Further, let
ul (u) denote the user input where u denotes approval and u_ denotes disapproval
of a given correspondence ¢ € C and Uc = {u},u_ | ¢ € C'} be the set of all possible
user inputs for the set of correspondences C'. Further, u; € Uc denotes user input at
step ¢ and U; = {u; | 0 < j < i} is the set of user input assertions until step 4. The
consequences of such user input assertions U, are modeled as a set Cons(U;) C Uq of
positive or negative assertions for correspondences. They represent all assertions that
can be concluded from the user input assertions.

Algorithm 1: Generic reconciliation procedure

input :a set of candidate correspondences C, a set of constraints I”, a reconciliation goal A.
output: the reconciled set of correspondences D,..

// Initialization

Dy + C; Uy « 0; Cons(Up) <+ 0;1 <+ 0;

2 while not A do

// In each user interaction step (1) Select a correspondence

-

3 c + select(C\ {c | ul € Cons(U;) Vu_ € Cons(U;)}):
// (2) Elicit user input
4 Elicit user input w; € {u},u_ }onc;

// (3) Integrate the feedback

th+1 — U; U {u,,};

Cons(U;y1) + conclude(Uy;);

Dit1 + D;U{c|ul € Cons(Uix1)} \ {c| u, € Cons(Uij+1)}:
114+ 1;

® 9 o w

A generic reconciliation procedure is illustrated in Algorithm 1. It takes a set of
candidate correspondences C', a set of constraints I”, and a reconciliation goal A as
input and returns a reconciled set of correspondences D,.. Initially (line 1), the active
set Dy is given as the set of candidate correspondences C' and the sets of user input Uy
and consequences Cons(Uy) are empty. Then, we proceed as follows: First, there is a
function select, which selects a correspondence from the set of candidate correspon-
dences (line 3). Here, all correspondences for which we already have information as
the consequence of earlier feedback (represented by Cons(U;)) are neglected. Second,
we elicit user input for this correspondence (line 4). Then, we integrate the feedback by
updating the set of user inputs U, 11 (line 5), computing the consequences Cons(U;41)
of these inputs with function conclude (line 6), and updating the active set D, (line
7). A correspondence is added to (removed from) the active set, based on a positive
(negative) assertion of the consequence of the feedback. The reconciliation process stops
once D, satisfies the halting condition A representing the goal of reconciliation.

Instantiations of Algorithm 1 differ in their implementation of the select and
conclude routines. For example, by considering one correspondence at a time, Al-
gorithm 1 emulates a manual reconciliation process followed by an expert. As a baseline,
we consider an expert working without any tool support. This scenario corresponds to in-
stantiating Algorithm 1 with a selection of a random correspondence from C'\ Cons(U;)
(select(C' \ Cons(U;))) and the consequences of user input are given by the input
assertions U; (conclude(U;) = U;).

2.3 Problem Statement

Given the iterative model of reconciliation, we would like to minimize the number of
necessary user interaction steps for a given reconciliation goal. Given a schema matching
network (S,Gs, I',C), a reconciliation goal A, and a sequence of correspondence
sets (Dg, D1, ..., Dy,) such that Dy = C (termed a reconciliation sequence), we say
that (Do, D1, ..., D,) is valid if D,, satisfies A. Let R 5 denote a finite set of valid
reconciliation sequences that can be created by instantiations of Algorithm 1. Then, a

reconciliation sequence represented by (Dg, D1, ..., D) € R is minimal, if for any
reconciliation sequence (D{, D}, ..., D]) € R it holds that n < m.

Our objective is defined in terms of a minimal reconciliation sequence, as follows.

Problem 1 Let (S,Gs,I',C) be a schema matching network and R A a set of valid
reconciliation sequences for a reconciliation goal A. The minimal reconciliation problem
is the identification of a minimal sequence (Dy, D1, ...,D,) € RA.

Problem 1 is basically about designing a good instantiation of select and conclude to
minimize the number of iterations to reach A. The approach taken in this paper strives to
reduce the effort needed for reconciliation, thus finding a heuristic solution to the problem.
We achieve this goal by relying on heuristics for the selection of correspondences (select)
and applying reasoning for computing the consequences (conclude).

3 Reconciliation using ASP

This section introduces our tool of choice for instantiating the select and conclude
routines, Answer Set Programming (ASP). ASP is rooted in logic programming and
non-monotonic reasoning; in particular, the stable model (answer set) semantics for logic
programs [15, 16] and default logic [22]. In ASP, solving search problems is reduced to
computing answer sets, such that answer set solvers (programs for generating answer
sets) are used to perform search. We start by shortly summarizing the essentials of ASP
(Section 3.1). We then show how to model schema matching networks, introduced in
Section 2.1, using ASP (Section 3.2). Section 3.3 provides three examples of schema
matching constraints in ASP. Finally, we outline the reasoning mechanism ASP uses to
identify violations of matching constraints (Section 3.4).

3.1 Answer Set Programming

We now give an overview of ASP. Formal semantics for ASP and further details are
given in [9]. Let C, P, X be mutually disjoint sets whose elements are called constant,
predicate, and variable symbols, respectively. Constant and variable symbols C U X" are
jointly referred to as terms. An atom (or strongly negated atom) is defined as a predicate
over terms. It is of the form p(ty, ..., t,) (or =p(ty,...,t,), respectively) where p € P
is a predicate symbol and ¢4, ..., t, are terms. An atom is called ground if t1, ..., t,
are constants, and non-ground otherwise. Below, we use lower cases for constants and
upper cases for variables in order to distinguish both types of terms.
An answer set program consists of a set of disjunctive rules of form:

a1 V...Vag < by,...,by,...,n0tcy,...,notc,

where ay,...,a5,b1,...,0m,c1,...cp (k,m,n > 0) are atoms or strongly negated
atoms. This rule can be interpreted as an if-then statement: if by, ..., b,, are true and
c,...,Cy are false, then we conclude that at least one of aq, ..., ay is true. We call
ai, ..., ay the head of the rule, whereas by, ...,b,, and cq, ..., c, are the body of the
rule. A rule with an empty body is a fact, since the head has to be satisfied in any case. A
rule with an empty head is a constraint; the body should never be satisfied.

Example 1. II is an answer set program comprising three rules (X being a variable, c
being a constant). Program I defines three predicates p, g, r. The first rule is a fact and
the third rule denotes a constraint. Further, p(c), r(c) are ground atoms, and p(X), ¢(X),
are non-ground atoms:

p(c)
17 = g(X) « p(X).
+— 7r(c).

Informally, an answer set of a program is a minimal set of ground atoms, i.e., predicates
defined only over constants, that satisfies all rules of the program. An example of an
answer set of program I/ given in Example 1 would be {p(c), ¢(c)}.

Finally, we recall the notion of cautious and brave entailment for ASPs [9]. An ASP
IT cautiously entails a ground atom a, denoted by IT |=.. a, if a is satisfied by all answer
sets of I1. For a set of ground atoms A, IT |=. A, if for each a € Aitholds IT =, a. An
ASP IT bravely entails a ground atom a, denoted by IT |=; a, if a is satisfied by some
answer sets of I1. For a set of ground atoms A, IT = A, if for each a € A it holds that
some answer set /M satisfies a.

3.2 Representing Matching Networks

Let (S,Gs, I', C) be a matching network. An ASP II(i), corresponding to the i-th step
of the reconciliation process, is constructed from a set of smaller programs that represent
the schemas and attributes (//s), the candidate correspondences (II¢), the active set D,
(IIp(1)), the basic assumptions about the setting (1,), the constraints (II1), and a
special rule that relates the correspondences and constraints I7... The program I7 (i) is
the union of the smaller programs I71(:) = IIs U IT¢ U ITp (i) U yasic U Hp U IT,..
We focus in the section on the four first programs. The remaining two programs are
discussed in Section 3.3.

Schemas and attributes: I7s is a set of ground atoms, one for each attribute and its
relation to a schema, and one for each attribute dependency:

IIs = {attr(a, s;) | si € S,a € Ag,} U {dep(ar,a2) | s; € S, (a1,az2) € ds,}
Candidate correspondences: /I~ comprises ground atoms, one for each candidate
correspondence in the matching network: I1c = {cor(a1, az2) | (a1,a2) € C}

Active set: 1T (i) is a set of ground atoms, corresponding to the active set D;:

IIp(i) = {corD(a1,a2) | (a1,a2) € D;}

Basic assumptions: rules in 7., as follows.

— An attribute cannot occur in more than one schema. We encode this knowledge by
adding a rule with an empty head, i.e., a constraint, so that no computed answer set
will satisfy the rule body. For each attribute a € As and schemas s1,s2 € S, we
add the following rule to ITp,s;.: < attr(a, s1), attr(a, s2), $1 # Sa.

— There should be no correspondence between attributes of the same schema. We add
arule to for each candidate correspondence (a1, as) € C and schemas s, 55 € S
to Ipysic: < cor(ay,aq), attr(ay, 1), attr(as, s2), s1 = Sa.

— The active set is a subset of all matching candidates. We add a rule to Ilpq.:
cor(X,Y) «+ corD(X,Y).

3.3 Matching Constraints in ASP

Matching constraints are defined to ensure the integrity of the matching process. Such
constraints are the subject of research in the schema and ontology matching research
area (see Section 6). They are defined independently of the application domain and
can be mixed and matched based on the needs of such applications. In this section, we
illustrate the modeling of three such constraints using ASP followed by the modeling of
the connection between correspondences and constraints.

Constraints (/7). We express matching constraints as rules in the program I/, one
rule per constraint, such that ITp = II,, U---UIL, for I' = {v1,...,7,}. In the
following, we give examples of three matching constraints.

— 1: 1 constraint: Any attribute of one schema has at most one corresponding attribute
in another schema. We capture this constraint with the following rule:

«— match(X,Y), match(X, Z), attr(Y, S), attr(Z,S),Y # Z.

— Cycle constraint: Two different attributes of a schema must not be connected by
a path of matches. We call a cycle of attribute correspondences incorrect, if it
connects two different attributes of the same schema, see Figure 1(left) for example.
Formally, a solution is valid if it does not contain any incorrect cycles. We encode
this constraint based on a reachability relation (represented by reach(X,Y"), where
X and Y are variables representing attributes) as follows:

reach(X,Y) < match(X,Y)
reach(X, Z) < reach(X,Y), match(Y, Z)
+ reach(X,Y), attr(X, S), attr(Y,S), X #Y.

— Dependency constraint: Dependencies between attributes shall be preserved by paths
of matches. To encode this type of constraint, we proceed as follows. First, we model
(direct or indirect) reachability of two attributes in terms of the dependency relation
(represented by reachDep(X,Y), where X and Y are both variables representing
attributes). Then, we require that reachability based on the match relation for two
pairs of attributes preserves the reachability in terms of the dependency relation
between the attributes of either schema:

reachDep(X,Y) < dep(X,Y)
reachDep(X, Z) < reachDep(X,Y"), dep(Y, Z)
< reachDep(X,Y), reach(X, B),
reachDep(A, B), reach(Y, A).

The choice of constraints depend on the application at hand. For example, 1 : 1
constraints, while being a common constraint in schema matching applications, may
not be relevant to some applications. Also, some constraints may not be a major issue
in certain domains. For example, as part of our empirical evaluation, we have tested
the number of cycle constraint violations for five datasets that are different in their
characterizations (see Table 1 in Section 5). While there were violations of the cycle
constraint in all datasets, ranging from hundreds to tens of thousands violations) there
was no clear correlation between the network size (in terms of number of schemas,
number of attributes, efc.) and the number of violations.

Connecting correspondences and constraints (/7..). A rule that computes a set of
correspondences that satisfy the constraints of the matching network uses a rule with
a disjunctive head. We encode a match relation (represented by match(X,Y")) to com-
pute this set. A candidate correspondence cor(X,Y') is either present in or absent from
match, the latter is denoted as noMatch(X, V). This is captured by the rule:

match(X,Y) V noMatch(X,Y) < corD(X,Y).

3.4 Detecting Constraint Violations

Adopting the introduced representation enables us to compute violations of constraints
automatically, with the help of ASP solvers. In large matching networks, detecting such
constraint violations is far from trivial and an automatic support is crucial.

We say that a set of correspondences C’ = {cy, ..., ¢} C C violates a constraint
ve I'if lIs U Ilyqgc U 11, sy, I . In practice, we are not interested in all possible
violations, but rather the minimal ones, where a set of violations is minimal w.r.t. 7y if
none of its subsets violates . Given a set of correspondences C’, we denote the set of
minimal violations as
Violation(C') = {C" | C" C ", IIs U Hpgsic U II, =, C",y € I, C" is minimal}.

The ASP representation also allows for expressing reconciliation goals. A frequent
goal of experts is to eliminate all violations: Ay,vier = {I1(2) b IIp(i)}, ie., the
joint ASP bravely entails the program of the active set.

4 Minimizing User Effort

The generic reconciliation process (Section 2.2) comprises three steps, namely corre-
spondence selection, user input elicitation, and feedback integration. We argued that this
process is characterized by two functions in particular, namely select and conclude. We
now suggest a specific implementation of the two functions. In Section 4.1, we show
how to use reasoning techniques to derive consequences for user input. In Section 4.2,
we discuss heuristic ordering strategies for correspondence selection.

4.1 Effort Minimization by Reasoning

In the baseline reconciliation process, the consequences of the user input U; up to step ¢
of the reconciliation process are directly given by the respective input assertions, i.e.,
Cons(U;) = U;. This means that updating the active set of correspondences D; based
on Cons(Uj;) considers only correspondences for which user input has been elicited.

In the presence of matching constraints, however, we can provide more efficient
ways to update the active set. Due to space considerations, we do not detail this process.
Instead, we illustrate it using the following example.

Example 2 (Reasoning with user input). Consider two schemas, s; and ss, and three of
their attributes, encoded in ASP as attr(z, 1), attr(y, s2), and attr(z, s2). Assume that
a matcher generated candidate correspondences that are encoded as C' = {cor(z, y),

cor(xz,z)}. Further, assume that I" consists of the 1 : 1 constraint. By approving
correspondence (x,y), we can conclude that candidate correspondence (z, z) must be
false and should not be included in any of the answer sets. Hence, in addition to validation
of correspondence (x, y), falsification of correspondence (z, z) is also a consequence of
the user input on (z, y).

4.2 Effort Minimization by Ordering

We now consider minimization of user effort based on the selection strategy that is used
for identifying the correspondence that should be presented to the user. In Section 2.2,
we showed that without any tool support, a random correspondence would be chosen.
Depending on the order of steps in the reconciliation process, however, the number of
necessary input steps might vary. Some input sequences may help to reduce the required
user feedback more efficiently. In this section, we focus on a heuristic selection strategy
that exploits a ranking of correspondences for which feedback shall be elicited.

Our selection function is based on a min-violation scoring that refers to the number
of violations that are caused by a correspondence. The intuition behind this heuristic is
that eliciting feedback on correspondences that violate a high number of constraints is
particular beneficial for reconciliation of a matching network. As defined in Algorithm 1,
selection is applied to the set of candidate correspondences C' once all correspondences
for which we already have information as the consequence of earlier feedback (repre-
sented by Cons(U;)) have been removed. In case there are multiple correspondences
that qualify to be selected, we randomly choose one.

5 Empirical Evaluation

This section introduces preliminary empirical evaluation. For our evaluation, we used
five real-world datasets spanning various application domains, from classical Web form
integration to enterprise schemas. All datasets are publicly available® and descriptive
statistics for the schemas are given in Table 1.
Business Partner (BP): Three enterprise schemas, originally from SAP, which model
business partners in SAP ERP, SAP MDM, and SAP CRM systems.
PurchaseOrder (PO): Purchase order e-business documents from various resources.
University Application Form (UAF): Schemas from Web interfaces of American uni-
versity application forms.
WebForm: Automatically extraction of schemas from Web forms of seven different
domains (e.g., betting and book shops) using OntoBuilder.®
Thalia: Schemas describing university courses. This dataset has no exact match, and is
mainly used in the first experiment concerning constraint violations.
We used two schema matchers, COMA [7] and Auto Mapping Core (AMC) [19].
Reasoning was conducted with the DLV system,7 release 2010-10-14, a state-of-the-art
ASP interpreter. All experiments ran on an Intel Core i7 system (2.8GHz, 4GB RAM).

> BP, PO, UAF, WebForm are available at http://lsirwnw.epfl.ch/schema_matching and
Thalia can be found at: http://www.cise.ufl.edu/research/dbintegrate/thalia/

6 http://ontobuilder.bitbucket.org/

7 http://www.dlvsystem.com

‘We evaluated our reconciliation frame- Table 1. Statistics for datasets
work in ('ilfferent setngs. We varied the Dataset #Schemas #Attributes/Schema
construction of schema matching networks Min/Max
in terms of dataset, matcher, and network

topology. For the reconciliation process, we BP 3 80/106
considered different types of users and rec- 1O 10 35/408
onciliation goals. We measured the qualit UAF 15 65/228

£) d y WebForm 89 10/120

improvements achieved by reconciliation . 44 3718

and the required human efforts as follows:

Precision We measures quality improvement where precision of the active set at step ¢
is defined as P; = (|D; N G|)/|D;|, with G being the exact match.

User effort is measured in terms of feedback steps relative to the size of the matcher
output C, i.e., E; = i/|C| (where a user examines one correspondence at a time).

Rand_NoReason Rand_Reason —e--MinViol_NoReason —e— MinViol_Reason

e

Pl o
=
o
‘D
©
2
a WebForm UAF
0.6 . : : 0.2
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
Percentage of feedbacks Percentage of feedbacks

Fig. 2. User effort needed to achieve 100% precision.

We studied the extent to which our approach reduces human effort in terms of
necessary user feedback steps as follows. For each dataset, we obtained candidate
correspondences using COMA. We generated a complete interaction graph and required
the 1 : 1 and cycle constraints to hold. Then, we simulated user feedback using the exact
matches for the dataset. The reconciliation process starts with the matching results, as
determined by COMA.

We explored how the quality of the match result in terms of precision improved
when eliciting user feedback according to different strategies. For the WebForm and
UAF datasets, Figure 2 depicts the improvements in precision (Y-axis) with increased
feedback percentage (X-axis, out of the total number of correspondences) using four
strategies, namely
(1) Rand_NoReason: feedback in random order, consequences of feedback are defined

as the user input assertions (the baseline described in Section 2.2);

(2) Rand_Reason: reconciliation using random selection of correspondences, but apply-
ing reasoning to conclude consequences;

(3) MinViol_NoReason: reconciliation selection of correspondences based on ordering,
consequences of feedback are defined as the user input assertions; and finally

(4) MinViol_Reason: reconciliation with the combination of ordering and reasoning for
concluding consequences.

The results depicted in Figure 2 show the average over 50 experiment runs. The dotted

line in the last segment of each line represents the situation where no correspondence

in the active set violated any constraints, i.e., the reconciliation goal Ay, v;,; has been
reached. In those cases, we used random selection for the remaining correspondences
until we reached a precision of 100%. The other datasets (BP and PO) demonstrate
similar results and are omitted for brevity sake.

The results show a significant reduction of user effort for all strategies with respect to
the baseline. Our results further reveal that most improvements are achieved by applying
reasoning to conclude on the consequences of user input. Applying ordering for selecting
correspondences provides additional benefits. The combined strategy (MinViol_Reason)
showed the highest potential to reduce human effort, requiring only 40% or less of the
user interaction steps of the baseline.

So far, we assumed that it is always

possible to elicit a user input assertion for Table 2. Ability to conclude assertions
a correspondence. One may argue that in — —
many practical scenarios, however, this Dataset p : skipping probability
assumption does not hold. Users have of- 5% 10% 15% 20% 25% 30%
ten only partial knowledge of a domain, BP 0.29 0.26 0.27 0.23 0.20 0.18
which means that for some correspon- PO 0.31 0.30 0.26 0.22 0.22 0.16

dences a user cannot provide any feed- UAF 0.21 0.20 0.16 0.15 0.14 0.11
back. We studied the performance of our WebForm 0.31 0.32 0.26 0.19 0.16 0.20
approach in this setting, by including the
possibility of skipping a correspondence
in the reconciliation process. Thus, for certain correspondences, we never elicit any feed-
back. However, the application of reasoning may allow us to conclude on the assertions
for these correspondences as consequences of the remaining user input.

In our experiments, we used a probability p for skipping a correspondence and mea-
sured the ratio of concluded assertions (related to skipped correspondences that can be
concluded by reasoning over the remaining user input) and all skipped correspondences.
Table 2 shows the obtained results. It is worth noting that even with p = 30%, the ratio
is close to 0.2, which means that about 20% of the assertions that could not be elicited
from the user were recovered by reasoning in the reconciliation process. As expected,
this ratio increases as p decreases; skipping less correspondences provides the reasoning
mechanism with more useful information.

6 Related Work

The area of schema and ontology matching was introduced in Section 1. Here, we focus
on further work related to two aspects, namely user feedback and constraint validation.

The post-matching phase typically involves human expertise feedback. Several meth-
ods for measuring post-matching user effort were proposed in the literature including
overall [6] and the work of Duchateau et al. [8]. In our work we use a simple measure of
user feedback iterations and develop a reconciliation framework to minimize it.

User feedback was proposed for validating query results. Jeffery et al. [17] suggest
to establish initial, potentially erroneous correspondences, to be improved through
user input. They use a decision-theoretic approach, based on probabilistic matching
to optimize the expected effects. FICSR [20] obtains user feedback in the form of

query result ranking, taking into account matching constraints. Other works that also
focus on data inconsistency include [26] and [14]. Our work focuses on improving
correspondences at the metadata level, rather than data.

User feedback on matching through crowed sourcing was suggested, among others,
by Belhajjame et al. [2] and McCann et al. [18]. In such lines of work, the main focus is
on aggregating conflicting feedback. In an extended version of our empirical evaluation
(not shown here due to space consideration) we have also shown the use of reasoning for
correcting erroneous feedback. Belhajjame et al. [3] suggest the use of indirect feedback
to improve the quality of a set of correspondences. We seek direct expert feedback,
aiming at the minimization of the interaction.

Constraints were used before for schema mapping, e.g., [11]. Our work focuses on
the use of constraints for matching. Network level constraints, in particular the cycle
constraints, were originally considered by Aberer et al. [1], [5], where they study the
establishment of semantic interoperability in a large-scale P2P network. Probabilistic
reasoning techniques are used for reconciliation without any user feedback.

Holistic matching, e.g., [25] exploits the presence of multiple schemas, similar to
our matching network, to improve the matching process. Nevertheless, this work aims
at improving the initial matching outcome while our work uses the network to identify
promising candidates for user feedback.

7 Conclusion and Future Work

In large-scale data integration scenarios, schema and ontology matching is comple-
mented by a human-assisted post-matching reconciliation process. We analyzed this
process in the setting of a matching network and introduced a formal model of matching
reconciliation that uses human assertions over generic network-level constraints. Using
the reasoning capabilities of ASP and simple yet generic constraints, as well as a heuristic
ordering of the issues a human has to resolve, we were able to reduce the necessary user
interactions by up to 40% compared to the baseline.

In future work, we aim at refining our notion of network-level constraints, which
may include functional dependencies, foreign-key constraints and even domain-specific
constraints that arise from a specific use case. A different, yet pragmatic direction, is
to enforce constraints at a level finer than complete schemas, as schemas are often
composed of meaningful building blocks.

Acknowledgements. This research has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement number 256955
and 257641.

References

1. K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. Start making sense: The Chatty Web
approach for global semantic agreements. Journal of Web Semantics, 1(1):89-114, 2003.

2. K. Belhajjame, N. Paton, A. A. A. Fernandes, C. Hedeler, and S. Embury. User feedback as a
first class citizen in information integration systems. In CIDR, pages 175-183, 2011.

w

10.
11.

12.

13.

14.

15.

17.

18.

20.

21.

22.
23.

24.

25.

26.

K. Belhajjame, N. W. Paton, S. M. Embury, A. A. Fernandes, and C. Hedeler. Incrementally
improving dataspaces based on user feedback. Information Systems, 38(5):656 — 687, 2013.

. P. A. Bernstein, J. Madhavan, and E. Rahm. Generic Schema Matching, Ten Years Later.

PVLDB, 4(11):695-701, 2011.

. P. Cudré-Mauroux, K. Aberer, and A. Feher. Probabilistic Message Passing in Peer Data

Management Systems. In /CDE, page 41, 2006.

. H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations. In Proceedings

of the 2nd Int. Workshop on Web Databases (German Informatics Society)., 2002.

. H. H. Do and E. Rahm. COMA - A System for Flexible Combination of Schema Matching

Approaches. In VLDB, pages 610-621, 2002.

. F. Duchateau, Z. Bellahsene, and R. Coletta. Matching and Alignment: What Is the Cost of

User Post-Match Effort? In OTM, pages 421-428, 2011.

. T. Eiter, G. Ianni, and T. Krennwallner. Answer set programming: A primer. In Reasoning

Web, pages 40-110, 2009.

J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Heidelberg (DE), 2007.

R. Fagin, L. M. Haas, M. A. Herndndez, R. J. Miller, L. Popa, and Y. Velegrakis. Clio: Schema
mapping creation and data exchange. In Conceptual Modeling: Foundations and Applications,
pages 198-236, 2009.

A. Gal. Uncertain Schema Matching. Morgan & Calypool Publishers, 2011.

A. Gal, T. Sagi, M. Weidlich, E. Levy, V. Shafran, Z. Miklés, and N. Hung. Making sense of
top-k matchings: A unified match graph for schema matching. In Proceedings of SIGMOD
Workshop on Information Integration on the Web (IIWeb’12), 2012.

H. Galhardas, A. Lopes, and E. Santos. Support for user involvement in data cleaning. In
DaWaK, pages 136151, 2011.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In /CLP/SLP,
pages 1070-1080. MIT Press, 1988.

. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.

Journal of New Generation Computing, 9(3/4):365-386, 1991.

S. R. Jeffery, M. J. Franklin, and A. Y. Halevy. Pay-as-you-go user feedback for dataspace
systems. In SIGMOD, pages 847-860, 2008.

R. McCann, W. Shen, and A. Doan. Matching Schemas in Online Communities: A Web 2.0
Approach. In ICDE, pages 110-119, 2008.

. E. Peukert, J. Eberius, and E. Rahm. AMC - A framework for modelling and comparing

matching systems as matching processes. In ICDE, pages 1304-1307, 2011.

Y. Qi, K. S. Candan, and M. L. Sapino. Ficsr: feedback-based inconsistency resolution and
query processing on misaligned data sources. In SIGMOD, pages 151-162, 2007.

E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema Matching. The
VLDB Journal, 10(4):334-350, 2001.

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81-132, 1980.

P. Shvaiko and J. Euzenat. Ontology matching: state of the art and future challenges. /EEE
Transactions on Knowledge and Data Engineering, 2012.

K. P. Smith, M. Morse, P. Mork, M. Li, A. Rosenthal, D. Allen, L. Seligman, and C. Wolf.
The role of schema matching in large enterprises. In CIDR, 2009.

W. Su, J. Wang, and F. Lochovsky. Holistic schema matching for web query interfaces. In
EDBT, pages 77-94, 2006.

M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and 1. F. [lyas. Guided data repair.
Proc. VLDB Endow., 4(5):279-289, Feb. 2011.

