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Abstract. Despite serious research efforts, automatic ontology matching still
suffers from severe problems with respect to the quality of matching results.
Existing matching systems trade-off precision and recall and have their specific
strengths and weaknesses. This leads to problems when the right matcher for a
given task has to be selected. In this paper, we present a method for improv-
ing matching results by not choosing a specific matcher but applying machine
learning techniques on an ensemble of matchers. Hereby we learn rules for the
correctness of a correspondence based on the output of different matchers and
additional information about the nature of the elements to be matched, thus lever-
aging the weaknesses of an individual matcher. We show that our method always
performs significantly better than the median of the matchers used and in most
cases outperforms the best matcher with an optimal threshold for a given pair of
ontologies. As a side product of our experiments, we discovered that the major-
ity vote is a simple but powerful heuristic for combining matchers that almost
reaches the quality of our learning results.

1 Motivation

Despite significant research efforts automatic ontology matching is one of the unful-
filled promises of semantic web technologies and might turn out to become the Achilles’
heel for large scale applications of ontologies on the web. So far, a significant number
of automatic matching systems have been developed that address the matching problem
by applying different heuristics, most of which are based on the similarity of representa-
tions. Depending on the kind of heuristics used, these matchers show a varying quality
on different matching problems. This problem is typically addressed by approaches for
selecting the optimal matcher based on the nature of the matching task and the known
characteristics of the different matching systems. Such an approach that has been based
on extensive interviews and tests is described in [14]. Another typical approach for deal-
ing with the problem of adapting to a given matching task is to apply machine learning
techniques for learning the optimal configuration of a matcher for a given dataset [6].
This approach amounts to determining the right heuristics and the appropriate parame-
ters to be used in order to achieve the best result.

The approach proposed in this paper differs from the above mentioned ones by not
signing up to a specific matcher but trying to exploit the results of available matchers



which are treated as a black-box. This has the advantage that the weaknesses of individ-
ual matchers are compensated. Further, the approach settles on the idea that by using
multiple matchers we can benefit from the high degree of precision of some matchers
and at the same time the broader coverage of other matchers to complete the picture
where highly precise matchers did not produce results.

Our approach is verified in a realistic setting on different standardized and open
available datasets - details are discussed in Section 3.2. In particular, we use the results
of the past OAEI campaigns that provide us with a gold standard mapping as well as a
large number of mappings created by different matching systems. Thus, we can train a
classifier on the outcome of different matching systems and learn what combination of
results from different matchers provides the best indication of a correct correspondence.
This proves to outperform previous attempts of combining matchers which have often
been based on ad hoc methods or had to be customized manually.

Related Work. An approach to solve the problem of selecting correspondences from a
set of matcher-generated mappings within the context of argumentation frameworks is
presented in [10]. While it is based on theoretically well founded principles, the authors
describe first experimental results as inconclusive and point out the necessity of further
research. The general idea of combining individual matchers into a combined matching
system constitutes also a principle used inside many existing matchers (e.g. [1, 11]). The
difference, however, is in the way the results of the individual matchers are combined. In
contrast to existing approaches that combine a number of specific predefined classifiers,
our approach is a more general one, as we do not make any assumptions about the
individual matchers to be combined apart from the fact that they provide their results in
a standardized format.

An approach that is very similar to ours is implemented in the GLUE System [5]
that applies a meta-learning approach for generating matching hypotheses on the ba-
sis of multiple local classifiers that are trained on different aspects of the models to be
matched. This approach, however requires that the input for meta learning is generated
by specific probabilistic learning methods, in that case naive Bayes classifiers, that are
integrated using a linear combination at the meta level. In our case, we do not make any
assumptions about the matchers used and apply different machine learning techniques
at the meta level. This makes our approach more widely applicable. Further, the evalu-
ation in [5] is performed on a rather limited set of ontologies without the existence of
commonly agreed reference alignments. We use two widely used benchmark datasets
each containing multiple ontologies that have to be aligned. Looking at the results of [5]
reveals that the meta-learning approach is dominated by the so-called content learner,
which always performs almost as good as the integrated learning approach making the
meta-learning step less important. As reported in section 3.3 our approach is in many
cases significantly better than any of the local matchers which underlines the usefulness
of our approach to meta-level learning.

Three other approaches in line with our ideas are described in [9], [18] and [13].
In [9] support vector machines are used to learn a classifier for mapping correctness
based on a set of simple similarity measures. The classifier is evaluated on the bench-
mark datasets of the ontology alignment evaluation initiative and outperforms existing



matching systems. The setting of the experiments, however, is a rather unrealistic one as
all existing reference mappings are thrown together in one large training set and 10-fold
cross-validation is used for computing the accuracy of the classifier. The results are only
a very unreliable estimation of the behavior that can be expected from the classifier for
a realistic matching problem. To avoid this problem, we carefully design the evaluation
scenario and test our method in a setting that can be expected for a real integration task
(compare section 3.2). Further, the approach uses only similarity values as input for
learning.

In [18] the authors focus on the use of different bayesian classifiers. Again their
feature set is based on string distance measures typically used in matching systems to
derive a syntactic similarity. The experimental results show that there is a strong correla-
tion between different measures and the machine learning approach cannot significantly
improve the results of the best individual measure. Contrary to this, we implemented a
rich set of features describing different aspects of ontologies and correspondences. We
show that using the additional feature set can significantly improve the classification
result. In fact, we even show that confidence values of individual matchers, which are
normally the result of a similarity estimation are not significant and do not contribute
to the learning result.

The approach reported in [13] is probably the most similar to our work. Here deci-
sion trees and rule learners are used to learn rules for integrating the results of different
matching systems, which is more or less the same we do. Similar to [9], the difference
to our work is the restriction to confidence values respectively measured similarities as
the basis for learning. The approach has been evaluated on a subset of the OAEI bench-
mark dataset, but no detailed results of the evaluation are provided making it hard to
judge the quality of the proposed method. Our results suggest that basing the learning
step just on confidence values is not a good choice (compare section 3.3).

Contributions. The contributions of this paper are the following:

– We present a new approach for combining different matching systems using ma-
chine learning techniques.

– We evaluate the approach in a realistic setting using well established benchmark
datasets.

– We show that our approach systematically outperforms existing matching tools in
the sense that it not only produces better results than the median of the matchers but
also outperforms or measures up to the best matching system for every matching
task we investigate.

– We identify a simple but very powerful heuristic for combining matching results
that outperforms the best matching system and almost reaches the performance of
the machine learning approach.

The paper is structured as follows: we first briefly discuss the problem of combining
the result of different matching systems and present our approach for solving this prob-
lem in more detail. The major part of the paper is concerned with describing the setting
and the results of the matching experiments we performed. We motivate the choice of



the datasets and the setting of the experiments and compare our results with three dif-
ferent baselines. We conclude with a discussion of the results and their implication for
ontology matching on the semantic web.

2 A Meta-Level Learning Approach

As indicated in the introduction, we approach the problem of combining different
matching systems by applying machine learning techniques on top of the results pro-
duced by different state of the art matching systems. Our approach is presented in more
details in this section.

2.1 The Problem of Combining Matchers

The ontology matching can be defined as follows [8]: Given two ontologies O1 and
O2, establish semantic relations - also referred to as correspondences - between certain
matchable elements. In this work, we restrict ourselves to the detection of equivalence
correspondences between named concepts and properties. This restriction is motivated
by the state of the art in ontology matching as it is documented in the annual bench-
marking activities of the ontology alignment evaluation initiative (cf. [7] and [3]). Most
of the systems that have successfully participated in the benchmarking activities are
limited to one-to-one mappings between named concepts and properties; only very few
systems produce relations other than equivalence. Another reason for only consider-
ing equivalence is the absence of commonly accepted reference mappings that contain
non-equivalence correspondences.

Besides a set of possible equivalence correspondences, matching systems often pro-
vide information about a level of confidence in the correctness of the correspondence.
The meaning of this level of confidence has been subject of many discussions. Accord-
ing to Bouquet et al. [2] the confidence is

. . . a degree of trust (confidence) in that mapping (notice, this degree does
not refer to the relation R, it is rather a measure of the trust in the fact that
the mapping is appropriate (“I trust 70% the fact that the mapping is cor-
rect/reliable/. . . ”)). The trust degree can be computed in many ways, including
users’ feedback or log analysis.

The only formal requirement on the level of confidence mentioned in [2] is the exis-
tence of some partial order over the confidence values that allows the matcher to order
its results according to its own belief in the correctness of the relation represented. Ac-
cording to the definition of Euzenat and Shvaiko, the result of a matching system can
be described in terms of a set of correspondences of the form O1 : E = O2 : E′ (n)
where E and E′ are either both named concepts or properties and n is a degree of
confidence, normally a real number from the interval [0, 1]. An example could be
O1 : Hotel = O2 : Accomodation (0.6). This means that the matcher has a confi-
dence of 0.6 that concept Hotel in ontology O1 describes the same objects as concept
Accomodation in ontology O2. In this definition, the rather vague notion of confidence



causes serious problems when trying to combine the result of different matching sys-
tems as it cannot be guaranteed that they use the same notion of confidence, and in
many cases the confidence values are not comparable because they have been com-
puted based on fundamentally different principles. This means that if there are two other
matchers that produce the correspondences O1 : Hotel = O2 : Accomodation (0.4)
and O1 : Hotel = O2 : Hotel (0.7) it is not clear how to combine the results. On
the one hand, one might argue as follows: two matchers think that Hotel and Ac-
comodation are equivalent concepts while only one does not agree. This means that
Hotel = Accomodation should be accepted. On the other hand, one might raise an
objection: the confidence in the truth of this statement is rather low compared to the
confidence of the matcher which thinks that Hotel should be matched on Hotel. As dif-
ferent matchers can use very different methods for computing the confidence, there is
no standard way of combining respectively comparing confidences to come to a con-
clusion.1

2.2 Combining Matchers Using Machine Learning

Our solution to the problem of combining different matchers is not to try to directly
combine their output but to use machine learning techniques to train a classifier that
decides whether two elements from different ontologies should be linked by an equiv-
alence relation based on the output of different matching systems. As described above,
this idea is similar to existing work in the area of ontology mapping. A major differ-
ence of our approach is that we do not restrict the learning approach to the output of the
matchers, but add additional features as input for the learning approach.

The rationale for using these additional features is the observation that matchers
more or less heavily rely on the existence of certain structures and information in the
ontologies to be matched. Examples are the existence of additional concept descriptions
encoded in labels or the existence of a WordNet synset the description can be linked to.
In the first case, a matcher that uses information retrieval techniques to compare concept
descriptions will outperform a matcher that just uses string matching on the names of
concepts or properties. In the latter case a matcher that uses WordNet as background
knowledge will detect more correspondences than a matcher that does not. Approaches
like [14] make this information explicit for a limited set of known matching systems.
By including certain properties of the ontologies and the elements to be matched into
the learning process, we are able to take the strengths and weaknesses of matchers into
account without having to know the concrete matchers. The fact that a certain matcher
performs better if concepts can be linked to WordNet is detected in the learning step.
This means that we do not need to know the characteristics of involved matchers as
required precondition.

Figure 1 illustrates the generation of training data for the machine learning step
with respect to the simple case of two matchers. In a first step, the matchers are run

1 As described above, the GLUE approach solves this problem by only allowing individual
matchers that use the same notion of confidence (in this case Bayesian probabilities). Their
approach, however, does not solve the general problem of integrating arbitrary matching sys-
tems in an optimal way.
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Hotel = Hotel true / 1.0 true / 0.9  ... correct
Accomodation = Accomodation true / 0.9 true / 0.9  ... correct
Hotel = Apartment true / 0.6 false / -  ... incorrect
BedAnd... = Hostel false /  - true/ 0.7  ... incorrect
Hotel = Accomodation false / true / 0.6  ... incorrect

Matcher M2
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Congress-Hotel 

Rentals

First-Class-HotelApartment 

Fig. 1. Illustration of the Meta-level Approach to matcher combination

on the ontologies and generate two mappings. Then a training set is created that con-
tains the union of both mappings. Correspondences contained in the reference mapping
are positive examples, those that are not contained are negative examples. Besides the
distinction between positive and negative examples indicated by the ’target’ attribute,
attributes include the results of the individual matchers in terms of an attribute indicat-
ing whether the correspondence was found by a certain matcher and what confidence
was assigned by that matcher. A number of other features f1, . . . , fn that are extracted
from the results of the matchers and the ontologies themselves are included. These fea-
tures are motivated and described in detail in the following section.

The result of the learning step is a classifier modeling the training data set. Given
a new matching problem, this classifier can be used to predict the correctness of cor-
respondences. For this purpose, the same set of matchers used in the training phase
is executed on the new matching problem. The resulting correspondences are used as
input for the classifier together with the additional features that have to be computed
for the new situation as well. The learned classifier can now be applied to the resulting
descriptions of correspondences. In doing so, the correctness of a correspondence is
decided based on matcher results and additional features.



2.3 Description of Features

The following set of additional features were used as input for our learning experiments.
These features can roughly be separated into four groups:

1. Matcher Features: This group contains features that reflect the results of the in-
volved matchers.

Matcher Found: a boolean feature for each matcher that is true, if the correspond-
ing matcher returned the correspondence in question as part of its mapping and
false otherwise.

Matcher Confidenc: the confidence value specified by a particular matcher for a
given correspondence.

Matcher Vote: a numerical feature with values between 0 and 1 reflecting the per-
centage of matchers that returned the correspondence as part of their mapping.
Matcher Vote is a feature that follows the idea of a voting model to decide
wether a given correspondence should be taken as correct. By modeling the
feature this way we allow the classifier to learn how many individual votes are
needed in combination with other feature values to decide the correctness of a
correspondence.

2. Ontology Features: These features describe global characterstics of the two on-
tologies.

Ontology Ratios: three features representing the ratio of the number of concepts,
object properties and datatype properties between the two ontologies. We use
the reciprocal value of the ratio, if the original value is above 1, thus the ratios
are always between 0 and 1 with smaller values reflecting bigger differences in
the number of matchable elements.

3. Lexical Features: As the lexical comparison of the texts belonging to the match-
ing candidates are a common source of information for some matchers, we try to
characterize these texts in this group of features.

String Equivalence: a boolean feature that is true, if the normalized id of both
elements are identical.

Number of Token Ratios: These features are calculated in the same way as the
Ontology Ratios and compare the number of tokens in id, label and comment.
The rationale behind these features is the idea that lexical comparisons on these
strings can only be effective if there is a similar amount of text available for
both concepts. We decided for the number of tokens as a measure for the length
of a text, as every token is a potential source for further analysis techniques.

Mean Significance: We use the well known TF/IDF measure to calculate the mean
significance S of tokens in a given text T against a text base D containing some
other texts. With tft for the number of occurrences of token t in T and dft for
the number of texts containing token t in D, we get

S =
1
|T |
·
∑
t∈T

(
(1 + log(tft)) · log

(
|D| · df−1

t

))
. (1)

We use Equation 1 to calculate the mean significance of the comment against
the id and the label, as well as the mean significance of the label against the id.



Both features are calculated for each element in the correspondence in ques-
tion. The mean significance is a measure for the additional information that can
be obtained from a text (like the comment), if other texts (like id and label) are
already known.

Wordnet Coverage. As Wordnet is commonly used to get further information about
common terms that might occur in the id or label of an element, we intro-
duced the Wordnet Coverage as a feature that returns a nominal value that says
whether none, one or both of the elements contain terms that can be found in
Wordnet. The Wordnet Coverage is calculated separately for id and label.

4. Structural Features: These features reflect the structural environment of the two
elements in question.

Type of Correspondence: a nominal feature that characterizes the type of elements
involved in a given correspondence. The result may be one of four values:
Concept - Concept, Object Property - Object Property, Datatype Property -
Datatype Property and Object Property - Datatype Property. This feature has
been introduced to enable the classifier to learn in how far different matching
systems might perform better with respect to matching certain types of onto-
logical elements.

Node position. The Node Position is used to get information about two special
cases, namely, if none, one or both of the elements linked by a correspondence
are root or leaf nodes in their respective ontologies. Obviously, techniques like
e.g. similarity flooding will perform differently depending on the position of
an element within the ontological hierarchy.

3 Experiments

We tested our approach using systematic experiments on the benchmark datasets pro-
vided by the ontology alignment evaluation initiative. The experiments, which are de-
scribed in more detail in the following, show that our approach systematically outper-
forms state of the art matching systems.

3.1 Datasets

The ontologies used in our experiments have been part of the Ontology Alignment Eval-
uation Initiative (OAEI) over the previous years. The OAEI offers several tracks and
sub tracks concerned with different types of matching problems.2 We can distinguish
between those tracks where automatically generated mappings are compared against a
reference mapping (also referred to as gold standard) and tracks using other evaluation
techniques. Only the matching problems of the former tracks can be used as both input
and basis for evaluating our approach and are described in the following.

The test set of the benchmark track is based on one particular ontology #101 dedi-
cated to the very narrow domain of bibliography and a number of alternative ontologies
of the same domain. It consists of a series of synthetic ontologies (#1xx and #2xx se-
ries) and four real world ontologies #301 to #304 which have to be matched on ontology

2 Detailed information available at http://oaei.ontologymatching.org/2008/.



#101. In our experiments we only consider test cases #301 to #304 because we are in
particular interested in how far our approach can successfully be applied to realistic
matching problems. The test set of the conference track consists of 15 ontologies where
each pair of ontologies constitutes a matching problem. These ontologies have been
developed as part of the OntoFarm project [19] and describe the domain of conference
organization covering the structure of a conference, involved actors, as well as issues re-
lated to submission and review process. Since october 2008 reference mappings for all
possible combinations between five of these ontologies are available which we used in
our experiments. These ontologies are CMT, ConfTool, Ekaw, Iasted and Sigkdd. The
conference dataset can be seen as a much harder testcase compared to the benchmark
dataset that is less heterogeneous and has been extensively studied over the past years.
This claim is also supported by our experimental results reported in Section 3.3.

Since we base our experiments on relevant OAEI datasets, we can make use of
a rich set of diverse matching systems. In 2008 thirteen matching systems submitted
mappings to the OAEI. We only included those matching systems generating a non
boolean confidence value in the range [0, 1] because we expected the confidence value
to be an important feature for our learning approach. Matchers considered are Aroma
[4], ASMOV [11], DSSim [15], Lily [20], RiMOM [22], SAMBOdtf and SAMBO [12]3.
While all of these systems submitted mappings for the benchmark track, only ASMOV,
DSSim and Lily participated in the conference track. Thus, for each matching problem
of the benchmark track there are mappings available generated by seven state of the art
matching systems implementing diverse matching approaches, while for the conference
track we can access the mappings of three matching systems.

3.2 Experimental Setup

Figure 2 shows the structure of the data sets and the derived experimental setting. On
the left side the structure of the benchmark dataset is depicted as tree. Ontology #101
can be seen as a central knowledge base with several knowledge sources linked to it via
mappings. Contrary to this, the conference data set on the right side is a full mesh where
no ontology plays an outstanding role. We assume a setting, where a system of linked
ontologies, e.g. #101, #301, #302 and #303 (colored white) exists. These ontologies
have been linked in the depicted way and the mappings have been set up and verified
by domain experts. We further assume that another knowledge source has to be added
to this structure, in this case ontology #304. Given a set of matching systems respec-
tively automatically generated alignments, we can profit from the reference mappings
available in the way described above and learn a classifier C.

Once we learned a classifier C, we apply it on the set of automatically generated
mappings MAroma, . . . ,MSAMBOdtf. We compare the mapping MC , which consists of all
those correspondences classified as correct by applying C, against reference mapping
R#304 to compute precision p, recall r and f-measure f , the standard measures for eval-
uating mappings, defined as follows:

p (M, R) =
|M ∩R|
|M | r (M, R) =

|M ∩R|
|R| f (M, R) =

2 · p (M, R) · r (M, R)

p (M, R) + r (M, R)

3 We did not include results of matching system SPIDER [17] due to its focus on generating
complex non-equivalence correspondences not included in reference mappings.



#301 #302 #303 #304
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Fig. 2. Mapping structure of the benchmark (tree on the left) and conference data set (full mesh
on the right) and experimental setting.

This way we evaluate the performance of our approach with respect to sub testcase
#304. We apply the same procedure for the other three sub testcases of the benchmark
dataset.

For the conference dataset we apply a similar approach: We assume that a system of
four pairwise mapped ontologies (Sigkdd, CMT, ConfTool and Iasted) exists and that
another ontology (in this case EKAW) has to be linked with all of these ontologies.
Here we use the pre-existing mappings between the four ontologies as training data and
evaluate it on the mappings between the new ontology and the existing ones (dashed
lines in Figure 2). We use each 4:1 split of the ontologies as a test case and aggregate
the results.

Baselines. We used a number of baselines to compare our results to the state of the art
in ontology matching. These baselines are described in the following. The first one is
motivated by the usual approach to select one matcher from the set of available systems
for a given task. This corresponds to selecting a mapping from MAroma, . . . ,MSAMBOdtf.
Without any additional knowledge this choice will be at random. We computed the
f-measure for all mappings MAroma, . . . ,MSAMBOdtf and picked out the median of all
measured values as first baseline to compare our results with. This baseline is referred
to as median matcher baseline in the following.

In [14] the authors argue that it is possible to choose a well-suited matcher for
a particular matching task given appropriate metadata describing the set of available
matching systems. Although this metadata will often not be available and the approach
does not ensure to choose the best system, we included a second baseline in our exper-
iments by comparing our approach with the best mapping available for each particular
matching task. This baseline will be referred to as best matcher baseline.

A more detailed analysis revealed that in many cases the threshold used for gen-
erating the mappings was not optimal with respect to the f-measure. Therefore, we
included a third baseline where we successively increased the threshold to find the op-
timal threshold for each system with respect to each particular matching problem. This
baseline is referred to as optimal threshold baseline and models the situation where the
matcher is successfully adapted to the given matching task as suggested in [6].

Notice that it will not be easy to exceed any of these three baselines. In particu-
lar a comparison with the optimal threshold baseline will be a hard criterion for our
approach. Another obvious baseline would be to compute the union of all mappings
M1 ∪ . . . ∪ Mn. This baseline was used in [10]. Our experiments revealed that the



union baseline cannot even reach the median matcher baseline for any of the described
testcases. Therefore we resigned to include it in our experiments.

Implementation. Our experiments were conducted by means of the Weka Toolkit [21].
We used two different machine learning algorithms, on the one hand the decision tree
algorithm J48, the Weka implementation of the last publicly available version of C4.5
[16], and on the other hand the Weka implementation for a Bayesian network Learner,
BayesNet, which, for our data turned out to be equivalent to the Naive Bayes approach
in principle4. All experiments were conducted with the default settings (2005 book
version) making our experiments easily reproducible.

3.3 Results

As described above, [18], [13] and [9] propose approaches where machine learning
techniques have been applied to a feature set only consisting of confidence values re-
spectively measured similarities. Therefore, in a first set of experiments we focussed on
a comparable setting based on a reduced feature set which consist of a single group of
features, namely the generated confidence values. Table 1 lists detailed results for each
subtestcase as well as aggregated values for the benchmark and conference dataset.

With respect to the benchmark testcases we could beat the median baseline with
the use of both decision trees and Naive Bayes by approximately 3%. In particular, we
outperformed the median baseline for each individual testcase. Although this baseline
seems to be the most realistic one, the improvements are only minor and thus the best
matcher baseline could not be reached.

With respect to the conference testcase we observe a different behavior. While de-
cision trees perform very well (we measured an improvement of 13.3% in average) no
significant difference between Naive Bayes and the median baseline can be observed. A
look at detailed results reveals, that this has been mainly caused by the bad performance
for subtestcase ConfTool. A posteriori, this outlier can be explained by an unfortunate
choice in the discretization of the numerical attributes. Overall, these results partially
coincide with our expectations based on existing studies cited above. A feature set re-
stricted to confidences (or similarities) slightly improves the results, but cannot optimize
the results to a significant degree in general.

In a second series of experiments we used the complete set of features listed in
section 2.3. The results are presented in Table 2. For the benchmark dataset we observe
only minor changes compared to our first experiments. Again, we measure only slight
improvements with respect to the median baseline. This might be caused by a ceiling
effect, since most of the input mappings were highly precise contrary to the conference
dataset. Since testcase #301 to #304 have been part of the OAEI evaluation and with
reference mappings open available, an overfitting of some matching systems cannot be
excluded. Thus, it is extremely hard to improve the input by a significant degree.

4 The results differ slightly to the default settings of the Weka NaiveBayes implementation, as
the BayesNet implementation uses a supervised discretization step, which is not the default for
NaiveBayes.



Baselines Decision Tree Naive Bayes

Ontology M(edian) B(est) O(ptimal) results ∆-M ∆-B ∆-O results ∆-M ∆-B ∆-O

#301 0.825 0.877 0.877 0.855 +0.030 -0.022 -0.022 0.863 +0.038 -0.014 -0.014

#302 0.709 0.753 0.753 0.753 +0.044 +0.000 +0.000 0.753 +0.044 +0.000 +0.000

#303 0.804 0.860 0.891 0.816 +0.012 -0.044 -0.075 0.860 +0.056 +0.000 -0.031

#304 0.940 0.961 0.961 0.967 +0.027 +0.006 +0.006 0.954 +0.014 -0.007 -0.007

Average 0.820 0.863 0.871 0.848 +0.028 -0.015 -0.023 0.857 +0.038 -0.005 -0.013

CMT 0.435 0.512 0.512 0.500 +0.065 -0.012 -0.012 0.400 -0.035 -0.112 -0.112

ConfTool 0.471 0.484 0.484 0.474 +0.003 -0.010 -0.010 0.203 -0.268 -0.281 -0.281

Ekaw 0.411 0.471 0.516 0.593 +0.182 +0.122 +0.077 0.441 +0.030 -0.030 -0.075

Iasted 0.403 0.478 0.489 0.649 +0.246 +0.171 +0.160 0.453 +0.050 -0.025 -0.036

Sigkdd 0.390 0.462 0.475 0.560 +0.170 +0.098 +0.085 0.575 +0.185 +0.113 +0.100

Average 0.422 0.481 0.495 0.555 +0.133 +0.074 +0.060 0.414 -0.008 -0.067 -0.081

Table 1. Results based on features restricted to confidences.

With respect to the conference dataset we observe a dramatic change to the positive.
Adding the complete feature set we measured an enhancement of the average f-value
from 55.5% to 65.7% for decision trees and from 41.4% to 63.1% for Naive Bayes clas-
sifiers. This improvement topped our expectations. Obviously, our meta-level learning
approach detects important interdependencies between those aspects described by the
set of chosen features. Thus, we not only outperformed the median baseline but also the
best matcher baseline. Even the best matcher with an optimal threshold obtains 16.2%
respectively 13.6% worse results for the conference dataset.

Baselines Decision Tree Naive Bayes

Ontology M(edian) B(est) O(ptimal) results ∆-M ∆-B ∆-O results ∆-M ∆-B ∆-O

#301 0.825 0.877 0.877 0.883 +0.058 +0.006 +0.006 0.830 +0.005 -0.047 -0.047

#302 0.709 0.753 0.753 0.759 +0.050 +0.006 +0.006 0.753 +0.044 +0.000 +0.000

#303 0.804 0.860 0.891 0.816 +0.012 -0.044 -0.075 0.851 +0.047 -0.009 -0.040

#304 0.940 0.961 0.961 0.960 +0.020 -0.001 -0.001 0.966 +0.026 +0.005 +0.005

Average 0.820 0.863 0.871 0.855 +0.035 -0.008 -0.016 0.850 +0.031 -0.012 -0.020

CMT 0.435 0.512 0.512 0.580 +0.145 +0.068 +0.068 0.546 +0.111 +0.034 +0.034

ConfTool 0.471 0.484 0.484 0.572 +0.101 +0.088 +0.088 0.480 +0.009 -0.004 -0.004

Ekaw 0.411 0.471 0.516 0.621 +0.210 +0.150 +0.105 0.659 +0.248 +0.188 +0.143

Iasted 0.403 0.478 0.489 0.746 +0.343 +0.268 +0.257 0.750 +0.347 +0.272 +0.261

Sigkdd 0.390 0.462 0.475 0.766 +0.376 +0.304 +0.291 0.723 +0.333 +0.261 +0.248

Average 0.422 0.481 0.495 0.657 +0.235 +0.175 +0.162 0.631 +0.209 +0.150 +0.136

Table 2. Results based on a complete feature set.

The significant difference caused by taking into account the full feature set raises
doubts about the importance of confidence values. Thus, in a third series of experiments
we removed the confidence values from the complete feature set. Results presented in
Table 3 confirm our scepticism about the validity of confidence values. Decision trees



performed as good or even better for all of our nine sub testcases. With suppressed
confidences a Naive Bayes classifier performs in six sub testcases better, in two cases
we observed no changes, and only in one case we measured a slight decline. In average
for all of our four combinations of dataset and classifier we nearly measure up or even
clearly exceed the optimal threshold baseline. Notice again, that this baseline requires
a perfect knowledge about the best matcher and its optimal threshold with respect to a
certain matching task that is not available in nearly all realistic scenarios.

One major result of our experiments is concerned with the role of confidence val-
ues. By comparing the results based on three feature configurations we conclude that
confidence values without additional features cannot be exploited successfully by a
meta-level learning approach. Moreover, given a well designed comprehensive set of
additional features, confidence values have even negative effects on the performance
of the overall approach. Notice that our feature set still contains matcher specific in-
formation. These are the features describing wether a correspondence has been found
by a particular matcher and the aggregated feature reflecting how many systems found
the correspondence. These features are obviously sufficient to model interdependencies
between certain characteristics of a particular correspondence and its correctness.

Baselines Decision Tree Naive Bayes

Ontology M(edian) B(est) O(ptimal) results ∆-M ∆-B ∆-O results ∆-M ∆-B ∆-O

#301 0.825 0.877 0.877 0.883 +0.058 +0.006 +0.006 0.841 +0.016 -0.036 -0.036

#302 0.709 0.753 0.753 0.759 +0.050 +0.006 +0.006 0.753 +0.044 +0.000 +0.000

#303 0.804 0.860 0.891 0.816 +0.012 -0.044 -0.075 0.860 +0.056 +0.000 -0.031

#304 0.940 0.961 0.961 0.960 +0.020 -0.001 -0.001 0.966 +0.026 +0.005 +0.005

Average 0.820 0.863 0.871 0.855 +0.035 -0.008 -0.016 0.855 +0.035 -0.008 -0.015

CMT 0.435 0.512 0.512 0.625 +0.190 +0.113 +0.113 0.597 +0.162 +0.085 +0.085

ConfTool 0.471 0.484 0.484 0.572 +0.101 +0.088 +0.088 0.526 +0.055 +0.042 +0.042

Ekaw 0.411 0.471 0.516 0.621 +0.210 +0.150 +0.105 0.667 +0.256 +0.196 +0.151

Iasted 0.403 0.478 0.489 0.746 +0.343 +0.268 +0.257 0.740 +0.337 +0.262 +0.251

Sigkdd 0.390 0.462 0.475 0.766 +0.376 +0.304 +0.291 0.732 +0.342 +0.270 +0.257

Average 0.422 0.481 0.495 0.666 +0.244 +0.184 +0.171 0.652 +0.230 +0.171 +0.157

Table 3. Results based on a feature set where confidences have not been included.

4 Conclusions

There are a couple of implications resulting from our work. Some of them have already
been discussed in connection with the motivation of this work and the contribution to
the state of the art. Others where hidden in the results of the matching experiments. We
now briefly recall the major implications and point to some of the hidden aspects.

First of all, we have shown that machine learning is an adequate - maybe the best -
way of combining the results of different heterogeneous matching systems. At the same
time, we have shown that it is not enough to base the learning step on the results of
the matching systems alone, but that additional features representing and aggregating



information about the mapping and the mapped ontology have to be taken into account.
These features enable us to put matcher results into context and get a better basis for
deciding when to trust a certain matcher. We have also shown, that the confidence mea-
sures produced by matching systems are almost meaningless if these contextual features
are known as they do not improve the result. A hidden implication of this observation is,
that we can also apply our method on the result of matchers that do not return a degree
of confidence. This significantly broadens the applicability of our approach.

Another very interesting and important result of our work is hidden in the classifiers
learned. Analyzing the decision trees generated for the two datasets we discovered that
the most significant feature was the fraction of matchers that found a correspondence.
From this observation, we can derive a straightforward heuristic for combining match-
ers. In particular, it turned out that just following the majority of the matchers involved
produces results that are almost as good as the results reported in the last section. After
making this observation, we compared the result of the majority vote heuristic with our
baselines. While on the benchmark dataset the result of the majority vote was compara-
ble with the best matcher, it significantly outperformed all baselines on the conference
data set: While the baselines ranged from 0.422 to 0.495 on average, the majority vote
reached an average of 0.633, which is more than 25% better than the best baseline.
For comparison the averages we reached on this dataset with the two machine learning
methods where 0.666 and 0.652 which is only about 5% better than the result of the
majority vote.

So far, we have shown that our approach works very well in a setting where an exist-
ing system of ontologies is to be extended with links to additional ontologies about the
same domain. This is a very realistic setting for concrete applications as there is often a
central ontology, i.e. the Gene Ontology many other ontologies are connected to. From
a theoretical point of view, it would be interesting to see how far we can generalize this
to arbitrary matching problems, i.e. it would be interesting to test whether the classifier
learned for the benchmarking dataset can be applied to the conference dataset and vice
versa. This would further enhance the usefulness of your method as there is no need to
have reference mappings for new application domains, but classifiers could be trained
on existing mapping sets like the ones we used in our experiments or the ones available
in the area of medicine.5 Investigating this question in detail will be subject of future
work.
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