
Alignment of Heterogeneous Ontologies: A Practical Approach to Testing
for Similarities and Discrepancies

Neli P. Zlatareva
Department of Computer Science, Central Connecticut State University

1615 Stanley Street, New Britain, CT 06050, USA
zlatareva@ccsu.edu

Maria Nisheva

Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”
5 James Bourchier Blvd., Sofia, Bulgaria

marian@fmi.uni-sofia.bg

Abstract

Ontology alignment is regarded as one of the core tasks in many
Web services. It is concerned with finding the correspondences
between separate ontologies by identifying concepts with the
same or similar semantics in order to resolve semantic
heterogeneity between them. Existing ontology alignment
techniques are tailored towards today’s ontology languages,
which are not capable of representing and reasoning with
uncertain or incomplete information. It is expected, however, that
future Semantic Web services will rely on the development and
use of proper domain ontologies. Alignment of such ontologies
goes beyond standard concept matching, and requires non-
standard logic processing. In this paper, we present an alignment
technique utilizing an alternative, rule-based representation,
which provides a uniform framework for representing and
mapping heterogeneous ontologies. To justify and illustrate our
research, we describe an example application scenario.

Introduction

The World Wide Web (WWW) holds an enormous amount
of information and provides an astonishing number of
information services, which nowadays are primarily
intended to be used by people. The next generation of the
WWW, the Semantic Web, will make this information
accessible to computers by annotating and explicating it
using ontologies “that are composed of concepts that are to
some extent valid in a domain, relations that hold to some
degree of certainty, and rules that apply only in some
cases” (Davis, Studer, and Warren 2006). It is expected
that a huge number of Web ontologies will be created,
some of them intended to be used by the same Semantic
Web services. This can only be possible if the consistency
and interoperability between cooperating ontologies is
assured. The process, referred to as ontology alignment (de
Bruijn et al. 2006), is intended to carry out this task. It
is commonly implemented by the so-called Match

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

operator, which takes two or more ontologies as an input,
and returns a specification of the correspondences between
them. Depending on the way ontologies are compared, we
distinguish between schema-based and instance-based
matching. The former accounts for different properties of
the concepts (such as name, for example) and uses
similarity measures to evaluate the correspondence
between them (Noy and Musen 2000), while the latter
compares instances of the concepts (Doan et al. 2004).
Some alignment algorithms, such as the one presented in
(Giunchiglia and Shvaiko 2003), compare the structure of
ontologies based on the mapping between their elements.
All of these alignment algorithms are tailored towards
current ontology languages, which were shown to have
limited representational and computational power to fulfill
the needs of a broad range of Web services dealing with
incomplete and/or uncertain information, or requiring more
sophisticated reasoning capabilities (beyond those offered
by Description Logics upon which they are built on). Such
capabilities, ranging from conventional monotonic
backward and forward chaining to various types of default
reasoning, are inherent to rule-based languages,
traditionally used for building knowledge-based systems
and intelligent agents. Rules have already been shown to
be very effective in various Web applications such as
identifying matches between different data sets, e-learning,
multimedia collection indexing, skill finding, device
interoperability, etc. (Dean 2004; Antoniou and van
Harmelen 2004). It is widely admitted that rules will be a
major part of the Semantic Web, and critical for adapting
AI techniques in a broad range of Web applications.

In this paper, we describe a hypothetical application
scenario which illustrates the need for a rule-based
representation capable of expressing heterogeneous
(mixed) ontologies in a uniform fashion, and supporting
non-monotonic reasoning. The problem addressed here is a
special case of ontology alignment, where we are
interested not only in establishing the correspondences

between two ontologies, but also in identifying the
discrepancies between them and explicating the culprits for
those discrepancies. Because ontologies can be encoded in
different formats, we advocate that finding an alternative
representation in which cooperating ontologies can be
adequately mapped, will greatly simplify their alignment.
We show how the Contradiction-tolerant Truth
Maintenance System (CTMS) (Zlatareva 1992) can be
utilized as a common representation for cooperating
ontologies, and how its inference engine can be adapted to
carry out the alignment procedure.

Motivation Example

Consider a university domain, where programs are
described in terms of their basic curriculum as taxonomies
of courses, and a course catalog provides course
descriptions. Figures 1 and 2 illustrate computer science
curriculum at universities A and B.

Assume John is interested to transfer out of university A,
but he wants to make the most of the credits acquired there.
In addition to the CS courses taken at university A, John
has taken some non-CS courses, which are common
prerequisites for CS courses. Since those are not part of the
basic CS-course taxonomy, they are not shown on Figures
1 and 2. John is looking for a CS program which offers a
specialization track in AI, and he is especially interested in
a course on Semantic Web. University B is identified by
him (or by his helper Web agent) as a possible choice. Can
John transfer the two senior courses (Computer
Architecture and Networking) that he has already taken at
university A, and can he continue with AI specialization
track without taking extra prerequisites at university B?

The first step towards processing John’s query is to set up
a common semantic framework for the two ontologies.
This is typically done by establishing the so-called
semantic bridges (Maedche et al. 2002; Ghidini and
Serafini 2006) in a form of rules, which allow entities
(concepts, relations, etc.) from one ontology to be
connected to the entities of the other. This process is not
always trivial. Consider, for example, university A course
called “Data Structures” and university B course called
“JAVA Programming 2”. Note also that there is another
course at university B called “Data Structures”. The
mapping procedure must be able to bridge the university A
“Data Structures” course to university B “JAVA
Programming 2” course rather than to university B “Data
Structures” course. Finding a mapping between relations of
the course ontologies should allow queries like “Is the
networking course at university A eligible for transfer to
university B?” to be answered.

As pointed out in (Ghidini and Serafini 2006), current
ontology languages make it possible to express mappings

between homogeneous components of different ontologies
(that is, concepts to concepts, relations to relations, etc.).
However, in many Semantic Web applications a need may
arise to establish semantic relations between heterogeneous
components. In our example, some of the relations between
the courses must be acquired from course catalogs, which
are not part of the course taxonomy.

Figure 1: A taxonomy of courses at university A

Figure 2: A taxonomy of courses at university B

Next, we define a specification format for representing
heterogeneous ontologies and describe a simple mapping
procedure to establish correspondences between their
concepts and relations.

Specification of Heterogeneous Ontologies

In heterogeneous ontologies, data is not specified in a
common format. Assume some data is defined
declaratively, and other data is defined procedurally. Here
is our working definition for an ontology, which accounts
for both data specifications.

Intro to
Algorithms

Computer
Organization

Computer
Architecture

Data Bases

Data
Structures

Intro to
Programming

Networking

JAVA Prog-
ramming 1

JAVA Prog-
ramming 2

Computer
Organization

Data
Structures

Computer
Architecture

Semantic Web

Networking Artificial
Intelligence

Data Bases

Definition 1: Let ontology O = {SchemaSet ∪ RuleSet},
where:

a) SchemaSet is a set of concepts describing classes of
entities in a domain {C1, C2, …, Ck}, such that
Ci = <Ni, Di, Si>, where:

• Ni is a term (the name of the concept);
• Di is a list of “property – value” pairs providing

the syntactic definition of the concept;
• Si is a list of semantically equivalent to Ni terms.

b) RuleSet is a set of implications representing
relations between concepts.

In our example domain, formal concept definitions can be
acquired from informal course descriptions using
keywords, and can be represented in the following format:

 Ci = <CS-designator,
 <CS-prereqs : {CS-designator},
 non-CS-prereqs : {non-CS-designator},
 credits : number>, {CS-designator}>

In XML, this format is defined as follows:

<!ELEMENT course (course_name, course_attributes,
 equiv_names)>
<!ELEMENT course_name (#PCDATA)>
<!ELEMENT course_attributes (CS_prereqs,
 non_CS_prereqs, credits)
<!ELEMENT CS_prereqs (prereq_item*)>
<!ELEMENT prereq_item (#PCDATA)>
<!ELEMENT non_CS_prereqs (prereq_item*)>
<!ELEMENT credits (#PCDATA)>
<!ELEMENT equiv_names (equiv_item*)>
<!ELEMENTS equiv_item (#PCDATA)>

Example descriptions of CS courses at universities A and
B, respectively, are given below:
<course>
 <course_name>Data Structures</course_name>
 <course_attributes>
 <CS_prereqs>
 <prereq_item>Introduction to
 Programming</prereq_item>
 </CS_prereqs>
 <non_CS_prereqs></non_CS_prereqs>
 <credits></credits>
 </course_attributes>
 <equiv_names>
 <equiv_item>CS-2</equiv_item>
 <equiv_item>Object-Oriented-
 Programming</equiv_item>
 </equiv_names>
</course>
 <course>
 <course_name>JAVA-Programming 2</course_name>

 <course_attributes>
 <CS_prereqs>
 <prereq_item>JAVA-Programming-1
 </prereq_item>
 </CS_prereqs>
 <non_CS_prereqs></non_CS_prereqs>
 <credits></credits>
 </course_attributes>
 <equiv_names>
 <equiv_item>CS-2</equiv_item>
 <equiv_item>Functional-Programming</equiv_item>
 </equiv_names>
</course>

A simple matching procedure will be sufficient in this case
to establish name equivalences between concepts. In our
example ontologies, the following list of name
equivalences will be returned:

{Intro-to-Programming ≅ JAVA-Programming-1 ≅ CS-1,
 Data Structures ≅ JAVA-Programming-2 ≅
 ≅ Functional- Programming ≅ CS-2,
 Intro-to-Algorithms ≅ Data-Structures ≅ CS-3}

The second component of our domain specification,
namely the relations between concepts, is shown as course
taxonomies on Figures 1 and 2. Rules are natural way to
represent and process such taxonomies. It is interesting to
note, however, that an adequate representation of domain
semantics requires that we distinguish between two types
of rule (course) prerequisites:

1. Prerequisites explicitly shown in course taxonomies

(that is, reflecting relations between CS courses). We
can interpret those as “required” (John cannot take an
AI course at university B without a Data Structures
course; recall, however, that the later is not the same
as the Data Structures course at university A).

2. Prerequisites not shown in course taxonomies, but
spelled out in course descriptions (that is, reflecting
“CS – non-CS” relations). We can interpret those as
“desirable” (John is expected to have a Discrete Math
course in order to take AI at university B; however, he
may still be allowed to take AI without Discrete Math
with AI professor’s permission, but John may not get
it, in which case he cannot take the course).

Alignment of Web Ontologies: Basic
Definitions and Notation

Let O1 = {SchemaSet1 ∪ RuleSet1} and O2 = {SchemaSet2

∪ RuleSet2} be two propositional ontologies. Then, the
degree of correspondence between O1 and O2 is defined as
follows.

Definition 2: O1 and O2 are fully compatible iff:

a) The syntactic definitions of the concepts comprising

their schema sets match, i.e.
i. ∀ Ci(1) ∈ SchemaSet1 � ∃ Cj(2) ∈

SchemaSet2 , such that Ni(1) = Nj(2) or Ni(1)
∈ {Sj2 , …, Sjk}(2).

ii. ∀ Cj(2) ∈ SchemaSet2 � ∃ Ci(1) ∈
SchemaSet1, such that Nj(2) = Ni(1) or Nj(2)
∈ {Si1 , …, Sil}(2).

b) Transitive closures of O1 and O2 contain only
semantically equivalent sets of concepts, i.e. concepts
which derivation paths are exactly the same. We shall
say that such concepts strongly agree.

Definition 3: O1 and O2 are partially compatible iff:

a) A subset of concepts comprising SchemaSet1 and

SchemaSet2 match.
b) Transitive closures of O1 and O2 contain subsets of

concepts that strongly agree.

Definition 4: O1 and O2 are incompatible if there exists a
concept from SchemaSet1 which semantically contradicts a
concept from SchemaSet2, and all other concepts depend
on them.

If two ontologies are fully or partially compatible, their
complete or partial alignment is possible; incompatible
ontologies can not be aligned.

The rest of the paper presents a effective procedure
intended to test if two ontologies are fully or partially
compatible. It returns not only the correspondences, but
also the discrepancies between participating ontologies,
and provides an explanation to justify the detected
semantic similarity between them. The underlying idea is
to translate the aligned heterogeneous ontologies into an
alternative homogeneous representation where implicit
relations between concepts are explicated and processed.
We use the Contradiction-tolerant Truth Maintenance
System (Zlatareva 1992) as a common representation
framework, and show how its inference engine can be
utilized to carry out the alignment task.

Representing Web Ontologies as CTMS Rules

The Contradiction-tolerant TMS (CTMS) was originally
introduced as an alternative to other non-monotonic
formalisms to allow for: (i) efficient processing of some
types of non-monotonic theories, (ii) maintaining
statements with different degrees of belief, not just true,
false, and unknown; and (iii) reasoning in the presence of a
logical contradiction, instead of halting and waiting until
the contradiction is resolved. Implementation of these

features is largely due to the fact that CTMS employs two
types of inference rules, T-rules and P-rules. T-rules are
regular monotonic rules, while P-rules are non-monotonic
rules of the form:

(Premise-1, …, Premise-n) (Assumption-1, …,
 Assumption-m) � Conclusion

Here Premise-1, …, Premise-n are monotonic supporters
comprising the minimal evidence for Conclusion, and
Assumption-1, …, Assumption-m provide additional
evidence intended to strengthen the truth of Conclusion.
Such rules will fire if the minimal evidence for Conclusion
has been established. In turn, Conclusion will be derived
with different degrees of belief depending on the
accumulated evidence in its favor. For example, given the
rule (BirdTweety) (¬PenguinTweety, ¬OstrichTweety) �
FliesTweety, if BirdTweety is true then we can derive
FliesTweety, even though we do not know if Tweety is a
penguin or an ostrich. The rule
(PositiveResultOfTheBodyScanner) (Headache, Neurosis,
MentalDisturbances) � DiagnoseBrainTumor, implies a
brain tumor as a possible diagnosis if
PositiveResultOfTheBodyScanner is true, even though
additional symptoms such as headache, neurosis and
mental disturbances, which usually accompany the disease,
are not observed in a particular case. If one, or more, or all
in the extreme case, of the assumptions of such rules
become true, then the degree of belief in Conclusion
should increase. In such cases, the so-called duplicate rules
are used instead of original P-rules. Duplicate rules are
variants of the corresponding P-rules to account for the
additional evidence accumulated for Conclusion and revise
its belief status accordingly. For more on CTMS syntax
and semantics, see (Zlatareva 1992).

Relative to our example domain, CTMS-rules have the
following format:
(CS-1, …,CS-n) (non-CS-1, …, non-CS-m) � CS-i

Here CS-1, …, CS-n are the required prerequisites for CS-i
acquired from course taxonomies shown on Figures 1 and
2, and non-CS-1, …, non-CS-m are “desired” or
“assumed” prerequisites acquired from concept definitions.
If such rule fires, conclusion CS-i will be recorded together
with its justification as follows:
CS-i: (CS-1, …, CS-n) (non-CS-1, …, non-CS-m).

The resulting sets of CTMS rules describing example
ontologies are shown below.

University A rules:

Rule 1A: (CS-2) (Web-Technologies) � Data-Bases
Rule 2A: (CS-2) () � CS-3
Rule 3A: (CS-3) (Web-Technologies) � Networking

Rule 4A: (Computer-Organization) () �
 � Computer-Architecture
Rule 5A: (CS-1) () � CS-2
Rule 6A: () (Calculus) � Intro-to-Programming
Rule 7A: (CS-2) () � Computer-Organization

University B rules:

Rule 1B: (CS-3) (Statistics) � Data-Bases
Rule 2B: (CS-2) (Discrete-Math) � CS-3
Rule 3B: (CS-3, Computer-Architecture) () �
 � Networking
Rule 4B: (Computer-Organization, CS-2) () �
 � Computer-Architecture
Rule 5B: (CS-1) (Calculus) � CS-2
Rule 6B: () () � CS-1
Rule 7B: (CS-1) () � Computer-Organization
Rule 8B: (CS-3) (Statistics) � Artificial-Intelligence
Rule 9B: (Networking, Data-Bases, Artificial-Intelligence)
 () � Semantic-Web

Next, by running the CTMS inference engine on the two
rule sets, we can explicate the immediate as well as all
other course predecessors. Assuming that all required
conditions for rule firing hold, we can first compute the
stable extensions of the two rule sets, and then compute
their so-called grounded stable extensions (GSEs). As
described in the next section, GSEs contain useful
information for explicating the correspondences and
discrepancies between the two source ontologies.

Testing CTMS Rule Sets for Similarities and
Discrepancies

The stable extension of a CTMS rule set shows how
derived formulas depend on their immediate predecessors.
To explicate all of the predecessors of a given formula, we
compute the transitive closure of its immediate
predecessors. The resulting set of formulas comprises the
GSE of the CTMS rule set (Zlatareva 1992). Processing of
our example ontologies converted into CTMS
representation results in the following GSEs:

GSE(A) = {CS-1 : () (Calculus), CS-2 : (CS-1) (Calculus),
CS-3 : (CS-2, CS-1) (Calculus),
Computer-Organization : (CS-2, CS-1) (Calculus),
Data-Bases : (CS-2, CS-1) (Calculus, Web-Technologies),
Networking : (CS-3, CS-2, CS-1) (Calculus, Web-
Technologies), Computer-Architecture : (Computer-
Organization, CS-2, CS-1) (Calculus)}.

GSE(B) = {CS-1: () (),
Computer-Organization:(CS-1)(), CS-2:(CS-1) (Calculus),
CS-3: (CS-2, CS-1) (Discrete-Math, Calculus),
Computer-Architecture: (Computer-Organization, CS-2,
CS-1) (Calculus), Data-Bases: (CS-3, CS-2, CS-1)

(Discrete-Math, Calculus, Statistics), Networking: (CS-3,
CS-2, CS-1, Computer-Architecture, Computer-
Organization) (Discrete-Math, Calculus),
Artificial-Intelligence : (CS-3, CS-2, CS-1) (Statistics,
Discrete-Math, Calculus), Semantic-Web : (Networking,
CS-3, CS-2, CS-1, Computer-Architecture, Computer-
Organization, Data-Bases, Artificial-Intelligence)
(Calculus, Statistics, Discrete-Math)}

Recall that we have already identified name equivalences
between concepts. Now we can use this information for
establishing the semantic relation between them. For that,
we compare justifications of the formulas describing
courses with the same name from GSE(A) and GSE(B).
The following three cases are possible:

Case 1. The two justifications are exactly the same. For
example,
Computer-Architecture: (Computer-Organization, CS-2,
 CS-1) (Calculus) ∈ GSE(A)
Computer-Architecture: (Computer-Organization, CS-2,
 CS-1) (Calculus) ∈ GSE(B)

In this case, the two concepts Computer-Architecture(A)
and Computer-Architecture(B) strongly agree.

Case 2. The two justifications differ in their assumption
lists only. For example,
CS-3 : (CS-2, CS-1) (Calculus) ∈ GSE(A)
CS-3 : (CS-2, CS-1) (Discrete-Math, Calculus) ∈ GSE(B)

In this case, we say that the two concepts, CS-3(A) and
CS-3(B), partially agree, and that CS-3(B) is stronger than
CS-3(A) (that is, CS-3(A) < CS-3(B)).

Case 3. The two justifications differ in their required lists.
For example,
Data-Bases: (CS-2, CS-1) (Calculus, Web-Technologies)
∈ GSE(A)
Data-Bases: (CS-3, CS-2, CS-1) (Calculus, Statistics,
Discrete-Math) ∈ GSE(B)

In this case, we say that the two concepts, Data-Bases(A)
and Data-Bases(B), are inconsistent.

By the definitions of full and partial compatibility of two
ontologies, introduced earlier in this paper, we can say
that:
• O1 and O2 are fully compatible iff their GSEs contain

only concepts that strongly agree.
• O1 and O2 are partially compatible iff their GSEs

contain concepts that strongly or partially agree.
• O1 and O2 are incompatible iff their GSEs contain

only concepts that are either inconsistent, or contain

inconsistent required prerequisites in their
justifications.

Going back to John’s query, the presented alignment
technique will return the following results:

• CS-2(A) and CS-2(B), and Computer-Architecture(A)

and Computer-Architecture(B) strongly agree.
• CS-1(A) and CS-1(B), and CS-3(A) and CS-3(B)

partially agree. Note that CS-1(A) > CS-1(B), so
John can transfer it to university B. However, CS-3(A)
< CS-3(B), and thus John can not be certain about
whether or not he will be allowed to transfer this one.

• The following three concepts are identified as
inconsistent: Computer-Organization,Data-Bases, and
Networking. The interpretation of such inconsistencies
depends on the semantics of a posted query.

Inconsistencies are of special interest in our example
application. Since the sources of detected inconsistencies
have already been identified and recorded in course
justifications, we can further process them to clarify the
final response to John’s query. First, consider the
justifications for Computer-Organization concept:

Computer-Organization:(CS-2,CS-1) (Calculus) ∈ GSE(A)
Computer-Organization:(CS-1) () ∈ GSE(B)

Computer-Organization(A) > Computer-Organization(B),
because the required prerequisites of the latter are a subset
of the required prerequisites of the former. Therefore, John
must be allowed to transfer his Computer Organization
course to university B. Now, compare the justifications for
Data-Bases concept:

Data-Bases: (CS-2,CS-1)(Calculus, Web-Technologies)∈
 ∈ GSE(A)
Data-Bases: (CS-3, CS-2, CS-1) (Calculus, Statistics,
 Discrete-Math) ∈ GSE(B)

Here Data-Bases(B) > Data-Bases(A), because (CS-2, CS-
1) ⊆ (CS-3, CS-2, CS-1). Therefore, John will not be
allowed to transfer this course to university B.

Conclusion

The paper addressed a special case of ontology alignment,
which is one of the core tasks in many Web services. The
presented alignment technique aims not only to establish
the correspondences between two cooperating ontologies,
but also to identify the discrepancies between them and
explicate the culprits for those discrepancies. We have
shown how heterogeneous ontologies comprised of
concepts that are not fully specified and relations that are
characterized with some degree of uncertainty, can be

uniformly mapped into CTMS representation, and have
shown how CTMS inference engine can be utilized to
implement the alignment process.

Acknowledgement. Neli Zlatareva would like to thank the
Fulbright Commission for Educational Exchange, under
the sponsorship of which this joint research was made
possible.

References

Davis J., R. Studer, P., and Warren, P. 2006. Conclusion
and Outlook. In Davis, S. and Warren (eds.) Semantic Web
Technologies: Trends and Research in Ontology-Based
Systems. John Wiley and Sons.

de Bruijn, J. et al. 2006. Ontology Mediation, Merging and
Alignment. In Davis, S. and Warren (eds.) Semantic Web
Technologies: Trends and Research in Ontology-Based
Systems. John Wiley and Sons.

Noy, N. and Musen, M. 2000. PROMPT: Algorithm and
Tool for Automated Ontology Merging and Alignment. In
Proc. AAAI’2000, Austin, Texas.

Doan, A. et al. 2004. Ontology Matching: A Machine
Learning Approach. In Staab S, Studer R. (eds.) Handbook
on Ontologies in Information Systems, Springer-Verlag.

Giunchiglia, F. and Shvaiko, P. 2003. Semantic Matching.
Knowledge Engineering Review, 18(3): 265–280.

Dean, M. 2004. Semantic Web Rules: Covering the Use
Cases. In G. Antoniou and Boley H. (eds.) Rules and Rule
Markup Languages for the Semantic Web.Springer-Verlag.

Antoniou, G. and van Harmelen, F. 2004. A Semantic Web
Primer. MIT Press.

Zlatareva, N. 1992. CTMS: A General Framework for
Plausible Reasoning. In International Journal of Expert
Systems: Research and Applications, 5(4).

Maedche, A. et al. 2002. MAFRA – A Mapping
Framework for distributed Ontologies. In Proc. 13th
European Conference of Knowledge Engineering and
Knowledge Management (EKAW’2002), Madrid, Spain.

Ghidini, C. and Serafini, L. 2006 Reconciling concepts
and relations in heterogeneous ontologies. In Proc. 3rd
European Semantic Web Conference (ESWC’2006),
Budva, Montenegro.

