
Incremental Graph Pattern Matching

Wenfei Fan 1,2 Jianzhong Li2 Jizhou Luo2 Zijing Tan3 Xin Wang1 Yinghui Wu1

1University of Edinburgh 2Harbin Institute of Technology 3Fudan University

{wenfei@inf., x.wang-36@sms., y.wu-18@sms.}ed.ac.uk
{lijzh, luojizhou}@hit.edu.cn zjtan@fudan.edu.cn

Abstract
Graph pattern matching has become a routine process in
emerging applications such as social networks. In practice a
data graph is typically large, and is frequently updated with
small changes. It is often prohibitively expensive to recom-
pute matches from scratch via batch algorithms when the
graph is updated. With this comes the need for incremental
algorithms that compute changes to the matches in response
to updates, to minimize unnecessary recomputation. This
paper investigates incremental algorithms for graph pattern
matching defined in terms of graph simulation, bounded sim-
ulation and subgraph isomorphism. (1) For simulation, we
provide incremental algorithms for unit updates and certain
graph patterns. These algorithms are optimal: in linear time
in the size of the changes in the input and output, which
characterizes the cost that is inherent to the problem itself.
For general patterns we show that the incremental match-
ing problem is unbounded, i.e., its cost is not determined
by the size of the changes alone. (2) For bounded simula-
tion, we show that the problem is unbounded even for unit
updates and path patterns. (3) For subgraph isomorphism,
we show that the problem is intractable and unbounded for
unit updates and path patterns. (4) For multiple updates,
we develop an incremental algorithm for each of simulation,
bounded simulation and subgraph isomorphism. We exper-
imentally verify that these incremental algorithms signifi-
cantly outperform their batch counterparts in response to
small changes, using real-life data and synthetic data.

Categories and Subject Descriptors: F.2 [Analysis of
algorithms and problem complexity]: Nonnumerical algo-
rithms and problems[pattern matching]

General Terms: Theory, Algorithms, Experimentation

Keywords: bounded incremental matching algorithms, af-
fected area

1. Introduction
Graph pattern matching is a routine process in a variety

of applications, e.g., computer vision, knowledge discovery,
biology, cheminformatics, dynamic network traffic, intelli-
gence analysis and social networks. It is often defined in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06... $ 10.00.

Figure 1: Querying FriendFeed incrementally

terms of subgraph isomorphism [26, 28], graph simulation [1,
3] or bounded simulation [8]. Given a pattern graph GP and
a data graph G, graph pattern matching is to find the set
M(GP , G) of matches in G for GP . For subgraph isomor-
phism, M(GP , G) is the set of all subgraphs of G that are
isomorphic to the pattern GP . For (bounded) simulation,
M(GP , G) consists of a unique maximum match, a relation
defining edge-to-edge (edge-to-path) mappings.

Graph pattern matching is costly: NP-complete for sub-
graph isomorphism [11], cubic-time for bounded simulation
[8], and quadratic-time for simulation [14]. In practice, a
data graph G is typically large, and moreover, is frequently
updated. This is particularly evident in, e.g., social net-
works [12], Web graphs [18] and traffic networks [4]. It
is often prohibitively expensive to recompute the matches
starting from scratch when G is updated. These highlight
the need for incremental algorithms to compute matches.

Given a pattern graph GP , a data graph G, the matches
M(GP , G) in G for GP and changes ΔG to G, the incre-
mental matching problem is to compute changes ΔM to the
matches such that M(GP , G ⊕ ΔG) = M(GP , G) ⊕ ΔM ,
where (1) ΔG consists of a set of edges to be inserted into
or deleted from G, and (2) operator ⊕ applies changes ΔS
to S, where S is a data graph G or matching results M .

As opposed to batch algorithms that recompute the new
output from scratch, an incremental matching algorithm
aims to minimize unnecessary recomputation and improve
response time. Indeed, when the changes ΔG to G are small,
the increment ΔM to the matches is often small as well,
and is much less costly to find than recompute the entire
M(GP , G ⊕ ΔG). While real-life graphs are constantly up-
dated, the changes are typically minor; for example, only 5%
to 10% of nodes are updated weekly in a Web graph [18].

Example 1: Figure 1 depicts graph G (excluding edges
e1–e5), a fraction of FriendFeed (a social networking service
http://friendfeed.com/). Each node in G denotes a person,
carrying attributes such as name (Ann, Pat) and job (cto,
db). Also shown in Fig. 1 are graph patterns P1 and P2:

(1) Pattern P1 is to find a bounded simulation relation [8],

925

including ctos who are connected to a db researcher within
2 hops and a biologist within 1 hop; moreover, the db re-
searcher has to reach a biologist within 1 hop and a cto via
a path of an arbitrary length. Here M(P1, G) is the relation
{(cto, Ann), (db, Pat), (db, Dan), (Bio, Bill), (Bio, Mat)}.
(2) Pattern P2 is to find all subgraphs of G that are
isomorphic to P2. Here the set M(P2, G) consists of a single
subgraph of G induced by nodes Ann, Pat and Bill.

Suppose that the graph G is updated by inserting five
edges e1–e5, denoted by ΔG (see Fig. 1). Then (1) ΔG in-
curs increment ΔM1 to M(P1, G), containing two new pairs
(cto, Don) and (Bio, Tom). This yields the new output
M(P1, G ⊕ ΔG) = M(P1, G) ∪ ΔM1. (2) The new matches
M(P2, G⊕ΔG) is M(P2, G)∪ΔM2, where ΔM2 consists of
the subgraph of G ⊕ ΔG induced by edges e2–e5.

When ΔG is small, the increment ΔM1 (resp. ΔM2) to
the old output M(P1, G) (resp. M(P2, G)) is also small.
When G is large as commonly found in practice, it is less
costly to find ΔM1 (resp. ΔM2) than recompute the entire
M(P1, G ⊕ ΔG) (resp. M(P2, G ⊕ ΔG)) from scratch. �

As suggested by the example, we can cope with the dy-
namic nature of social networks and Web graphs by comput-
ing matches once on the entire graph via a batch algorithm,
and then incrementally identifying their changes in response
to updates. That is, we find new matches by making max-
imal use of previous computation, without paying the price
of the high complexity of graph pattern matching.

As argued in [22], the traditional complexity analysis for
batch algorithms is no longer adequate for incremental algo-
rithms. Indeed, it is not very informative to define the cost
of an incremental algorithm as a function of the size of the
input. Instead, one should analyze the algorithms in terms
of |CHANGED|, which indicates the size of the changes in
the input and output (see Section 2 for details). It repre-
sents the updating costs that are inherent to the incremental
matching problem itself. An incremental algorithm is said
to be bounded if its cost can be expressed as a function of
|CHANGED|, i.e., it depends only on |CHANGED|, rather
than on the entire input (data graph G and pattern GP). It
is said to be optimal if it is in O(|CHANGED|) time, which
characterizes the amount of work that is absolutely necessary
to perform for any incremental algorithm. An incremental
matching problem is said to be bounded if there exists a
bounded incremental algorithm, and unbounded otherwise.

While there has been a host of work on graph pattern
matching (see [5, 10] for surveys), much less is known about
the incremental matching problem.

Contributions. This work makes a first effort to inves-
tigate incremental graph pattern matching. For matching
defined in terms of graph simulation, bounded simulation
or subgraph isomorphism, we show that the incremental
matching problem is bounded (or unbounded), and provide
effective incremental algorithms. We consider unit update,
i.e., a single-edge deletion or insertion, and batch updates,
i.e., a list of edge deletions and insertions mixed together.

(1) For matching with graph simulation [1, 3] we show the
following. (a) The incremental matching problem is bounded
for unit deletions and general graph patterns, and for unit
insertions and dag patterns. Better still, we present the
first optimal algorithms in these settings, in O(|CHANGED|)
time. (b) In contrast, the problem is unbounded for unit

insertions and general patterns. (c) Nevertheless, we provide
an efficient incremental algorithm and effective optimization
techniques for batch updates and general patterns.

(2) When it comes to matching based on bounded simu-
lation [8], we show that the incremental matching prob-
lem is already unbounded for unit updates and path pat-
terns, i.e., patterns consisting of a single path. Nevertheless,
we develop an efficient incremental matching algorithm for
bounded simulation and batch updates. The algorithm em-
ploys weighted landmark vectors, an extension of landmarks
[19], to help us find shortest paths between node pairs in
a data graph. In addition, we provide a lazy incremental
algorithm that updates the landmarks only when necessary.

(3) For matching based on subgraph isomorphism, we show
that the incremental matching problem is intricate: it is (a)
unbounded for unit updates and path patterns, and (b) NP-
complete even for deciding whether there exists a subgraph
of a data graph that is made isomorphic to a path pattern by
a unit update. As a first step towards incremental computa-
tion of subgraph isomorphism, (c) we develop an incremental
algorithm for batch updates which, as verified by our exper-
imental study, substantially outperforms VF2 [6, 9], a batch
algorithm that is reported as the best for pattern matching
with subgraph isomorphism, when changes are small.

(4) Using both real-life data (YouTube and a citation net-
work [27]) and synthetic data, we experimentally evaluate
the efficiency of our incremental algorithms. We find that for
batch updates and general (possibly cyclic) patterns, our in-
cremental algorithms perform significantly better than their
batch counterparts, when data graphs are changed up to
30% for simulation, 10% for bounded simulation, and 21%
for subgraph isomorphism. In addition, our algorithms con-
sistently outperform the few known incremental algorithms
for (bounded) simulation [8, 25]. We contend that our in-
cremental techniques yield a promising method for graph
pattern matching in evolving real-life networks.

Organization. Section 2 presents graph pattern match-
ing and its incremental matching problem. The incremental
matching problem for simulation, bounded simulation and
subgraph isomorphism is studied in Sections 3, 4 and 5,
respectively. Section 6 presents our experimental results,
followed by open issues for future work in Section 7.

Related Work. Incremental algorithms have proved useful
in a variety of areas (see [23] for a survey). However, few
results are known about incremental graph pattern match-
ing, far less than their batch counterparts [5, 10]. About
incremental simulation algorithms we are only aware of [24,
25], which are mostly developed for verification and model
checking. Incremental bisimulation is studied in [24]. In
contrast to our work, it considers bisimulation on a single
graph, which is quite different from incremental simulation
across two graphs (a pattern and a data graph). Simulation
is investigated in [25] based on HORN-SAT, which supports
incremental updates on a single graph. However, (a) it does
not consider whether the incremental simulation problem is
bounded, and (b) its incremental techniques requires to up-
date reflections and construct an instance of size O(|E|2),
where |E| is the number of edges of the graph. In contrast,
our algorithms for incremental simulation do not have to
maintain large auxiliary structures (Section 3).

Closer to our work is [8]. For bounded simulation, it shows

926

that the incremental matching problem is unbounded for
batch updates and dag patterns, and gives cubic-time in-
cremental algorithms for dag patterns. It differs from our
work in the following. (a) We show a stronger result: the
problem is already unbounded for unit updates and path
patterns. (b) For possibly cyclic patterns, we provide an
incremental algorithm. In contrast to the algorithm of [8]
that requires an O(|V |2)-space matrix, where V is the set
of nodes in a data graph, our algorithm significantly re-
duces the space cost by using weighted landmark vectors
(Section 4). As verified by our experimental study, our al-
gorithm scales better than the algorithm of [8]. (c) We also
study the incremental matching problem for simulation and
subgraph isomorphism, which are not considered in [8].

Inexact algorithms have been studied for incremental sub-
graph search [30, 26]. An algorithm is developed in [30] to
approximately determine whether a pattern is contained in
graphs in a graph streams, based on an index of exponential
size. An exponential-time incremental algorithm for inexact
subgraph isomorphism is given in [26], which is claimed to be
bounded. We show that the incremental matching problem
for subgraph isomorphism is unbounded even for unit up-
dates and path patterns, and provide a simple incremental
algorithm that outperforms VF2 [6] (Section 5).

There has been work on incremental view maintenance
for semi-structured data modeled as a graph (e.g., [2, 32]).
Assuming that data has a tree structure, [32] maintains only
the nodes of views. Incremental maintenance of graph views
is studied in [2], which generates update statements in Lorel
in response to updates. There has also been a host of work
on relational view maintenance (see [13] for a collection of
readings). Unfortunately, as pointed out by [24], the in-
cremental matching problem is non-monotonic in nature for
simulation (similarly for bounded simulation and subgraph
isomorphism), and hence cannot be reduced to incremental
evaluation of logic programs with stratified negation. As a
result, view maintenance techniques cannot be directly used
in incremental graph pattern matching.

Our incremental algorithms for bounded simulation em-
ploy weighted landmarks, a nontrivial revision of landmarks
proposed in [19]. We utilize the k-betweeness centrality met-
ric of [31] for landmark selections in our algorithms, and
develop incremental maintenance algorithms for weighted
landmarks. In our experimental study we take into ac-
count the densification law [17] and relation generation mod-
els [12], which simulate the evolution of real-life networks.

2. Batch and Incremental Matching
In this section we first present data graphs and graph

patterns, and then define graph pattern matching. Finally
we state the incremental matching problem.

2.1 Data Graph and Graph Patterns

We start with data graphs and pattern graphs.

Data graphs. A data graph G = (V, E, fA) is a directed
graph, where (1) V is the set of nodes; (2) E ⊆ V × V ,
in which (v, v′) denotes an edge from node v to v′; and (3)
fA(·) is a function that associates each node v in V with
a tuple fA(v) = (A1 = a1, . . . , An = an), where ai is a
constant, and Ai is referred to as an attribute of v, carrying
the content of the node, e.g., label, keywords, blogs, rating.

We shall use the following notations for data graphs G.

(1) A path ρ from node v to v′ in G is a sequence of nodes
v = v0, v1, · · · , vn = v′ such that (vi−1, vi) ∈ E for every
i ∈ [1, n]. The length of path ρ, denoted by len(ρ), is n,
i.e., the number of edges in ρ. The path ρ is said to be
nonempty if len(ρ) ≥ 1. Abusing notations for trees, we
refer to vi as a child of vi−1 (or vi−1 as a parent of vi), and
vj as a descendant of vi−1 for i, j ∈ [1, n] and i < j. (2) The
distance between node v and v′ is the length of the shortest
paths from v to v′, denoted by dis(v, v′).

Pattern graphs. A b-pattern is a labeled directed graph
defined as GP = (Vp, Ep, fp, fe), where (1) Vp and Ep are
the set of pattern nodes and the set of pattern edges, re-
spectively, as defined for data graphs; (2) fp(·) is a function
defined on Vp such that for each node u, fp(u) is the pred-
icate of u, defined as a conjunction of atomic formulas of
the form A op a; here A denotes an attribute, a is a con-
stant, and op is a comparison operator <,≤, =, �=, >,≥; and
(3) fe(·) is a function on Ep such that for each edge (u, u′),
fe(u, u′) is either a positive integer k or a symbol ∗.

Intuitively, the predicate fp(u) of a node u specifies a
search condition. An edge (u, u′) in GP is to be mapped
to a path ρ from v to v′ in a data graph G. As will be seen
shortly, fe(u, u′) imposes a bound on the length of ρ.

We refer to GP as a normal pattern if for each edge
(u, u′) ∈ Ep, fe(u, u′) = 1. Intuitively, a normal pattern
enforces edge to edge mappings, as found in graph simula-
tion and subgraph isomorphism.

Example 2: The social network G of Fig. 1 is a data graph,
where each node has two attributes, name and job. The node
(Ann, “cto”) denotes a person with (name = “Ann”, job =
“cto”). The graph P1 in Fig. 1 depicts a b-pattern. Each
edge in P1 is labeled with either a bound or ∗, specifying
connectivity as described in Example 1. Graph P2 is a nor-
mal pattern, where each edge is labeled 1 (not shown). �

We shall also consider special patterns, such as DAGs, i.e.,
when the patterns are acyclic, and path patterns, i.e., when
the patterns consist of a single path.

2.2 Graph Pattern Matching

We next define metrics for graph pattern matching.
Consider a b-pattern GP = (Vp, Ep, fp, fe) and a data

graph G = (V, E, fA). We say that a node v in G satisfies
the search condition of a pattern node u in GP , denoted as
v ∼ u, if for each atomic formula ‘A op a’ in fp(u), there
exists an attribute A in fA(v) such that v.A op a.

Subgraph isomorphism. For a normal pattern GP and a
subgraph G′ = (V ′, E′) of G, we say that G′ matches GP ,
denoted as GP �isoG

′, if there exists a bijection h from Vp to
V ′ such that (1) u ∼ h(u) for each u ∈ Vp, and (2) for each
pair (u, u′) of nodes in GP , (u, u′) ∈ Ep iff (h(u), h(u′)) ∈ E′.

We use Miso(GP , G)to denote the set of all subgraphs of
G that are isomorphic to GP .

Bounded simulation [8]. The data graph G matches a b-
pattern GP via bounded simulation, denoted by GP �bsimG,
if there exists a binary relation S ⊆ Vp × V such that

(1) for each u ∈ Vp, there exists v ∈ V such that (u, v) ∈ S;

(2) for each (u, v) ∈ S, (a) u ∼ v, and (b) for each edge
(u, u′) in Ep, there exists a nonempty path ρ from v to v′ in
G such that (u′, v′) ∈ S, and len(ρ) ≤ k if fe(u, u′) = k.

We refer to S as a match in G for GP .

927

Figure 2: Example data graphs and graph patterns

Intuitively, (u, v) ∈ S if (1) the data node v in G satisfies
the search condition specified by fp(u) in GP ; and (2) each
edge (u, u′) in GP is mapped to a nonempty path ρ from
v to v′ in G, such that v, v′ match u, u′, respectively; and
moreover, when fe(u, u′) is k, it indicates a bound on the
length of ρ, i.e., v is connected to v′ within k hops. When
it is ∗, ρ can be a nonempty path of an arbitrary length.

It has been shown in [8] that if GP �bsimG, then there
exists a unique maximum match in G for GP . In light of
this, we refer to the maximum match simply as the match
in G for GP , denoted as Msim(GP , G).

Graph simulation [1, 14]. Graph simulation is a special
case of bounded simulation when GP is a normal pattern,
i.e., when fe(u, u′) = 1 for all (u, u′) ∈ Ep. That is, it only
allows edges in the pattern to be mapped to edges in the data
graph. We say that G matches GP via simulation, written
as GP �simG, if there exists such a match in G for GP . When
GP �simG, there exists a unique maximum match.

Given a pattern (b-pattern) GP and a data graph G, the
graph pattern matching problem is to compute M(GP , G).
More specifically, for subgraph isomorphism, the batch com-
putation is to find all the subgraphs G′ that are isomorphic
to GP . For (bounded) simulation, it is to find the unique
maximum match, if GP �simG (GP �bsimG).

Example 3: To see the differences between the three
matching metrics given above, consider pattern graphs P3,
P4 and data graphs G2, G3 and G4 shown in Fig. 2, where a
node from a data graph satisfies the condition of a pattern
node if they have the same label. Observe the following.

(1) P3�isoG2. In contrast, no subgraph of G3 or G4 is iso-
morphic to P3, i.e., Miso(P3, Gi) is empty for i ∈ [3, 4].

(2) P3�simG2 and P3�simG3. Note that a simulation match
is a relation that maps a pattern node to multiple nodes in
a data graph, as opposed to bijective functions for subgraph
isomorphism. For example, node C in P3 is mapped to the
two C nodes in G3. In contrast, G4 does not match P3 via
simulation, i.e., Msim(P3, G4) is empty, as the node A is not
adjacent to C in G4, as required in P3.

(3) All the data graphs of Fig. 2 match the b-pattern P4

via bounded simulation. Bounded simulation further relaxes
edge-to-edge mappings by allowing edge-to-path mappings,
subject to bounds on pattern edges. In particular, both C
nodes in G4 are valid matches of the node C in P4. �

2.3 Incremental Graph Pattern Matching

In contrast to its batch counterpart, the incremental
matching problem takes as input a data graph G, a pattern
(b-pattern) GP , the matches M(GP , G) in G for GP , and
changes ΔG to G. It finds changes ΔM to the old matches
such that M(GP , G ⊕ ΔG) = M(GP , G) ⊕ ΔM . That is,
when the data graph G is updated, it computes new matches
by leveraging information from the old matches.

Figure 3: Result graphs and affected areas

As remarked in Section 1, the cost of an incremental
matching algorithm should be analyzed in terms of the size
|CHANGED| [22]. To characterize |CHANGED|, we first in-
troduce two notions: result graphs and affected areas.

Result graphs. The result graph of a pattern GP in a data
graph G is a graph representation of the matches M(GP , G).
It is a graph Gr = (Vr, Er) defined as follows.

(1) For subgraph isomorphism, Gr is the union of all the
subgraphs G′ of G in Miso(GP , G).

(2) For bounded simulation, (a) Vr consists of all the nodes
v in G such that (u, v) ∈ Msim(GP , G), i.e., v is a match of
some pattern node u in the maximum match; (b) for each
edge (u1, u2) in Ep, there is an edge (v1, v2) ∈ Er iff (u1, v1)
and (u2, v2) are in Msim(GP , G), and there exists a nonempty
path ρ from v1 to v2 such that len(ρ) ≤ k if fe(u1, u2) = k,
and 0 < len(ρ) otherwise. That is, the edge (v1, v2) indicates
the path in G to which the pattern edge (u1, u2) is mapped.

Similarly the result graph is defined for simulation.

Example 4: Consider the b-pattern P1 and data graph G
of Fig. 1. Recall that Msim(P1, G) for bounded simulation is
{(cto, Ann), (db, Pat), (db, Dan), (Bio, Bill), (Bio, Mat)}.
The result graph of P1 in G is shown as Gr1 in Fig. 3. �

Affected areas. We characterize the changes ΔM in the
matches in terms of the affected area in the result graph. Let
Gr and G′

r be the result graphs of GP in G and G ⊕ ΔG,
respectively. Then the affected area (AFF) of Gr by ΔG is
the difference between Gr and G′

r, i.e., the changes in both
nodes and edges (inserted or deleted) inflicted by ΔG.

Example 5: Consider the graph G and the pattern P1 of
Fig. 1. When a new edge e2 is inserted into G, i.e., ΔG is
the insertion of edge e2, the new result graph Gr2 of P1 is
shown in Fig. 3. The affected area AFF includes two new
nodes Don and Tom, and the new edges attached to them,
i.e., (Don, Pat), (Pat, Don), (Don, Tom) (Don, Dan), and
(Dan, Don). It represents the changes ΔM , which adds the
new pairs (cto, Don) and (Bio, Tom) to Msim(P1, G).

When G ⊕ ΔG is further changed by inserting edges
e1, e3, e4 and e5, the new result graph is Gr3. Here AFF
contains nodes Don, Tom, along with all the new edges con-
nected to them. Compared to Gr2, although four new edges
are added, AFF is increased by only one edge (Dan, Tom).

Now consider the pattern P2 of Fig. 1, for subgraph iso-
morphism. The result graph of P2 in G is the left sub-
graph of Gr4 shown in Fig. 3. When ΔG is to insert edges
e1, e2, e3, e4 and e5, AFF is the subgraph of G⊕ΔG induced
by edges e2–e5, which is made isomorphic to P2 by ΔG. �

Complexity. We define |CHANGED| = |ΔG|+|AFF|, which

928

�iso subgraph isomorphism
�bsim bounded simulation
�sim graph simulation
M(GP , G) matches in G for GP

Msim(GP , G) matches in G for GP , for b-patterns
Miso(GP , G) matches in G for GP , for normal patterns
|CHANGED| |ΔG| + |AFF|, size of changes to the input and result

Table 1: Notations: Incremental matching

indicates the size of changes in the data graph (input)
and match results (output). An incremental algorithm is
bounded if its complexity is determined only by |CHANGED|,
independent of data graph G. It is said to be optimal if it is
in O(|CHANGED|) time. The incremental matching problem
is either bounded or unbounded, as remarked in Section 1.

We summarize various notions in Table 1.

3. Incremental Simulation Matching
We now study the incremental simulation problem, re-

ferred to as IncSim. Given a normal pattern GP , a data
graph G, a result graph Gr (depicting the unique maximum
simulation Msim(GP , G)), and changes ΔG to G, IncSim is
to compute the changes to result graph Gr, which represents
ΔM such that Msim(GP , G ⊕ ΔG) = Msim(GP , G) ⊕ ΔM .

The main results of this section are as follows.

Theorem 1: The incremental simulation problem is

(1) unbounded even for unit updates and general patterns;

(2) bounded for (a) single-edge deletions and general pat-
terns, and (b) single-edge insertions and dag patterns,
within an optimal time O(|AFF|); and

(3) in O(|ΔG|(|GP ||AFF|+|AFF|2)) time for batch updates
and general patterns. �

To the best of our knowledge, Theorem 1 presents the
first results for IncSim. While the problem is unbounded
for batch updates and general patterns, its complexity is
independent of the size of the data graph: it depends only
on the size of the changes in the input and output and the
size of pattern GP , which is typically small in practice.

For (1), we can verify that IncSim is unbounded for a
single-edge insertion and a pattern with one cycle. Hence,
IncSim is also unbounded for batch updates and general pat-
terns. In the rest of section we show (2) for unit updates
(Section 3.1) and (3) for batch updates (Section 3.2).

3.1 Incremental Simulation for Unit Updates

We first provide optimal incremental algorithms for (a)
unit deletions and general patterns and (b) unit insertions
and dag patterns. We then develop an efficient incremental
algorithm for unit insertions and general patterns.

Unit deletions. The deletion of an edge from G may only
reduce matches from Msim(GP , G), i.e., it leads to the re-
moval of nodes and edges from the result graph Gr. We
identify those edges in the data graph G whose deletions
affect Gr, referred to as ss edges, as follows. (1) The match
(resp. candidate) set for a pattern node u ∈ Vp, denoted as
mat(u) (resp. can(u)), is the set of the nodes v ∈ G that sat-
isfy the predicate of u and can (resp. but does not) match u.
(2) An edge (v′, v) in the graph G is an ss edge for a pattern
edge (u′, u) if v′ ∈ mat(u′) and v ∈ mat(u). One can verify
that the result graph Gr contains all the ss edges.

It suffices to consider ss edges for edge deletions:

Figure 4: IncSim in various updates

Proposition 2: Given a normal pattern GP and a data
graph G, only the deletions of ss edges for some pattern edge
in G may reduce the matches of GP . �

Example 6: Consider the normal pattern P2 and the
data graph G of Example 1. Observe that P2�simG, where
Msim(P2, G) is the relation {(cto, Ann), (db, Pat), (db,
Dan), (Bio, Bill), (Bio, Mat)}. The result graph Gr5 is
shown in Fig. 4. Suppose that the graph G is updated by
deleting e6 = ((Pat, “db”), (Bill, “Bio”)), which is an ss edge
for the pattern edge (db, Bio) and is also in Gr5. When e6

is removed, the node (Pat, “db”) is no longer a valid match
for the pattern node db, since there is no edge from (Pat,
“db”) to a node that can match the pattern node Bio. �

Based on Proposition 2, we give an incremental algorithm
for deleting an edge e = (v′, v), denoted by IncMatch− and
shown in Fig. 5. The algorithm first checks whether e is an
ss edge for a pattern edge. If not, the result graph Gr is
unchanged (line 1). Otherwise IncMatch− finds and prop-
agates all the matches that are no longer valid due to the
removal of e, until the affected area AFF is identified and Gr

is updated accordingly (lines 2-12). To do this, as auxiliary
structures we maintain mat(u) for each pattern node u as
described earlier, and moreover, a matrix M such that for
each pattern edge ep = (u′, u) and each node v′ in mat(u′),
M(ep, v′) is the number of the children of v′ that match u.

More specifically, IncMatch− uses a stack eset (line 2) to
store edges that may be in AFF. For each pattern edge
ep = (u′, u) to which the ss edge e is mapped, it updates and
checks M(ep, v′) to determine whether v′ still has children to
simulate u (line 4-7). If not, then v′ is removed from mat(u′)
and from Gr along with all the edges (v′′, v′) connected to
it (lines 8-10). The removed edges (v′′, v′) may put v′′ into
AFF, and are pushed into eset for further checking (line 9).
If there is a pattern node that has no valid matches, then
G \ {e} no longer matches Gp, and the result graph Gr is
empty (line 10). This process continues until all the edges
and nodes that may enter AFF are examined (lines 3-10).

Example 7: Recall P2 and Gr5 from Example 6. When
e6 is removed, IncMatch− finds that no child of node Pat
can match Bio. Thus Pat is no longer a match. The edge
(Ann, Pat), an ss edge for (cto, db), is then checked. Since
Ann has children Dan and Bill that match db and Bio, re-
spectively, IncMatch− updates Gr5 by removing Pat and its
three edges, which constitute AFF, as marked in Fig. 4. �

Correctness & complexity. (1) Algorithm IncMatch− cor-
rectly updates the result graph Gr since it only removes
nodes and their edges that are no longer valid matches in Gr.
(2) It runs in O(|AFF|) time by leveraging index structures
(not shown), because it only visits those nodes v′ having a
child that becomes an invalid match. Indeed, if v′ is still
a valid match for a node u′ in a pattern edge ep =(u′, u),
then matrix entry M(ep, v′) is not 0, and IncMatch− never

929

Input: Pattern GP , data graph G, the result graph Gr = (Vr , Er),
and an edge e = (v′, v) to be deleted from G.

Output: The updated result graph Gr .

1. if e = (v′, v) �∈ Er then delete e from G and return Gr;
2. stack eset := ∅; eset.push(e);
3. while eset is not empty do
4. edge e := eset.pop();
5. for all ep = (u′, u) that e = (v′, v) can match do
6. M(ep, v′) := M(ep, v′) - 1;
7. if M(ep, v′) = 0 then
8. for all e′ = (v′′, v′) in Er do
9. Er := Er \ {e′}; eset.push(e′);
10. Vr := Vr \ {v′}; mat(u′) := mat(u′) \ {v′};
11. if mat(u′) = ∅ return ∅;
12. return Gr .

Figure 5: Algorithm IncMatch−

processes it; otherwise IncMatch− identifies v′ and visits at
most all the ss edges and nodes within 1 hop of v′.

Unit insertions. In contrast to edge deletions, inserting
edges into a data graph G may only add new matches to
Msim(GP , G), i.e., it may only add new nodes and edges to
the result graph Gr. There are two groups of edges that,
when added to G, may yield new matches, referred to as
cc edges and cs edges. A newly inserted edge (v′, v) is a cs
(resp. cc) edge for a pattern edge (u′, u) if v′ ∈ can(u′) and
v ∈ mat(u) (resp. v ∈ can(u)). One can verify the following:

Proposition 3: (1) For a dag pattern GP , only insertions
of cs edges into a data graph G may increase matches of
GP . (2) For a general pattern GP , only insertions of cs or
cc edges into G may add new matches of GP . (3) Moreover,
cc edges alone only add new matches for pattern nodes in
some strongly connected component (SCC) of GP . �

Example 8: Consider again P2 and G of Fig. 1. Suppose
that after the deletion of edge e6, edge e7 from Pat to Mat
is inserted into G, which is a cs edge for the pattern edge
(db, Bio). This yields a new match Pat for pattern node
db, and the new result graph Gr6 is depicted in Fig. 4. �

Capitalizing on Proposition 3, below we propose incre-
mental algorithms to process a single-edge insertion into
general data graphs, denoted by IncMatch+

dag and IncMatch+,
for dag patterns and general patterns, respectively.

Unit insertions and dag patterns. Algorithm IncMatch+
dag

(not shown) identifies those nodes that yield a new match
upon an edge insertion, and propagates the new matches
until the entire AFF is found. As opposed to IncMatch−, (1)
for each pattern node u, IncMatch+

dag maintains a set can(u)

of candidates rather than mat(u), and (2) instead of using
a counter for each data node, IncMatch+

dag maintains a small

list L of pattern nodes of size O(|Vp|) for each v′ ∈ can(u′),
consisting of the children u of u′ that have no match in the
children of v′. When a cs edge (v′, v) is inserted, a pattern
node u is removed from the list L if a child v of v′ is a match
of u. Once L is empty, v′ become a match of u′, reducing the
list of its parents. IncMatch+

dag propagates the new matches
following a depth-first, bottom-up topological order, until
the result graph Gr can no longer be changed.

One can verify that IncMatch+
dag is correct and is in

O(|AFF|) time, similar to its counterparts for IncMatch−.

Unit insertions and general patterns. When it comes to
cyclic graph patterns, it is more challenging to process edge
insertions. We present algorithm IncMatch+ in Fig. 6. Fol-

Input: Pattern, data graph G = (V, E, fA), the result graph
Gr = (Vr , Er), and an edge e = (v′, v) to be added to G.

Output: The updated result graph Gr .

1. AFFcs := {(v′, v)} if (v′, v) is a cs edge for a (u′, u) ∈ Ep;
2. AFFcc := {(v′, v)} if (v′, v) is a cc edge for a (u′, u) ∈ Ep;
3. propCS(AFFcs, AFFcc, GP , Gr);
4. propCC(AFFcs, AFFcc, GP , Gr);
5. propCS(AFFcs, AFFcc, GP , Gr);
6. return Gr .

Procedure propCC

Input: A set AFFcc, pattern GP , graph G, and the result graph Gr .
Output: The updated result graph Gr , AFFcs and AFFcc.

1. construct the SCC graph Gs of GP ;
2. for each SCC scci of Gs do
3. AFFcci := {(w′, w)| (w′, w) is a cc edge for (u′, u) in scci};
4. if AFFcci �= ∅ then
5. for each node u ∈ scci do mat′(u) := can(u);
6. compute the matches for subgraph scci in AFFcci ;
7. if mat′(u) �= ∅ then Update Gr , AFFcs and AFFcc;
8. return Gr;

Figure 6: Algorithm IncMatch+

lowing Proposition 3, IncMatch+ first identifies AFFcs and
AFFcc, i.e., all the cc and cs edges that may introduce new
matches when an edge e is inserted into the data graph G
(lines 1-2). It then does the following. (1) It invokes proce-
dure propCS to find all new matches added by the insertion
of cs edges (line 3). Note that new matches generated in this
step reduces cc edges. (2) It then uses procedure propCC to
detect new matches formed in new SCCs in G consisting of
all cc edges (line 4), which correspond to SCCs of GP . (3)
Since new cs edges may be generated in step (2), IncMatch+

invokes propCS again to detect any new match (line 5). Af-
ter these three phases no new match could be generated,
and the updated result graph Gr is returned (line 6).

We next present the procedures used by IncMatch+. Pro-
cedure propCS (omitted) is similar to IncMatch+

dag: it first
identifies new matches added by AFFcs, and then inductively
checks their parents for propagation of the new matches.
Procedure propCC is given in Fig. 6. It detects those new
matches added only by cc edges, corresponding to SCCs in
GP . It first constructs a graph Gs for GP , in which each
node is an SCC (line 1). For each SCC node in Gs that con-
tains at least a pattern edge, propCC checks whether there
exists a new match formed by the cc edges (lines 3-6). If
new matches are found, Gr is updated by including the new
nodes and edges (line 7). After each SCC in Gp is examined
(lines 2-7), the updated Gr is returned (line 8).

Correctness & Complexity. IncMatch+ adds a new match v′

to pattern node u′ only if each child of u′ can find a match in
the children of v′. Moreover, IncMatch+ always terminates,
as the candidate sets are monotonically decreasing. One can
verify that IncMatch+ is in O(|Gp||AFF| + |AFF|2) time.

3.2 Incremental Simulation for Batch Updates

We next present IncMatch, an incremental simulation al-
gorithm for general patterns and a set ΔG of edge deletions
and insertions (batch updates). Its main idea is to (1) remove
redundant updates as much as possible, and (2) handle mul-
tiple updates simultaneously rather than one by one.

Algorithm IncMatch is shown in Fig. 7. It maintains ma-
trix M and pattern node list L used by IncMatch− and
IncMatch+, respectively. It first invokes procedure minDelta
to reduce updates ΔG (line 1). It then collects for each pat-
tern edge e all its ss edges, and handles edge deletions to

930

Input: Pattern GP , data graph G, the result graph Gr , and
batch updates ΔG.

Output: The updated result graph Gr .

1. minDelta(ΔG, GP , G);
2. for each pattern edge ep and its ss edges do
3. iteratively identify and remove invalid matches; Update Gr ;
4. for each SCC in Gp and related cc and cs edges do
5. iteratively identify and add new matches; Update Gr;
6. return Gr ;

Procedure minDelta

Input: Pattern GP , data graph G, updates ΔG.
Output: The reduced ΔG

1. for each edge e to be inserted do
2. if there is no edge ep ∈ Ep for which e is a cs or cc then
3. update G and auxiliary structures; ΔG := ΔG \ {e};
4. for each edge e to be deleted do
5. if there is no edge ep ∈ Ep for which e is an ss then
6. update G and auxiliary structures; ΔG := ΔG \ {e};
7. for each ep ∈ Ep and its cs and ss edges do
8. reduce ΔG via combination and cancellation; Update Gr;
9. return ΔG;

Figure 7: Algorithm IncMatch

identify invalid matches in AFF (lines 2-3). After the invalid
matches are removed from Gr, IncMatch checks new matches
formed by cs and cc edges, for each SCC of GP (lines 4-5).

Procedure minDelta reduces ΔG, as shown in Fig. 7. It
first removes all updates that do not inflict changes to the
result, i.e., the updates of e that are not an ss, cs or cc edge
for any pattern edge ep (lines 1-6), by leveraging M and L.
It then identifies and combines updates that “cancel” each
others. Those include, for each pattern edge ep = (u′, u), (a)
insertions and deletions of ss edges from v′ ∈ mat(u′), and
(b) insertions and deletions of cs edges from v′ ∈ can(u′).
Indeed, for the same pattern edge ep, if ss edges (v′, v1)
and (v′, v2) are inserted and deleted from G in (a), then
v′ remains to be a valid match of u; similar for (b). Such
updates are removed from ΔG. Updates that involve the
same data node are combined such that they are processed
only once in minDelta and IncMatch (lines 7-8).

Example 9: Recall P2 and G of Fig. 1. Consider batch up-
dates ΔG, which insert edges e1, e2, e3, e4, e5, e7 and delete
e6, where e6 and e7 are given in Examples 6 and 8, respec-
tively. The result graph is depicted as Gr7 in Fig. 4. Given
these, IncMatch first invokes minDelta to reduce ΔG: (1) e1

and e5 are removed from ΔG as they do not yield increment
to matches; (2) the deletion of e6 and the insertion of e7

cancel each other as they are both ss edges of the pattern
edge (db, Bio) for node Pat, which remains to be a match.
After minDelta, ΔG contains the insertion of e2, e3, e4.

Algorithm IncMatch then identifies the new match (Don,
“CTO”) generated by the insertion of cs edges e2, e3 and e4,
and includes it in Gr7. Observe that (1) the affected area
AFF in Gr7 consists of the new node (Don, “CTO”), the
newly inserted and deleted edges, and the edges attached to
(Don, “CTO”) from other matches in Gr7, and (2) the node
(Pat, “DB”) remains to be a match, although it is affected
twice by the deletion of e6 and the insertion of e7 (as dis-
cussed in Examples 6 and 8, respectively); IncMatch avoids
the unnecessary recomputation by canceling these updates
via minDelta, rather than processing them one by one. �

Correctness & Complexity. IncMatch is correct because (1)
minDelta removes only those updates that have no impact
on the final match; and (2) IncMatch handles updates along

Input: Pattern GP , data graph G, landmark vector lm,
the result graph Gr , and single insertion e.

Output: The updated result graph Gr .

1. lm′ := InsLM(GP , G, e, lm);
2. identify all cc and cs pairs for each ep of GP ;
3. for each SCC in Gp and related cc and cs pairs do
4. iteratively identify and add new matches; Update Gr ;
5. return Gr ;

Procedure InsLM

Input: Pattern GP = (Vp, Ep, fp, fe), data graph G,
edge e = (v′, v) updated, landmark vector lm.

Output: Landmark vector lm′ as the updated lm.

1. km := max(fe(ep)) for all ep ∈ Ep; stack wset := {e}; lm′ := lm;
2. while wset �= ∅ do
3. edge e′(v1, v2) := wset.pop();
4. if ldist(v1, v, lm) > 1 + ldist(v2, v, lm) then
5. if v′ /∈ lm then lm′ := lm′ ∪ {v′}; update distvf of v1;
6. for each e′′ = (v3, v1) within km hops of v

and ldist(v3, v, lm) = 1 + ldist(v1, v, lm) do
7. wset.push(e′′);
8. update distvt and lm similarly for v′′ if dis(v′, v′′) changes.
9. return lm′;

Figure 8: Algorithm IncBMatch+

the same line as in IncMatch− and IncMatch+, which are
shown to be correct. One can also verify that IncMatch
is in O(|ΔG|(|GP ||AFF| + |AFF|2)) time for batch updates
ΔG and general pattern GP . In practice ΔG and GP are
typically small. This completes the proof of Theorem 1.

4. Incremental Bounded Graph Simulation
We next study the incremental bounded simulation prob-

lem, referred to as IncBSim. It takes as input a b-pattern GP ,
a data graph G, a result graph Gr depicting the unique max-
imum bounded simulation Msim(GP , G), and changes ΔG to
G. It computes the changes to Gr, which represents ΔM
such that Msim(GP , G ⊕ ΔG) = Msim(GP , G) ⊕ ΔM .

The main results of this section are as follows.

Theorem 4: The incremental bounded simulation problem

(1) is unbounded even for unit updates and path patterns;

(2) is in O(|ΔG|(|AFF| log |AFF| + |GP ||AFF| + |AFF|2))
time for batch updates and general patterns. �

As opposed to incremental simulation, IncBSim has to
find out changes to mappings from edges to paths of possi-
bly bounded lengths in response to updates, and is far more
challenging. For (1), one can verify that IncBSim is already
unbounded for a single-edge insertion and a pattern with a
single edge, by reduction from the incremental single-source
reachability problem, which is unbounded [22].

To show (2), we provide an incremental algorithm with
the complexity given in Theorem 1. To keep track of paths
of bounded lengths, we introduce a notion of weighted land-
mark vectors, an extension of landmarks [19], in Section 4.1.
Based on the notion we develop the algorithm in Section 4.2.

In contrast to the algorithms of [8] that only work on
dag patterns and are in cubic-time, our algorithm is able to
handle cyclic patterns, and is in quadratic-time in |AFF| and
|ΔG|, independent of the size of data graph G. As remarked
earlier, |ΔG| and GP are typically small in practice.

4.1 Weighted Landmark Vectors

A landmark vector lm = <v1, . . . , v|lm|> for a data graph G
is a list of nodes in G such that for each pair (v′′, v′) of nodes

931

in G, there exists a node in lm that is on a shortest path
from v′′ to v′, i.e., lm “covers” all-pair shortest distances.

As observed in [19], we can easily use a landmark vector
to find the distance between two nodes in G as follows. (1)
With each node v in G we associate two distance vectors of
size |lm|: distvf = <dis(v, v1), . . . , dis(v, v|lm|)>, and distvt

= <dis(v1, v), . . . , dis(v|lm|, v)>. (2) The distance dis(v′′, v′)
from node v′′ to v′ in G is the minimum value among the
sums of distvf [i] of v′′ and distvt[i] of v′ for i ∈ [1, |lm|]. This
can be found by a distance query, denoted as ldist(v′′, v′, lm),
which performs at most |lm| operations. In practice |lm| is
typically small and can even be treated as a constant [19].

There are multiple landmark vectors for a graph G. We
want to use a “high-quality” one, with a small number of
nodes that are not changed frequently when G is updated.
To capture this we define the weight of a landmark v as:

w(v) =
frq(v)

deg(v) · Bk(v)

where (1) deg is the degree of the node v; intuitively, the
higher the total degree of the landmarks in a vector lm is,
the less nodes lm needs; (2) frq(v) indicates how frequent
v and its edges are changed [18]; it is known that in real-
life networks, nodes with high deg are changed more fre-
quently [16]; and (3) Bk is the km-betweenness centrality for
dynamic graphs [31], which is a normalized measurement
for the number of shortest paths of length less than km in
G that go through the node v. We use km to denote the
maximum (finite) bound on the pattern edges in a given Gp.

A weighted landmark vector lm is a landmark vector with
weight on each of its landmarks. The weight w(lm) of lm is
the sum of the weights of the landmarks in lm. Intuitively,
the less w(lm) is, the shorter and more stable lm is.

Example 10: Consider the data graph G of Example 1. A
landmark vector lm for G is <(Ann, “cto”), (Dan, “db”),
(Pat, “db”), (Ross, “Med”)>. Observe that distvf of Dan is
<1, 0, 2,∞>, and distvt of Bill is <1, 2, 1,∞>. Using these
we can find that the distance from Dan to Bill is 2.

Suppose that Ann frequently updates her contacts, i.e.,
frq(Ann) is high, while Bill seldom updates his contacts.
Although deg(Ann)·Bk(Ann) is large, Bill is a better choice
for a landmark, since he is more stable and has a lower
weight than Ann. Thus a better landmark vector is <(Bill,
“Bio”), (Dan, “db”), (Pat, “db”), (Ross, “Med”)>. �

This suggests that we study the following problem. Given
a graph G, the problem for computing a minimum weighted
landmark vector is to find a weighted landmark vector lm
with the minimum w(lm). The problem is, however, hard:

Proposition 5: The problem for computing a minimum
weighted landmark vector is APX-hard [29]. �

The APX-hard class consists of problems that cannot be
approximated by any ptime algorithm within some positive
constant. The result tells us that the problem is among
the most difficult ones that allow ptime approximation al-
gorithms with a constant approximation ratio. It is verified
by reduction from the weighted vertex cover problem [29].

To cope with the high complexity, we next provide an in-
cremental algorithm to maintain weighted landmarks offline.

4.2 Incremental Matching for Bounded Simulation

Based on weighted landmark vectors, we develop incre-
mental algorithms for IncBSim. We use the notations below.

Figure 9: Incremental bounded simulation

A pair (v′, v) of nodes in a data graph G is called a cc
(resp. cs) pair for a pattern edge ep = (u′, u) if v′ ∈ can(u′)
and v ∈ can(u) (resp. v ∈ mat(u)). It is called an ss pair
if (a) v′ ∈ mat(u′), v ∈ mat(u), and (b) dis(v′, v) satisfies
the bound of ep, i.e., dis(v′, v) ≤ k if fe(u

′, u) = k, and
0 < dis(v′, v) otherwise. One can verify the following.

Proposition 6: Given a b-pattern GP , a data graph G and
the result graph Gr, (1) GP �simGr if and only if GP �bsimG,
and (2) only the cs and cc (resp. ss) pairs with updated dis-
tance satisfying (resp. not satisfying) the bound for a pattern
edge may increase (resp. reduce) the matches of GP . �

Proposition 6 reduces bounded simulation in a data graph
G to simulation in the result graph Gr. It suggests a two-step
strategy for IncBSim: (1) identify all the cc, cs and ss pairs
via a landmark vector; (2) find changes ΔMsim to matches,
by treating cc and cs pairs (resp. ss pairs) as insertions of
the edges to Gr (resp. deletions from Gr).

Below we first study unit updates and then batch updates.

Single edge insertions. An algorithm to handle a single-
edge insertion is given in Fig. 8, denoted as IncBMatch+. It
first invokes procedure InsLM to identify all the cc and cs
pairs (lines 1-2). By Proposition 6, these pairs are inser-
tions to the result graph Gr. Hence the algorithm finds new
matches by updating Gr (lines 3-4), along the same lines as
the algorithms IncMatch+ and IncMatch (see Section 3.1).

Procedure InsLM updates landmarks when an edge e =
(v′, v) is inserted. It finds those nodes v1 such that (1) v1 are
within km hops of v, where km is the maximum bound in GP

as remarked earlier; and (2) dis(v1, v) is changed (lines 1-4;
see Section 4.1 for ldist queries). It updates the old land-
marks and distvf for these nodes (line 5), and propagates
the changes (lines 6-7). Similarly it processes v′ (line 8).

Observe that InsLM is a “lazy” incremental method to
maintain landmarks: (a) the distance vectors of the nodes
are updated only if they are within km hops of the edge e
and if their distances are changed; and (b) at most 2 new
landmarks are inserted, while the invalid landmarks are up-
dated later by an offline process in the background.

Example 11: Consider the b-pattern P1 and graph G of
Fig. 1. A landmark vector for G is <(Ann, “cto”), (Dan,
“db”), (Pat, “db”), (Ross, “Med”)>. The distance vector
distvf for (Don, “cto”) is <∞,∞,∞,∞>, and distvt for
(Dan, “db”) is <1, 0, 2,∞>. In G, Don cannot reach Dan.

When edge e2 is added G, the process of InsLM is il-
lustrated in Fig. 9. It first identifies node Don, Pat, Ann
and Dan, from which the distances to Tom are changed.
It inserts Don into lm as a new landmark, and updates
distance vectors distvf accordingly. Similarly, it finds
nodes whose distances from Don are changed, and up-
dates the distance vectors distvt. The new distvf of (Don,
“cto”) is <∞,∞,∞,∞, 0>, and distvt of (Dan, “db”) is

932

<1, 0, 2,∞, 2>. The new distance from Don to Dan is 2.
IncBMatch+ then incrementally finds new matches by op-

erating on the result graph Gr1 of Fig. 3, via simulation. It
identifies new cc and cs pairs, e.g., (Don, Tom), (Don, Dan)
and (Don, Pat), which are inserted as edges to Gr1. This
yields the new result graph Gr3 of Fig. 9. �

Single edge deletions. Similarly, when an edge e = (v′, v)
is deleted, we first identify node pairs (v1, v2) for which (1) v1

and v2 are within km hops of v and v′, respectively, where km

is as given above; and (2) dis(v1, v) or dis(v′, v2) is changed.
For each such pair (v1, v2), we (1) compute the distance
from v1 to v2 following a new shortest path between them,
(2) select and add a new landmark on a shortest path from
v1 to v2 to the landmark vector, and (3) extend the distance
vectors distvf of v1 and distvt of v2 with the new distances
from and to the landmark, respectively. We finally collect ss
pairs following Proposition 6, and treat these node pairs as
edges to be deleted from the result graph Gr. The invalid
matches are removed as in IncMatch− (see Section 3.1), and
changes to the match result ΔMsim are identified.

Batch updates. For batch updates ΔG, (1) we adopt a
variant of a dynamic fixed point algorithm [21], to identify
all the node pairs (v1, v2) for which (a) dis(v1, v2) is changed,
and (b) v1 and v2 are within km hops of the nodes in the edge
inserted or deleted in ΔG; here km is as given above; Instead
of maintaining a distance matrix of size O(|V |2) as in [21],
we compute the old distance information using a landmark
vector lm, and keep track of node pairs (v1, v2) and their new
distances by extending lm and their distance vectors. (2) We
collect all ss, cs and cc pairs from those pairs examined in (1)
that have new distances satisfying the condition specified in
Proposition 6. We then find changes ΔMsim to the matches
by incrementally computing simulation of GP in Gr, using
a strategy similar to algorithm IncMatch that handles batch
updates for simulation (Section 3.2).

Incremental maintenance of landmarks. InsLM incre-
mentally updates landmark vectors, by changing only those
landmarks that affect matches, while leaving the rest to be
adapted offline. Observe the following: (1) a landmark vec-
tor lm is valid as long as for each node pair, there is a land-
mark in lm that is on a shortest path between them; (2) we
keep track of node pairs that lm covers, and add a landmark
only when necessary; only the distance vectors of those pairs
with changed distances are extended; and (3) space efficient
landmark vector is rebuilt periodically via an offline process
when, e.g., |lm| is approaching the number of nodes in G.

Correctness & Complexity. The correctness of the incremen-
tal algorithms for IncBSim is assured by Proposition 6. One
can verify that the incremental algorithm for batch updates
is in O(|ΔG|(|AFF| log |AFF| + |GP ||AFF| + |AFF|2)) time.
This completes the proof of Theorem 4.

Remarks. In practice data graphs are often stored and
queried in distributed/parallel settings (e.g., [15]). The in-
cremental techniques given above can be readily adapted in
distributed/parallel settings as follows: (1) graph updates
are mapped to each of the distributed graph fragments (e.g.,
clusters [7]), which can be incrementally maintained locally,
and (2) the updated matches from each fragments are com-
bined to get the global updated match.

5. Incremental Subgraph Isomorphism
We next study incremental matching for subgraph isomor-

phism, denoted as IncIsoMat. Given a normal pattern GP ,
data graph G, matches Miso(GP , G) and changes ΔG to G,
IncIsoMat is to find ΔMiso, the set of subgraphs of G that
are to be added to (or deleted from) Miso(GP , G), such that
Miso(GP , G ⊕ ΔG)=Miso(GP , G) ⊕ ΔMiso.

We also study the problem for deciding whether there ex-
ists a subgraph in the updated graph G ⊕ ΔG that is iso-
morphic to GP , i.e., GP �isoG ⊕ ΔG, referred to as IncIso.

The main results of this section are negative:

Theorem 7: For subgraph isomorphism,

(1) IncIso is NP-complete even when GP is a path pattern
and ΔG is a unit update; and

(2) IncIsoMat is unbounded for unit updates, even when
GP is a path pattern and G is a dag. �

It is known that subgraph isomorphism is NP-complete
(see, e.g., [11]). Theorem 7(1) tells us that the incremen-
tal decision problem for subgraph isomorphism is also NP-
complete. It is verified by reduction from the Hamilton Path
problem, which is NP-hard (cf. [11]). The reduction only
needs a pattern of a single path and a single-edge update.

Moreover, Theorem 7(2) shows that incremental matching
for subgraph isomorphism is unbounded. Indeed, one can
verify that it is unbounded for path patterns when either a
single-edge deletion or a single-edge insertion is considered.

In light of the high complexity, one might be tempted
to use inexact algorithms for IncIsoMat. However, (1) many
real-life applications require exact matches for subgraph iso-
morphism, e.g., structure search in bioinformatics [20]. (2)
The known inexact or approximate algorithms for IncIsoMat
also take exponential time or exponential space [26, 30].

Algorithm. We next outline a simple algorithm for
IncIsoMat, just to demonstrate the benefits of incremental
matching. It is based on a locality property of IncIsoMat.

To present the property, we first introduce some notations.
(1) We use d to denote the diameter of pattern GP , i.e., the
length of the longest shortest path in GP when GP is treated
as an undirected graph. (2) Consider a unit update Δe to
the data graph G, where e = (v, v′), to be deleted from
or inserted into G. Let V (d, e) be the set of nodes in G
that are within a distance d of both v and v′ (ignoring the
orientation of edges). We use G(d, e) to denote the subgraph
of G induced by V (d, e), i.e., the subgraph of G consisting
of nodes in V (d, e) along with edges of G connecting these
nodes. (3) We use G(d, Δe) to denote G(d, e) ⊕ Δe, the
subgraph G(d, e) updated by Δe.

One can verify the following locality property:

Proposition 8: Given GP , G, and a unit update Δe, the
changes ΔMiso to matches Miso(GP , G)are the difference be-
tween Miso(GP , G(d, e)) and Miso(GP , G(d, Δe)). �

In contrast to incremental (bounded) simulation, here an
edge insertion and a deletion may both add matches to
Miso(GP , G)and remove matches from it. More specifically,
Miso(GP , G(d, Δe)) \ Miso(GP , G(d, e)) is the increment to
Miso(GP , G), and Miso(GP , G(d, e)) \ Miso(GP , G(d, Δe)) is
the set of matches to be removed from Miso(GP , G).

By Proposition 8 we develop an incremental algorithm for
IncIsoMat and unit updates, referred to as IsoUnit: (1) find
the diameter d of GP ; (2) extract the subgraph G(d, e) from

933

G; (3) compute Miso(GP , G(d, Δe)) and Miso(GP , G(d, e));
and (4) compute ΔMiso as described above.

By the locality property, IsoUnit reduces IncIsoMat for a
large graph G to the problem for small subgraphs G(d, Δe)
and G(d, e) of G. In the worst case, IsoUnit is in exponential
time in the size of G(d, Δe), since IncIsoMat is inherently ex-
ponential: there are possibly exponentially many subgraphs
in G(d, Δe) (or G(d, e)) that are isomorphic to GP , i.e., the
size of changes to the output is exponential. In practice,
however, (1) patterns GP are typically small, and hence so
are their diameters d; (2) one seldom finds exponentially
many isomorphic subgraphs in a small graph.

Example 12: Consider the pattern P2 and graph G of
Fig. 1. The diameter d of P2 is 1. Consider Δe2, which is to
insert edge e2 (from Don to Tom) into G. Then V (d, Δe2)
consists of Dan, Don, and Tom, and G(d, Δe2) is the sub-
graph of G induced by the three nodes. No subgraph of
G(d, Δe2) is isomorphic to P2, and ΔMiso is empty. �

For batch updates ΔG, one might be tempted to first
compute the union G(d, ΔG) of G(d, Δe) for each e in ΔG,
and then compute Miso(GP , G(d, ΔG)) along the same lines
as our incremental simulation algorithm for batch updates
(Section 3). However, our experimental study shows that
it often takes much longer to compute Miso(GP , G(d, ΔG))
than applying IsoUnit to G(d,Δe) one by one. Indeed, it is
more costly to find isomorphic subgraphs in a large graph
than do it consecutively in small graphs.

This suggests a simple algorithm, denoted by IncIsoMatch,
for IncIsoMat and ΔG: (1) remove updates in ΔG that cancel
each other; (2) for each remaining unit update Δe, compute
Miso(GP , G(d, Δe)) and Miso(GP , G(d, e)) via IsoUnit; and
finally, (3) compute ΔMiso by merging changes derived from
each Miso(GP , G(d, Δe)) and Miso(GP , G(d, e)).

6. Experimental Evaluation
We next present an experimental study using both real-

life and synthetic data. Four sets of experiments were con-
ducted to evaluate: (1) the performance of IncMatch for
incremental simulation, compared with (a) its batch coun-
terpart Matchs [14], (b) IncMatchn, a naive algorithm that
processes unit updates one by one by invoking IncMatch+

and IncMatch−, and (c) Hornsat, the incremental algo-
rithm of [25]; (2) the efficiency of IncBMatch, the incremen-
tal algorithm handling batch updates for bounded simula-
tion (see Section 4), compared with (a) its batch counterpart
Matchbs [8], and (b) the incremental algorithm IncBMatchm

of [8] on dag patterns, using a distance matrix; (3) the ef-
fectiveness of the optimization techniques, i.e., (a) weighted
landmark vectors, (b) procedure minDelta; and finally, (4)
the efficiency of IncIsoMatch for incremental subgraph iso-
morphism, compared with (a) VF2, reported as the best
batch algorithm for subgraph isomorphism [9], and (b)
IsoUMatch, which computes subgraph isomorphism on the
union of the affected area of each update (see Section 5).

Experimental setting. We used both real-life and syn-
thetic graphs to evaluate our methods.

(1) Real-life data. We used two real-life datasets: (a)
YouTube in which each node denotes a video with attributes
length, category, age etc, and edges indicate recommenda-
tions. The dataset has 187K nodes and 1M edges, and we
extracted snapshots based on the age of the nodes, each

has 18K nodes and 48K edges. (b) A crawled citation
network [27], where each node represents a paper with at-
tributes, e.g., title, author and the year published, and edges
denote citations. The dataset has 630K nodes and 633K
edges. We extract dense snapshots based on the year of the
papers, each consisting of 18K nodes and 62K edges.

(2) Synthetic data. We designed two generators to produce
data graphs and updates. Graphs are controlled by three
parameters: the number of nodes |V |, the number of edges
|E| and the average number |att| of attributes of a node. We
produced sequences of data graphs following the densifica-
tion law [17] and linkage generation models [12]. We used
two parameters to control updates: (a) update type (edge
insertion or deletion), and (b) the size of updates |ΔG|.
(3) Pattern generator. We designed a generator to produce
meaningful pattern graphs, controlled by 4 parameters: the
number of nodes |Vp|, the number of edges |Ep|, the average
number |pred| of predicates carried by each node, and an
upper bound k such that each pattern edge has a bound k′

with k − c ≤ k′ ≤ k, for a small constant c. We shall use
(|Vp|, |Ep|, |pred|, k) to characterize a pattern.

(4) Implementation. We implemented the following in Java:
Problem Batch Incremental

IncSim Matchs IncMatch, IncMatchn, Hornsat
IncBSim Matchbs IncBMatch, IncBMatchm

IncIsoMat VF2 IncIsoMatch, IsoUMatch
Optimizations BatchLM, minDelta InsLM

We used a machine powered by an Intel Core(TM)2 Duo
3.00GHz CPU with 4GB of memory, running linux. Each
experiment was run 5 times and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Incremental graph simulation. We first evalu-
ated the efficiency of IncMatch using synthetic and real life
data. We generated 30 normal patterns for each of YouTube,
Citation and synthetic data, with parameters (4, 5, 3, 1) for
synthetic data and (6, 8, 3, 1) for real-life data.

Fixing |V | = 17K on synthetic data, we varied |E| from
78K to 108K (resp. from 108K to 78K) in 3K increments
(resp. decrements). The results are reported in Figures 10(a)
and 10(b), respectively. We find the following. (a) IncMatch
outperforms Matchs when insertions are no more than 30%
(resp. 30% for deletions; not shown). When the changes are
11% for insertions (resp. 18% for deletions), IncMatch im-
proves Matchs by over 40% (resp. 50%). (b) IncMatch and
IncMatchn consistently do better than Hornsat. Hornsat
does not scale well with |ΔG|, due to its additional costs
for updating reflections and maintaining its auxiliary struc-
tures. (c) IncMatch does better than IncMatchn. This ver-
ifies the effectiveness of minDelta, which reduces |ΔG|. (d)
As opposed to Matchs, IncMatch and IncMatchn are sensitive
to |ΔG|, as expected. This is because the larger |ΔG| is, the
larger the affected area is; so is the computation cost. This
justifies the complexity measure of incremental algorithms
in terms of the size of |ΔG| and AFF.

Figures 10(c) and 10(d) show the results for edges inserted
to YouTube and Citation datasets, respectively. Each data
set has |V | = 18K, and |E| as shown in the x-axis. Here the
updates are the differences between snapshots w.r.t. the age
(resp. year) attribute of YouTube (resp. Citation), reflect-
ing their real-life evolution. The results confirm our observa-
tions on synthetic data. For instance, IncMatch outperforms
Matchs on YouTube even for 50% of changes.

934

 0

 5

 10

 15

 20

 25

 30

 35

 40

81K 84K 87K 90K 93K 96K 99K 102K 105K 108K

T
im

e(
se

co
nd

)

Matchs
IncMatchn
IncMatch
HornSat

(a) IncSim for insertions

 5

 10

 15

 20

 25

 30

 35

 40

105K 102K 99K 96K 93K 90K 87K 84K 81K 78K

T
im

e(
se

co
nd

)

Matchs
IncMatchn
IncMatch
HornSat

(b) IncSim for deletions

 0

 10

 20

 30

 40

 50

 60

 70

30k 32k 34K 36K 38K 40K 42K 44K 46K 48K

T
im

e(
se

co
nd

)

Matchs
IncMatchn
IncMatch
HornSat

(c) IncSim over Youtube

 0

 20

 40

 60

 80

 100

43k 45k 47K 49K 51K 53K 55K 57K 59K 61K

T
im

e(
se

co
nd

)

Matchs
IncMatchn
IncMatch
HornSat

(d) IncSim over Citation

 0

 2

 4

 6

 8

 10

 12

99K 100K 101K 102K 103K 104K 105K 106K 107K 108K

T
im

e(
se

co
nd

)

Matchbs
IncMatchm
IncBMatch

(e) IncBSim for insertions

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

107K 106K 105K 104K 103K 102K 101K 100K 99K 98K

T
im

e(
se

co
nd

)

Matchbs
IncMatchm
IncBMatch

(f) IncBSim for deletions

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

39K 40K 41K 42K 43K 44K 45K 46K 47K 48K

T
im

e(
se

co
nd

)

Matchbs
IncMatchm
IncBMatch

(g) IncBSim over Youtube

 10

 20

 30

 40

 50

43K 45K 47K 49K 51K 53K 55K 57K 59K 61K

T
im

e(
se

co
nd

)

Matchbs
IncMatchm
IncBMatch

(h) IncBSim over Citation

 1

 2

 3

 4

 5

 6

1 1.05 1.1 1.15 1.2

N
um

be
r(

x
10

3)

Varying α

Original Updates
Reduced Updates

(i) Updates reducing

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1K 2K 3K 4K 5K

S
pa

ce
(M

b)

InsLM
BatchLM

(j) Landmark space cost

 0

 20

 40

 60

 80

 100

0.5K 1K 1.5K 2K 2.5K 3K
T

im
e(

se
co

nd
)

InsLM
BatchLM

(k) InsLM for insertions

 0

 200

 400

 600

 800

 1000

 1200

104K 108K 112K 116K 120K 124K

T
im

e(
se

co
nd

)

VF2
IncIsoMatch

IsoUMatch

(l) IncIsoMat for insertions

Figure 10: Performance Evaluation

Exp-2: Incremental bounded simulation. In this set
of experiments, we compared the efficiency of IncBMatch
against Matchbs and IncBMatchm, using synthetic and real-
life data. We produced 30 b-patterns for each of YouTube,
Citation and synthetic data, with parameters (4, 5, 3, 3) for
synthetic data, and (6, 8, 3, 3) for real-life data. To favor
IncBMatchm that only works on dag patterns, the b-patterns
are DAGs although IncBMatch works well on cyclic patterns.

Fixing |V | = 17K on synthetic data, we varied |E| from
98K to 108K (resp. from 108K to 98K) by inserting edges
(resp. deleting), in 1K increments (resp. decrements). The
results are reported in Figures 10(e) and 10(f) for inser-
tions and deletions, respectively. The results tell us the
following. (a) IncBMatch outperforms Matchbs when both
edge insertions and deletions are no more than 10%. (b)
IncBMatch consistently does better than IncBMatchm. The
improvement is about about 30% (resp. 40%) for insertions
(resp. deletions) when |ΔG| = 10K. Note that IncBMatchm

employs distance matrix to compute the distance between
two nodes, and does not scale with large graphs. In contrast,
IncBMatch uses weighted landmarks to improve the scalabil-
ity. (c) For the same |ΔG|, IncBMatch needs more time to
process edge insertions than deletions. As an example, it
takes more than 8 second to handle 10K edge insertions,
but less than 6 second to process deletions of the same size.
These confirm our observation in Section 4 that edge inser-
tions introduce more complications than deletions.

Figures 10(g) and 10(h) show the performance of the algo-
rithms for edge insertions to YouTube and Citation datasets,
respectively, in the same setting as in Exp-1. The results
show that IncBMatch does even better on real-life data than
on synthetic data; e.g., IncBMatch outperforms Matchbs on
YouTube when the changes are no more than 20%.

Exp-3: Optimization techniques. In this set of exper-
iments we evaluated (1) the effectiveness of minDelta, (2)
the space cost of LandMark, and (3) the efficiency of InsLM
for updating landmark vectors. In the experiments, we used
one more parameter α, and generated graphs following the
densification law [17], i.e., |E| = |V |α.

To analyze the effectiveness of minDelta, we fixed |V |
= 20K, varied parameter α, and randomly inserted and
deleted 4000 edges. The results are shown in Fig. 10(i).
We find that minDelta significantly reduces the set of up-
dates. This becomes more evident when α is increased, i.e.,
if the graphs have more edges. In this case, more nodes are
in the result graphs, and updated edges are less likely to
affect the match results. The results also demonstrate the
potential benefits of minDelta in real-life applications where
insertions are much more common (e.g., [12]).

Fixing |V | = 10K, α = 1.1, Figure 10(j) reports the space
cost of LandMark, incrementally maintained and recomputed
from scratch, respectively. The x-axis shows the number of
edges inserted, and the y-axis gives the space cost, including
the size of LandMark as well as the updated distance vectors.
The results show that (a) LandMark has much less space
cost than a (10K)2 distance matrix [8]; (b) compared to
recomputation, InsLM updates LandMark with only extra
space cost up to 2%; indeed, after the insertion of 5K edges,
the recomputed LandMark and distance vectors takes 56M ,
while the total extra space added by InsLM is 674K.

Fixing |V | = 15K and α = 1.1, we also compared the per-
formance of InsLM with its batch counterpart, denoted by
BatchLM, which recomputes the weighted landmarks from
scratch when graphs are updated. In the “lazy” mode,
InsLM only updates the nodes within km hops of the in-
serted edges, where km is the maximum bound in GP . To

935

favor BatchLM, we set km = |V |, i.e., all the distances have
to be accurate after InsLM. The results are reported in
Fig. 10(k), where the x-axis represents the number of in-
serted edges. The results tell us that InsLM significantly out-
performs BatchLM. BatchLM does better than InsLM only
when more than 25% of changes are incurred (not shown).

Exp-4: Incremental subgraph isomorphism. The last
experiments evaluated the efficiency of IncIsoMatch against
VF2 and IsoUMatch, using synthetic data and 30 normal
patterns generated with parameters (4, 5, 3, 1). Fixing |V | =
15K, we varied |E| from 100K to 124K by inserting edges,
in 4K increments. The results are reported in Fig. 10(l),
which show that IncIsoMatch performs much better than the
batch algorithm VF2 when the changes are no more than
21%. Note that IsoUMatch does not scale well with |ΔG|.
Indeed, the union of affected areas grows rapidly since the
updates spread all over the graph, and hence, IsoUMatch can
no longer enjoy the locality property, as expected.

Summary. From the experimental results we find the fol-
lowing. (1) Incremental matching is more promising than
its batch counterparts for simulation, bounded simulation
and subgraph isomorphism in evolving networks, even when
changes to data graphs are reasonably large. (2) Our incre-
mental algorithms significantly and consistently outperform
the previous incremental algorithms for (bounded) simula-
tion. (3) The minDelta and weighted landmark techniques
are effective in improving the performance of the algorithms.

7. Conclusion
We have proposed incremental solutions for graph pattern

matching based on simulation, bounded simulation and sub-
graph isomorphism. We have shown that the incremental
matching problem is unbounded for all of them, but identi-
fied special cases that are bounded and even optimal. For
each of these, we have developed incremental algorithms for
(possibly cyclic) patterns and batch updates. In particu-
lar, the complexity bounds of the algorithms for simulation
and bounded simulation are independent of the size of data
graph. Our experimental study has verified that our algo-
rithms substantially outperform their batch counterparts.

We are currently experimenting with large real-life data
sets in various applications. We are also investigating opti-
mization techniques for incremental matching by exploring
usage patterns of real-life networks [16, 18, 31]. Another
challenging topic is to develop bounded incremental heuris-
tic algorithms for subgraph isomorphism. Finally, we are
extending our incremental matching methods to querying
distributed graph data, exploring MapReduce.

Acknowledgments. Fan is supported in part by the RSE-

NSFC Joint Project Scheme and an IBM scalable data ana-
lytics for a smarter planet innovation award. Li is supported
by NGFR 973 grant 2006CB303000 and NSFC grant 60533110.

8. References
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web.

From Relations to Semistructured Data and XML. Morgan
Kaufman, 2000.

[2] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. L.
Wiener. Incremental maintenance for materialized views over
semistructured data. In VLDB, 1998.

[3] J. Brynielsson, J. Högberg, L. Kaati, C. Martenson, and
P. Svenson. Detecting social positions using simulation. In
ASONAM, 2010.

[4] Z. Chen, H. T. Shen, X. Zhou, and J. X. Yu. Monitoring
path nearest neighbor in road networks. In SIGMOD, 2009.

[5] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years
of graph matching in pattern recognition. IJPRAI, 18(3),
2004.

[6] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An im-
proved algorithm for matching large graphs. In IAPR TC-
15 Workshop on Graph-based Representations in Pattern
Recognition, 2001.

[7] J. Dean and S. Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. Commun. ACM, 51(1), 2008.

[8] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph
pattern matching: From intractability to polynomial time.
In PVLDB, 2010.

[9] P. Foggia, C. Sansone, and M. Vento. A performance com-
parison of five algorithms for graph isomorphism. In IAPR
TC-15 Workshop on Graph-based Representations in Pat-
tern Recognition, 2001.

[10] B. Gallagher. Matching structure and semantics: A survey
on graph-based pattern matching. AAAI FS., 2006.

[11] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, 1979.

[12] S. Garg, T. Gupta, N. Carlsson, and A. Mahanti. Evolution
of an online social aggregation network: An empirical study.
In IMC, 2009.

[13] A. Gupta and I. Mumick. Materialized Views. MIT Press,
2000.

[14] M. R. Henzinger, T. Henzinger, and P. Kopke. Computing
simulations on finite and infinite graphs. In FOCS, 1995.

[15] M. F. Husain, P. Doshi, L. Khan, and B. M. Thuraisingham.
Storage and retrieval of large rdf graph using hadoop and
mapreduce. In CloudCom, 2009.

[16] R. Kumar, J. Novak, and A. Tomkins. Structure and evolu-
tion of online social networks. In KDD, 2006.

[17] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution:
Densification and shrinking diameters. ACM Trans. Knowl.
Discov. Data, 1(1):2, 2007.

[18] A. Ntoulas, J. Cho, and C. Olston. What’s new on the Web?
The evolution of the Web from a search engine perspective.
In WWW, 2004.

[19] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast
shortest path distance estimation in large networks. In
CIKM, 2009.

[20] N. Przulj, D. G. Corneil, and I. Jurisica. Efficient estimation
of graphlet frequency distributions in protein-protein inter-
action networks. Bioinformatics, 22(8):974–980, 2006.

[21] G. Ramalingam and T. Reps. An incremental algorithm for
a generalization of the shortest-path problem. J. Algorithms,
21(2):267–305, 1996.

[22] G. Ramalingam and T. Reps. On the computational com-
plexity of dynamic graph problems. TCS, 158(1-2), 1996.

[23] G. Ramalingam and T. W. Reps. A categorized bibliography
on incremental computation. In POPL, 1993.

[24] D. Saha. An incremental bisimulation algorithm. In
FSTTCS, 2007.

[25] S. K. Shukla, E. K. Shukla, D. J. Rosenkrantz, H. B. H.
Iii, and R. E. Stearns. The polynomial time decidability of
simulation relations for finite state processes: A HORNSAT
based approach. In DIMACS Ser. Discrete, 1997.

[26] A. Stotz, R. Nagi, and M. Sudit. Incremental graph matching
for situation awareness. FUSION, 2009.

[27] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnet-
miner: extraction and mining of academic social networks.
In KDD, 2008.

[28] J. R. Ullmann. An algorithm for subgraph isomorphism.
JACM, 23(1):31–42, 1976.

[29] V. V. Vazirani. Approximation Algorithms. Springer, 2003.
[30] C. Wang and L. Chen. Continuous subgraph pattern search

over graph streams. In ICDE, 2009.
[31] S. White and P. Smyth. Algorithms for estimating relative

importance in networks. In KDD, 2003.
[32] Y. Zhuge and H. Garcia-Molina. Graph structured views and

their incremental maintenance. In ICDE, 1998.

936

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

