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Abstract 
 

Schema matching is a complex process focusing 

on matching between concepts describing the data in 

heterogeneous data sources. There is a shift from 

manual schema matching, done by human experts, to 

automatic matching, using various heuristics (schema 

matchers). In this work, we consider the problem of 

linearly combining the results of a set of schema 

matchers. We propose the use of machine learning 

algorithms to learn the optimal weight assignments, 

given a set of schema matchers. We also suggest the 

use of genetic algorithms to improve the process 

efficiency. 

 

1. Introduction 
 

Schema matching is the task of matching between 

concepts describing the meaning of data in 

heterogeneous, distributed data sources. As such, it is 

recognized to be one of the basic operations required 

by the process of data integration [3]. Due to its 

cognitive complexity [4], traditionally schema 

matching has been performed by human experts [11]. 

As the process of data integration has become more 

automated, the ambiguity inherent in concept 

interpretation has become one of the main obstacles 

to this process. For obvious reasons, manual concept 

reconciliation in dynamic environments is inefficient 

and at times close to impossible. Introduction of the 

Semantic Web vision [2] and shifts toward machine-

understandable Web resources have made even 

clearer the vital need for automatic schema matching. 

In attempt to address these practical needs, several 

heuristics for automatic schema matching (schema 

matchers hereafter) have been proposed and 

evaluated. While in many domains these heuristics 

succeed in finding the right matching, empirical 

analysis shows that there is no single heuristic that is 

guaranteed to be effective in all possible domains and 

applications [8]. To overcome this problem, several 

tools allow combining schema matchers [5], [7], [12]. 

Like many before us, we hypothesize that a 

combination of different schema matchers can 

improve the matching result over mappings obtained 

independently by each matcher. 

In this work, we consider the problem of linearly 

combining the results of a set of schema matchers. 

Each matcher is assigned a different weight, yielding 

a vector of relative weights. The optimal vector is not 

known a priori, and may change from one matching 

problem to another. We propose the use of machine 

learning algorithms to learn the optimal weight 

assignments, given a set of schema matchers. Our aim 

is twofold. First, we attempt at identifying general 

rules in assigning weights to various schema 

matchers. Secondly, we analyze the relative 

performance of various schema matchers, aiming at 

identifying matchers' dominance. 

For this purpose we performed a close to 

exhaustive search and checked the correlation 

between algorithm weights and mapping precision. 

Our preliminary analysis show that no single matcher 

dominates as was predicted. 

The rest of the paper is organized as follows. 

Section 2 provides an overview of the research field 

of schema matching. We next formalize schema 

matching as a search problem in Section 3 and 

propose the use of a genetic search to reduce the 

search process complexity. Section 5 provides 

preliminary empirical results. We provide concluding 

remarks and our proposed future research directions 

in Section 6. 



 
Figure 1: Delta Airlines (left) versus American Airlines (right) Reservation Sites 

 

2. Schema Matching: Overview 
 

Various models for schema matching have been 

proposed in the literature. For simplicity sake, we 

provide all basic concepts in terms of one such 

model, namely this proposed in COMA [5]. 

Given two sets of concepts S and S' (henceforth 

referred to as schemata), a real-valued degree of 

similarity � (a,b) is automatically computed for all 

possible pairs of concepts (a,b) from SxS'. This 

similarity information is used to quantify the quality 

of different mappings from the concepts in S to the 

concepts in S'. Typically, a single mapping from S to 

S' is then chosen as the best mapping.
 1

 The selection 

process aims at maximizing some aggregation 

function (e.g., average) of the degree of similarity of 

the individual concept pair mappings. 

Various schema matchers differ mainly in the 

measures of similarity that they employ, yielding 

different similarity degrees. These measures can be 

arbitrarily complex, and may use various techniques 

such as name matching, domain matching, structure 

matching, etc.  

  For illustration purposes, we present next the set 

of schema matchers, as employed in OntoBuilder [8], 

specializing in extracting ontologies from Web forms 

(a feature we have used in our experiments). 

OntoBuilder accepts two ontologies as input, a 

candidate ontology and a target ontology. It attempts 

                                                           
1
 We differentiate the process of matching from its 

output (denoted mapping). 

to match each attribute in the target ontology with an 

attribute in the candidate ontology. OntoBuilder 

supports an array of matching and filtering algorithms 

and can be used as a framework for developing new 

schema matchers which can be plugged-in and used 

via GUI or as an API. OntoBuilder uses the following 

four matchers (detailed description of which can be 

found in [8]): 

Term: A term is a combination of a label and a name. 

Term matching compares labels and names to identify 

syntactically similar terms. To achieve better 

performance, terms are preprocessed using several 

techniques originating in IR research. Term matching 

is based on either complete word or string 

comparison. 

Value: Value matching utilizes domain constraints 

(e.g., drop lists, check boxes, and radio buttons) to 

compute similarity measure among terms. The 

availability of constrained value-sets becomes 

valuable when comparing two terms that do not 

exactly match through their labels. 

Composition: A composite term is composed of 

other terms (either atomic or composite). 

Composition can be translated into a hierarchy. This 

schema matcher assigns similarity to terms, based on 

the similarity of their neighbors. 

Precedence: The precedence relationship is unique to 

OntoBuilder and therefore worth of a lengthier 

discussion. In any interactive process, the order in 

which data are provided may be important. In 



particular, data given at an earlier stage may restrict 

the availability of options for a later entry. For 

example, a car rental site may determine which car 

groups are available for a given session, using the 

information given regarding the pick-up location and 

time. Therefore, once those entries are filled in, the 

information is sent back to the server and the next 

form is brought up. Such precedence relationships can 

usually be identified by the activation of a script, such 

as (but not limited to) the one associated with a 

SUBMIT button. As with composition, precedence 

can be translated into a precedence graph, and the 

matching of two terms is determined by their 

neighboring terms. 

To illustrate the different capabilities of schema 

matchers, consider the Delta Airlines and American 

Airlines online reservation systems (Figure 1). Due to 

wrong design (or designer's error), the departure time 

entry is named 'dept_time_1', and return time is 

named 'dept_time_2' (Figure 1 left). Thus, a schema 

matcher based on term matching will not be able to 

map 'dept_time_2' to the correct field 'returnTime' 

(Figure 1 right). However, a schema matcher based 

on structure similarity has a higher chance of 

identifying the mapping, based on the location of the 

field within the form. 

The true test of a schema matcher is whether the 

best mapping matches well an exact mapping, a 

mapping as could have been determined by a human 

expert. A matcher that manages to mimic well the 

decisions made by a human expert is more 

trustworthy when automating the process of schema 

matching. Quantifying the performance of a schema 

matcher can be done in various ways. For example, a 

strict QoS approach can determine a best mapping to 

be successful only if it is equal to the exact mapping. 

Another, less strict approach, measures the 

precision and recall of the best mapping [13] with 

respect to the exact mapping, as follows. Let A be the 

set of individual concept pair mappings in the exact 

mapping and let B be the set of individual concept 

pair mappings in the best mapping. Precision (P) and 

recall (R), are measured as:  
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Precision and recall both reach the maximum value of 

1 whenever A=B. Low precision is an indication of 

many false negatives and low recall is an indication of 

many false positives. 

3. Schema Matching as a Search Problem 
 

Given two schemata S and S' and m schema 

matchers, the degree of similarity between concepts 

a Є S and b Є S' is computed as 

1
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m
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=
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where �
i(a,b) represents the degree of similarity 

assigned by matcher i and {ω
i} is a set of weights that 

sum to unity, i.e., 
Σ

i{
ω

i}=1.  

This work is concerned with the problem of 

inference with classifiers in which several local 

classifiers (the schema matchers) are utilized to 

achieve a global task (best mapping). This problem 

can be conceptualized at two levels. First, each 

schema matcher is used to produce a best mapping 

according to its capabilities (heuristics) and world 

knowledge. Then a consensus is reached, based on the 

outcomes of the classifiers. In the context of schema 

matching, the population to be investigated is the 

vector of weights.  

More formally, given schemata S and S', their a 

priori known exact mapping M, and a set A={a1, a2, 

…, am} of available schema matchers, we are 

interested in finding a vector of weights ω
={

ω
1, 

ω
2, 

…, 
ω

m} such that applying those of the m schema 

matchers with positive weights and assigning each 

matcher ai with a non-negative relative weight ω
i will 

produce a mapping M' that is sufficiently similar to 

M. 

For the schema matching task to be effective, two 

decisions need to be taken. First, deciding on which 

schema matchers will be utilized and secondly, to 

determine the weights vector values. For small search 

space it is possible to perform a close to exhaustive 

search to explore all weight combinations. However 

in the general case, the size of the search space is 

exponential in the size of the schemata. Thus, we 

propose to employ the learning mechanism of Genetic 

Algorithms [9] (GA hereafter) to both tasks. 

 

4. Genetic Search 
 

A typical matching scenario involves choosing a 

subset of schema matchers for generating the best 

mapping. Evaluating a mapping is determined, as 

discussed in Section 2, using metrics as recall, and 

precision or a combination of such metrics. Clearly, 

the size of the search space is exponential in schema 

size. To accommodate this problem we suggest the 

use of genetic algorithms.  

 Genetic algorithms are nature-inspired class of 

algorithms that mimic an evolutionary rule of “the 



fittest survives”.  Initially, a population of individuals 

is created, each represented by a chromosome (a set 

of genes). The value of each gene is assigned 

randomly (within known bounds). The population is 

then evaluated to determine how well each individual 

fits the required task.  

The new generation of individuals is chosen from 

the parent and the offspring generation in accordance 

with a survival strategy that favors fit individual, but 

does not preclude the survival of the less fit. An 

offspring is created by selecting two parents at 

random and combining parts of their chromosomes. 

Random changes to the genes are made to mimic the 

natural role of mutation. This process is repeated until 

a required performance level is achieved (or no 

further improvement seems possible). 

Genetic algorithms are typically applied when 

searching optimal or near optimal solutions to a 

problem within a large multi-modal search space. 

Typically, it is infeasible to apply a precise analytic 

algorithm to accurately solve such problems. Schema 

matching fits nicely with this definition, given the set 

of competing constraints that have to be balanced in 

reaching a (close to) optimal solution using multi 

objective functions (recall, precision and others). 

Genetic algorithms success in finding an optimum 

solution depends on the choice of a fitness function 

that directs the search along promising pathways. The 

fitness function is a weighted combination of one or 

more objective functions and characterizes what is 

considered to be a good solution. Given two possible 

solutions, it determines which of them supplies a 

better set of desired properties. In our experiments we 

evaluate the fitness of a solution using the precision 

metric. In the future we plan to use a multi-objective 

fitness function. 

 

5. Preliminary Results 
 

We extracted a set of 25 pairs of schemata from 

Web site forms from various domains. For each pair, 

a human expert has manually constructed the exact 

mapping. For the purpose of evaluating the 

combination of different matchers we have performed 

a close to exhaustive search, exploring many weight 

combinations. Thus, we could verify the results of GA 

and assess how the changes in the weight of each 

matcher affect the overall performance. To evaluate 

performance, we correlated the changes with the 

precision obtained by four available matchers 

(respectively denoted by a1, a2, a3, and a4), exploiting 

terms, values, composition, and precedence 

algorithms [6], respectively. Given an algorithm ai 

and a schemata S and S', wi denotes a weight assigned 

to ai, while pi denotes the average level of precision 

for all the mappings for which ai is assigned with wi. 

Correlation is measured as: 
( , )

( ) ( )

i i

i i

COV w p
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SD w SD p
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where COV(wi,pi) is the covariance of wi and pi, and 

SD(wi) and SD(wi) are the standard deviations. Partial 

experimental results are presented in Table 1. Positive 

values indicate that there is positive correlation 

between the weight of an algorithm and the precision. 

Negative value indicates that the correlation is 

negative, while values close to 0 show no correlation.  
 

pair num. a1 a2 a3 a4 

2 0.66 0.01 0.05 -0.69 

5 0.63 -0.01 0.07 -0.66 

16 0.70 -0.01 -0.16 -0.50 

6 0.33 0.25 0.15 -0.70 

13 0.49 0.26 0.05 -0.77 

21 0.47 0.26 0.07 -0.77 

15 -0.32 0.30 -0.19 0.19 

17 -0.38 0.48 0.06 -0.15 

Table 1: Correlation between algorithm weights and 

precision: four algorithms 
 

Analyzing the averages of the weight correlations 

in between the four matchers allows us to conclude 

the following: 

• a1 has average positive correlation of about 0.3 

with the precision and it is a highest correlation 

in the case we combine 4 matchers. 

• a2 has low average positive correlation of about 

0.05 with the precision when 4 matchers are 

combined. 

• a3 has very low average negative (or NO) 

correlation with the precision 

• a4 has high negative average correlation of about 

-0.25 with the precision. 

These results provide a preliminary indication 

regarding the relative performance of different 

matchers. However, as was expected, no single 

matcher performs perfectly over all schema pairs. In 

this regard, we hypothesize that the different matchers 

perform differently relating to various ontological 

structures. For example, we can hypothesize that 

factors such as the size of schema, application 

domain, and the types of schema attributes (free text, 

selection of predefined values, yes/no mark etc.) 

might determine the suitability of a particular 

matcher.  

Note that the values, composition, and precedence 

matchers base on the terms matcher (which seems to 

be the dominating one). Thus, we repeated the 



experiment while neutralizing the influence of a1. 

Partial results are presented in table 2. 
 

pair num. a2 a3 a4 

2 0.30 0.54 -0.80 

5 0.31 0.54 -0.81 

16 0.38 0.44 -0.77 

6 0.56 0.37 -0.87 

13 0.48 0.33 -0.76 

21 0.64 0.32 -0.90 

15 0.67 -0.05 -0.57 

17 0.74 0.03 -0.72 

Table 2: Correlation between the algorithm weights 

and precision: three algorithms 
 

The experiment shows that as a result of the 

neutralization of a1, the values matching algorithm a2 

has a higher positive correlation of about 0.3 with the 

precision. 

The observation regarding the strength of a2 in the 

absence of a1 is an interesting one. This could be an 

example of a situation where not all schema matchers 

should be used. Consider a situation where matchers 

are provided as 'paid' services. Given that a2 can work 

well without a1, means that a user needs to spend less 

on the matching process, by using three, instead of 

four, matchers. 

 

6. Conclusions and Future Research 
 

Schema matching is the task of matching between 

concepts describing the data in heterogeneous data 

sources. As such, it is recognized to be one of the 

basic operations in data integration domain. Due to its 

cognitive complexity, schema matching has been 

traditionally performed by human experts. However, 

manual schema matching in dynamic environments is 

inefficient and at times close to impossible. 

In this work, we consider the problem of linearly 

combining the results of multiple schema matchers. 

Each matcher is assigned a different weight, yielding 

a vector of relative weights. The optimal vector is not 

known a priori, and may change from one matching 

problem to another. We attempt at analyzing the 

relative performance of various schema matchers, 

aiming at identifying matchers' dominance. 

For the purpose of evaluating the combination of 

different matchers we had performed a close to 

exhaustive search and checked the correlation 

between algorithm weights and mapping precision. 

Our preliminary analysis show that no single matcher 

dominates as was predicted. 

GA is typically applied when searching optimal or 

near optimal solutions to a problem within a large 

multi-modal search space. Matching schemata fit 

nicely with this definition, given the set of competing 

constraints that have to be balanced in reaching a 

(close to) optimal solution using multi-objective 

functions (recall and precision and others). We could 

verify that GA handles the matching search problems 

well as it allowed us to decrease the computation 

times and converged correctly. 

In future work we aim to learn the optimal weight 

assignments, given a set of schema matchers. We aim 

to identifying general rules in assigning weights to 

various schema matchers. In addition we are creating 

a large repository of human annotated correct 

matches of ontology pairs. We would like to further 

use machine other learning algorithms such as 

collaborative filtering [10] combined with genetic 

algorithms (see [1] for an example) to provide 

accurate prediction of optimal or near optimal weight 

assignments.  

We believe that different matchers perform 

differently relating to different ontological structures 

and in different domains [6]. In future work we intend 

to focus on extending our experiments to discover 

such correlations and incorporate them into our 

system.  
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