
Measuring the Relative Performance of Schema Matchers

Shlomo Berkovsky, Yaniv Eytani

University of Haifa

{slavax,ieytani}@cs.haifa.ac.il

Avigdor Gal

Technion – Israel Institute of Technology

avigal@ie.technion.ac.il

Abstract

Schema matching is a complex process focusing

on matching between concepts describing the data in

heterogeneous data sources. There is a shift from

manual schema matching, done by human experts, to

automatic matching, using various heuristics (schema

matchers). In this work, we consider the problem of

linearly combining the results of a set of schema

matchers. We propose the use of machine learning

algorithms to learn the optimal weight assignments,

given a set of schema matchers. We also suggest the

use of genetic algorithms to improve the process

efficiency.

1. Introduction

Schema matching is the task of matching between

concepts describing the meaning of data in

heterogeneous, distributed data sources. As such, it is

recognized to be one of the basic operations required

by the process of data integration [3]. Due to its

cognitive complexity [4], traditionally schema

matching has been performed by human experts [11].

As the process of data integration has become more

automated, the ambiguity inherent in concept

interpretation has become one of the main obstacles

to this process. For obvious reasons, manual concept

reconciliation in dynamic environments is inefficient

and at times close to impossible. Introduction of the

Semantic Web vision [2] and shifts toward machine-

understandable Web resources have made even

clearer the vital need for automatic schema matching.

In attempt to address these practical needs, several

heuristics for automatic schema matching (schema

matchers hereafter) have been proposed and

evaluated. While in many domains these heuristics

succeed in finding the right matching, empirical

analysis shows that there is no single heuristic that is

guaranteed to be effective in all possible domains and

applications [8]. To overcome this problem, several

tools allow combining schema matchers [5], [7], [12].

Like many before us, we hypothesize that a

combination of different schema matchers can

improve the matching result over mappings obtained

independently by each matcher.

In this work, we consider the problem of linearly

combining the results of a set of schema matchers.

Each matcher is assigned a different weight, yielding

a vector of relative weights. The optimal vector is not

known a priori, and may change from one matching

problem to another. We propose the use of machine

learning algorithms to learn the optimal weight

assignments, given a set of schema matchers. Our aim

is twofold. First, we attempt at identifying general

rules in assigning weights to various schema

matchers. Secondly, we analyze the relative

performance of various schema matchers, aiming at

identifying matchers' dominance.

For this purpose we performed a close to

exhaustive search and checked the correlation

between algorithm weights and mapping precision.

Our preliminary analysis show that no single matcher

dominates as was predicted.

The rest of the paper is organized as follows.

Section 2 provides an overview of the research field

of schema matching. We next formalize schema

matching as a search problem in Section 3 and

propose the use of a genetic search to reduce the

search process complexity. Section 5 provides

preliminary empirical results. We provide concluding

remarks and our proposed future research directions

in Section 6.

Figure 1: Delta Airlines (left) versus American Airlines (right) Reservation Sites

2. Schema Matching: Overview

Various models for schema matching have been

proposed in the literature. For simplicity sake, we

provide all basic concepts in terms of one such

model, namely this proposed in COMA [5].

Given two sets of concepts S and S' (henceforth

referred to as schemata), a real-valued degree of

similarity � (a,b) is automatically computed for all

possible pairs of concepts (a,b) from SxS'. This

similarity information is used to quantify the quality

of different mappings from the concepts in S to the

concepts in S'. Typically, a single mapping from S to

S' is then chosen as the best mapping.
 1

 The selection

process aims at maximizing some aggregation

function (e.g., average) of the degree of similarity of

the individual concept pair mappings.

Various schema matchers differ mainly in the

measures of similarity that they employ, yielding

different similarity degrees. These measures can be

arbitrarily complex, and may use various techniques

such as name matching, domain matching, structure

matching, etc.

 For illustration purposes, we present next the set

of schema matchers, as employed in OntoBuilder [8],

specializing in extracting ontologies from Web forms

(a feature we have used in our experiments).

OntoBuilder accepts two ontologies as input, a

candidate ontology and a target ontology. It attempts

1
 We differentiate the process of matching from its

output (denoted mapping).

to match each attribute in the target ontology with an

attribute in the candidate ontology. OntoBuilder

supports an array of matching and filtering algorithms

and can be used as a framework for developing new

schema matchers which can be plugged-in and used

via GUI or as an API. OntoBuilder uses the following

four matchers (detailed description of which can be

found in [8]):

Term: A term is a combination of a label and a name.

Term matching compares labels and names to identify

syntactically similar terms. To achieve better

performance, terms are preprocessed using several

techniques originating in IR research. Term matching

is based on either complete word or string

comparison.

Value: Value matching utilizes domain constraints

(e.g., drop lists, check boxes, and radio buttons) to

compute similarity measure among terms. The

availability of constrained value-sets becomes

valuable when comparing two terms that do not

exactly match through their labels.

Composition: A composite term is composed of

other terms (either atomic or composite).

Composition can be translated into a hierarchy. This

schema matcher assigns similarity to terms, based on

the similarity of their neighbors.

Precedence: The precedence relationship is unique to

OntoBuilder and therefore worth of a lengthier

discussion. In any interactive process, the order in

which data are provided may be important. In

particular, data given at an earlier stage may restrict

the availability of options for a later entry. For

example, a car rental site may determine which car

groups are available for a given session, using the

information given regarding the pick-up location and

time. Therefore, once those entries are filled in, the

information is sent back to the server and the next

form is brought up. Such precedence relationships can

usually be identified by the activation of a script, such

as (but not limited to) the one associated with a

SUBMIT button. As with composition, precedence

can be translated into a precedence graph, and the

matching of two terms is determined by their

neighboring terms.

To illustrate the different capabilities of schema

matchers, consider the Delta Airlines and American

Airlines online reservation systems (Figure 1). Due to

wrong design (or designer's error), the departure time

entry is named 'dept_time_1', and return time is

named 'dept_time_2' (Figure 1 left). Thus, a schema

matcher based on term matching will not be able to

map 'dept_time_2' to the correct field 'returnTime'

(Figure 1 right). However, a schema matcher based

on structure similarity has a higher chance of

identifying the mapping, based on the location of the

field within the form.

The true test of a schema matcher is whether the

best mapping matches well an exact mapping, a

mapping as could have been determined by a human

expert. A matcher that manages to mimic well the

decisions made by a human expert is more

trustworthy when automating the process of schema

matching. Quantifying the performance of a schema

matcher can be done in various ways. For example, a

strict QoS approach can determine a best mapping to

be successful only if it is equal to the exact mapping.

Another, less strict approach, measures the

precision and recall of the best mapping [13] with

respect to the exact mapping, as follows. Let A be the

set of individual concept pair mappings in the exact

mapping and let B be the set of individual concept

pair mappings in the best mapping. Precision (P) and

recall (R), are measured as:
| |

| |

A B
P

A

∩
=

 | |

| |

A B
R

B

∩
=

Precision and recall both reach the maximum value of

1 whenever A=B. Low precision is an indication of

many false negatives and low recall is an indication of

many false positives.

3. Schema Matching as a Search Problem

Given two schemata S and S' and m schema

matchers, the degree of similarity between concepts

a Є S and b Є S' is computed as

1
(,) (,)

m

i ii
sim a b a bω µ

=
=∑

where �
i(a,b) represents the degree of similarity

assigned by matcher i and {ω
i} is a set of weights that

sum to unity, i.e.,
Σ

i{
ω

i}=1.

This work is concerned with the problem of

inference with classifiers in which several local

classifiers (the schema matchers) are utilized to

achieve a global task (best mapping). This problem

can be conceptualized at two levels. First, each

schema matcher is used to produce a best mapping

according to its capabilities (heuristics) and world

knowledge. Then a consensus is reached, based on the

outcomes of the classifiers. In the context of schema

matching, the population to be investigated is the

vector of weights.

More formally, given schemata S and S', their a

priori known exact mapping M, and a set A={a1, a2,

…, am} of available schema matchers, we are

interested in finding a vector of weights ω
={

ω
1,

ω
2,

…,
ω

m} such that applying those of the m schema

matchers with positive weights and assigning each

matcher ai with a non-negative relative weight ω
i will

produce a mapping M' that is sufficiently similar to

M.

For the schema matching task to be effective, two

decisions need to be taken. First, deciding on which

schema matchers will be utilized and secondly, to

determine the weights vector values. For small search

space it is possible to perform a close to exhaustive

search to explore all weight combinations. However

in the general case, the size of the search space is

exponential in the size of the schemata. Thus, we

propose to employ the learning mechanism of Genetic

Algorithms [9] (GA hereafter) to both tasks.

4. Genetic Search

A typical matching scenario involves choosing a

subset of schema matchers for generating the best

mapping. Evaluating a mapping is determined, as

discussed in Section 2, using metrics as recall, and

precision or a combination of such metrics. Clearly,

the size of the search space is exponential in schema

size. To accommodate this problem we suggest the

use of genetic algorithms.

 Genetic algorithms are nature-inspired class of

algorithms that mimic an evolutionary rule of “the

fittest survives”. Initially, a population of individuals

is created, each represented by a chromosome (a set

of genes). The value of each gene is assigned

randomly (within known bounds). The population is

then evaluated to determine how well each individual

fits the required task.

The new generation of individuals is chosen from

the parent and the offspring generation in accordance

with a survival strategy that favors fit individual, but

does not preclude the survival of the less fit. An

offspring is created by selecting two parents at

random and combining parts of their chromosomes.

Random changes to the genes are made to mimic the

natural role of mutation. This process is repeated until

a required performance level is achieved (or no

further improvement seems possible).

Genetic algorithms are typically applied when

searching optimal or near optimal solutions to a

problem within a large multi-modal search space.

Typically, it is infeasible to apply a precise analytic

algorithm to accurately solve such problems. Schema

matching fits nicely with this definition, given the set

of competing constraints that have to be balanced in

reaching a (close to) optimal solution using multi

objective functions (recall, precision and others).

Genetic algorithms success in finding an optimum

solution depends on the choice of a fitness function

that directs the search along promising pathways. The

fitness function is a weighted combination of one or

more objective functions and characterizes what is

considered to be a good solution. Given two possible

solutions, it determines which of them supplies a

better set of desired properties. In our experiments we

evaluate the fitness of a solution using the precision

metric. In the future we plan to use a multi-objective

fitness function.

5. Preliminary Results

We extracted a set of 25 pairs of schemata from

Web site forms from various domains. For each pair,

a human expert has manually constructed the exact

mapping. For the purpose of evaluating the

combination of different matchers we have performed

a close to exhaustive search, exploring many weight

combinations. Thus, we could verify the results of GA

and assess how the changes in the weight of each

matcher affect the overall performance. To evaluate

performance, we correlated the changes with the

precision obtained by four available matchers

(respectively denoted by a1, a2, a3, and a4), exploiting

terms, values, composition, and precedence

algorithms [6], respectively. Given an algorithm ai

and a schemata S and S', wi denotes a weight assigned

to ai, while pi denotes the average level of precision

for all the mappings for which ai is assigned with wi.

Correlation is measured as:
(,)

() ()

i i

i i

COV w p
cor

SD w SD p
=

⋅

where COV(wi,pi) is the covariance of wi and pi, and

SD(wi) and SD(wi) are the standard deviations. Partial

experimental results are presented in Table 1. Positive

values indicate that there is positive correlation

between the weight of an algorithm and the precision.

Negative value indicates that the correlation is

negative, while values close to 0 show no correlation.

pair num. a1 a2 a3 a4

2 0.66 0.01 0.05 -0.69

5 0.63 -0.01 0.07 -0.66

16 0.70 -0.01 -0.16 -0.50

6 0.33 0.25 0.15 -0.70

13 0.49 0.26 0.05 -0.77

21 0.47 0.26 0.07 -0.77

15 -0.32 0.30 -0.19 0.19

17 -0.38 0.48 0.06 -0.15

Table 1: Correlation between algorithm weights and

precision: four algorithms

Analyzing the averages of the weight correlations

in between the four matchers allows us to conclude

the following:

• a1 has average positive correlation of about 0.3

with the precision and it is a highest correlation

in the case we combine 4 matchers.

• a2 has low average positive correlation of about

0.05 with the precision when 4 matchers are

combined.

• a3 has very low average negative (or NO)

correlation with the precision

• a4 has high negative average correlation of about

-0.25 with the precision.

These results provide a preliminary indication

regarding the relative performance of different

matchers. However, as was expected, no single

matcher performs perfectly over all schema pairs. In

this regard, we hypothesize that the different matchers

perform differently relating to various ontological

structures. For example, we can hypothesize that

factors such as the size of schema, application

domain, and the types of schema attributes (free text,

selection of predefined values, yes/no mark etc.)

might determine the suitability of a particular

matcher.

Note that the values, composition, and precedence

matchers base on the terms matcher (which seems to

be the dominating one). Thus, we repeated the

experiment while neutralizing the influence of a1.

Partial results are presented in table 2.

pair num. a2 a3 a4

2 0.30 0.54 -0.80

5 0.31 0.54 -0.81

16 0.38 0.44 -0.77

6 0.56 0.37 -0.87

13 0.48 0.33 -0.76

21 0.64 0.32 -0.90

15 0.67 -0.05 -0.57

17 0.74 0.03 -0.72

Table 2: Correlation between the algorithm weights

and precision: three algorithms

The experiment shows that as a result of the

neutralization of a1, the values matching algorithm a2

has a higher positive correlation of about 0.3 with the

precision.

The observation regarding the strength of a2 in the

absence of a1 is an interesting one. This could be an

example of a situation where not all schema matchers

should be used. Consider a situation where matchers

are provided as 'paid' services. Given that a2 can work

well without a1, means that a user needs to spend less

on the matching process, by using three, instead of

four, matchers.

6. Conclusions and Future Research

Schema matching is the task of matching between

concepts describing the data in heterogeneous data

sources. As such, it is recognized to be one of the

basic operations in data integration domain. Due to its

cognitive complexity, schema matching has been

traditionally performed by human experts. However,

manual schema matching in dynamic environments is

inefficient and at times close to impossible.

In this work, we consider the problem of linearly

combining the results of multiple schema matchers.

Each matcher is assigned a different weight, yielding

a vector of relative weights. The optimal vector is not

known a priori, and may change from one matching

problem to another. We attempt at analyzing the

relative performance of various schema matchers,

aiming at identifying matchers' dominance.

For the purpose of evaluating the combination of

different matchers we had performed a close to

exhaustive search and checked the correlation

between algorithm weights and mapping precision.

Our preliminary analysis show that no single matcher

dominates as was predicted.

GA is typically applied when searching optimal or

near optimal solutions to a problem within a large

multi-modal search space. Matching schemata fit

nicely with this definition, given the set of competing

constraints that have to be balanced in reaching a

(close to) optimal solution using multi-objective

functions (recall and precision and others). We could

verify that GA handles the matching search problems

well as it allowed us to decrease the computation

times and converged correctly.

In future work we aim to learn the optimal weight

assignments, given a set of schema matchers. We aim

to identifying general rules in assigning weights to

various schema matchers. In addition we are creating

a large repository of human annotated correct

matches of ontology pairs. We would like to further

use machine other learning algorithms such as

collaborative filtering [10] combined with genetic

algorithms (see [1] for an example) to provide

accurate prediction of optimal or near optimal weight

assignments.

We believe that different matchers perform

differently relating to different ontological structures

and in different domains [6]. In future work we intend

to focus on extending our experiments to discover

such correlations and incorporate them into our

system.

7. Acknowledgement
The work of Gal was partially supported by two

European Commission 6
th

 Framework IST projects,

QUALEG and TerreGov, and the Fund for the

Promotion of Research at the Technion. We thank

Pavel Feldman for his assistance in performing the

experiments and Sadek Jbara for the genetic

algorithm implementation.

8. References

[1] S. Berkovsky, Y. Eytani, E. Furman, “Developing a

Framework for Insurance Underwriting Expert System”, in

proceedings of the International Conference on Informatics,

Turkey, 2004.

[2] T.Berners-Lee, J.Hendler, O.Lassila, “The Semantic

Web”, in Scientific American, 2001.

[3] P.A.Bernstein, S.Melnik, “Meta Data Management”, in

Proceedings of the International Conference on Data

Engineering, MA, 2004.

[4] B.Convent, “Unsolvable Problems Related to the View

Integration Approach”, in Proceedings of the International

Conference on Database Theory, Italy, 1986.

[5] H.H.Do, E.Rahm, “COMA - a System for Flexible

Combination of Schema Matching Approaches”, in

Proceedings of the International Conference on Very Large

Data Bases, Hong-Kong, 2002.

[6] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, A.

Y. Halevy. “Learning to match ontologies on the Semantic

Web”, VLDB Journal, 12(4): 303-319 (2003).

[7] A.Gal, A.Anaby-Tavor, A.Trombetta, D. Montesi, “A

Framework for Modeling and Evaluating Automatic

Semantic Reconciliation”, in VLDB Journal, 2005, to

appear.

[8] A.Gal, G.Modica, H.M.Jamil, A.Eyal, “Automatic

Ontology Matching Using Application Semantics”, in AI

Magazine, 26(1), 2005.

[9] D.E.Goldberg, R.Burch, “Genetic Algorithms in Search,

Optimization, and Machine Learning”, Addison Wesley

Publishers, 1989.

[10] J.L.Herlocker, J.A.Konstan, A.Borchers, J.Riedl, “An

Algorithmic Framework for Performing Collaborative

Filtering”, in proceedings of the 22nd International ACM

SIGIR Conference on Research and Development in

Information Retrieval, Berkeley, CA, 1999.

[11] R.Hull, “Managing Semantic Heterogeneity in

Databases: a Theoretical Perspective”, in Proceedings of

Symposium on Principles of Database Systems, AR, 1997.

[12] J.Madhavan, P.A.Bernstein, E.Rahm, “Generic

Schema Matching with Cupid”, in Proceedings of the

International conference on Very Large Data Bases, Italy,

2001.

[13] I.H.Witten, A.Moffat, T.C.Bell, “Managing

Gigabytes: Compressing and Indexing Documents and

Images”, Morgan Kaufmann publishers, 1999.

