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Abstract. Schema matching is the task of automatically computing correspon-
dences between schema elements. A multitude of schema matching approaches
exists for various scenarios using syntactic, semantic, or instance information.
The schema matching problem is aggravated by the fact that models to be matched
are often represented in different modeling languages, e.g. OWL, XML Schema,
or SQL DDL. Consequently, besides being able to match models in the same
metamodel, a schema matching tool must be able to compute reasonable re-
sults when matching models in heterogeneous modeling languages. Therefore,
we developed a matching component as a part of our model management system
GeRoMeSuite which is based on our generic metamodel GeRoMe. As GeRoMe
provides a unified representation of models, the matcher is able to match models
represented in different languages with each other. In this paper, we will show in
particular the results for matching XML Schemas with OWL ontologies as it is
often required for the semantic annotation of existing XML data sources.
GeRoMeSuite allows for flexible configuration of the matching system; various
matching algorithms for element and structure level matching are provided and
can be combined freely using different ways of aggregation and filtering in order
to define new matching strategies. This makes the matcher highly configurable
and extensible. We evaluated our system with several pairs of XML Schemas and
OWL ontologies and compared the performance with results from other systems.
The results are considerably better which shows that a matching system based on
a generic metamodel is favorable for heterogeneous matching tasks.

1 Introduction

Integration of information systems is a major challenge that has been addressed in sev-
eral disciplines such as database and semantic web research. One of the key issues in
integration is creating a mapping between the data models of the systems involved. This
work is, for example, required if the data from different data sources must be merged in
a data warehouse or if two e-business systems must communicate with each other.

Schema matching is the task of identifying a set of correspondences (also called a
morphism or a mapping) between schema elements. Many aspects have to be consid-
ered during the process of matching, such as data values, element names, constraint
information, structure information, domain knowledge, cardinality relationships, and
so on. All this information is useful in understanding the semantics of a schema, but it
can be a very time consuming problem to collect this information. Therefore, automatic
methods are required for schema matching.



A multitude of methods have been proposed for schema matching [24,26] using
different types of information to identify elements or focusing on models represented
in a specific modeling language such as the Relational Data Model, XML Schema, or
OWL [6,8,9,17,18]. To avoid confusion with the terms being used in this paper (e.g.
metamodel, model, schema), we want to clarify the terminology first. We will use the
terminology defined in the IRDS standard [10] and used by the Object Management
Group [22]. According to the IRDS standard, models, schemas, and ontologies are all on
the same level and describe the structure of data instances. A metamodel (or a modeling
language) is used to define a model, schema or ontology. Examples for metamodels are
OWL, UML, or the Relational Data Model.

The schema matching problem is aggravated by the fact that models employed by
one system are often represented in different modeling languages. Consequently, be-
sides being able to match models in the same metamodel, a schema matching tool must
be able to compute reasonable results when matching models in heterogeneous mod-
eling languages. This is for example required for the annotation of existing XML or
relational data sources with ontologies, to enable semantic queries to these sources.
Another example is the enrichment of XML web services with semantic information to
get semantic web services.

In this paper, we present the matching system which is part of our generic model
management system GeRoMeSuite [14,15,23]. GeRoMeSuite is based on our role-based
metamodel GeRoMe ([13], phonetic transcription: dZer@Um) which provides a generic
but yet detailed representation of models represented in different modeling languages.
By using GeRoMe, our system is able to match models expressed in heterogeneous
modeling languages which we will apply in this paper to the case of matching XML
schemas with OWL ontologies.

Currently, schema matching systems represent models as directed labeled graphs to
support the matching of models from different metamodels. However, the way how a
model is encoded as graph is crucial for the match result as structural similarities are
also important in schema matching. As models from different metamodels are repre-
sented differently in graphs (different labels, different structures), the matching between
such models produces often poor results. As we will show, GeRoMeSuite produces sig-
nificantly better results for matching models from heterogeneous metamodels which
indicates an advantage of using a generic metamodel for the representation of mod-
els. We evaluated the matching performance of our system using various examples for
matching OWL ontologies with XML schemas.

The main contributions of our work are (i) a system for matching models using a
true generic representation, (ii) which provides several matchers and traversal strate-
gies, and (iii) is based on a very flexible and easily extensible implementation. The
generic representation of schemas allows us to apply our implementations of match-
ing algorithms to any combination of models regardless of the modeling languages that
the models are originally represented in. Furthermore, the high level of detail of our
generic representation enables us to provide different structural views on a model to
structure-level matching algorithms. In doing so structural matchers can, for instance,
incorporate into their similarity assessment associations between types or derivations
between types (the IsA-hierarchy) or even both.



The structure of the paper is as follows. In the next section, we will discuss existing
approaches to schema matching. Then, we will describe briefly our generic metamodel
GeRoMe using an ontology and an XML schema as example. Section 4 presents the
system we have developed in terms of its architecture and implemented matchers. In
section 5, we present the evaluation of our system. We also discuss and analyze the
results of the tested schema matching systems. We conclude our paper with a discussion
of our approach and an outlook to future work.

2 Related Work

There have been many approaches to schema matching. The main reason for the various
approaches is that each matching problem has its own characteristics and might require
a specific solution. The approaches to schema matching can be distinguished by the
information they use: some focus only on the schemas, some use external information in
form of thesauri, dictionaries or acronym databases, and, if available, it is also possible
to use the instance data to find similarities between schemas [24,26].

The Cupid algorithm [18] is intended to be generic across data models and has
been applied to XML and relational examples. It uses auxiliary information sources
for synonyms, abbreviations, and acronyms. It implements a generic schema matching
algorithm combining linguistic and structural schema matching techniques. The input
schemas are encoded as graphs. Nodes represent schema elements and are traversed
in a combined bottom-up and top-down manner. The matching algorithm consists of
three phases. The first phase (linguistic matching) computes linguistic similarity coeffi-
cients between schema element names (labels). The second phase (structural matching)
computes structural similarity coefficients which measure the similarity between con-
texts in which individual schema elements occur. The main idea behind the structural
matching algorithm is to propagate the similarity of leaf items to the similarity of in-
ner nodes. Finally, the third phase (mapping generation) computes weighted similarity
coefficients and generates final mappings by choosing pairs of schema elements with
weighted similarity coefficients which are higher than a threshold.

A similar idea is followed by the Similarity Flooding algorithm [20]. Schemas are
also represented as directed labeled graphs. Based on the idea that if two nodes are
similar then also their neighbors are similar, the similarity of two nodes in the graph
is propagated to its neighbors. This procedure is repeated until the Euclidean distance
between two subsequent similarity matrices is below a certain threshold. The initial
input similarities can be computed by any kind of (linguistic) matching method. The
algorithm can be applied to arbitrary graph structures. In [20], there are also several
strategies proposed to filter the mapping pairs from the computed similarity values.

The COMA schema matching system is a platform designed to combine multiple
matchers in a flexible way [6]. It provides a large number of individual matchers, which
contains both terminology approaches and structural approaches. After combining the
mapping results from the individual matchers, the output mapping could be chosen as
the final result or reused as an individual matching result. As a generic matching system,
COMA accepts different schema types as input, such as XML schemas and relational
schemas, which are internally represented as directed graphs. COMA also allows users



to reuse the previously obtained matching results. COMA++ [2] is an extended and
improved update of the COMA system. It supports ontologies as inputs and provides
several matchers for ontology matching.

Compared to other ontology alignment tools, COMA++ produces also very good
results in the area of ontology alignment [19]. In principle, ontology matching can
use the same ideas as schema matching (e.g. a combination of linguistic and struc-
tural matchers). However, as ontologies contain usually more semantic information and
constraints than schemas, methods for ontology matching can also use this informa-
tion to detect similarities between ontologies [12,21]. For example, in [7] a metric for
the similarity of concepts is defined using properties, restrictions, sub- and super-class
relationships, and so on. There are several tools for ontology alignment, which were
also evaluated in the Ontology Alignment Evaluation Initiative 2006 (http://oaei.
ontologymatching.org/2006/). Some of them performed better than COMA++
(e.g. Falcon-AO [9] and RiMOM [17]), but these tools are not able to match XML
schemas with ontologies.

The ARTEMIS tool [4] for schema integration comes closest to our approach. It
also uses a generic metamodel (called reference data model in their work) which is the
relational metamodel with some additional object oriented features. Using this generic
metamodel, they can uniformly analyze models represented as relational, EER or object
oriented models. The matching component matches elements based on their name, data
type or structural similarity. To deal with synonyms and hypernyms, the tool uses also an
external thesaurus (WordNet). However, ARTEMIS has not been applied to match OWL
ontologies and XML schemas. As the tool is not available anymore on the Internet,
we could not compare it with our matching system. To the best of our knowledge,
COMA++ is the only tool, which is available for download and allows to match XML
schemas with OWL ontologies.

3 The Generic Metamodel GeRoMe

The Generic Role based Metamodel GeRoMe [13] uses role based modeling. Each
model element of a native model (e.g. an XML Schema or a relational schema) is rep-
resented as an object that plays a set of roles which decorate it with features and act as
interfaces to the model element. We wiil briefly introduce the main ideas of GeRoMe by
using an example representing an XML schema, which we will use also later as a run-
ning example. Representing XML Schema in a generic metamodel is quite challenging
as it supports modeling constructs which are not common in other metamodels, such
as ordered elements or the derivation of simple types by regular expressions. The ex-
ample schema contains three complex types (AirlineType, EmpType, and PilotType) and
three elements (Airline, Employee, and Pilot). Employees work for an airline, pilots are
modeled as a subtype of employee and have an additional attribute Lic Num.

The GeRoMe representation in fig. 1 shows each model element as a ModelElement
object (gray rectangle) which plays a number of roles (white squares). Each such role
object may be connected to other roles or literals, respectively. For the sake of read-
ability, we refrain here from showing the whole model and omitted repeating structures
with the same semantics such as Visible roles.

http://oaei.ontologymatching.org/2006/
http://oaei.ontologymatching.org/2006/
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Fig. 1. GeRoMe representation of an XML schema

The XML Schema element is an association between its enclosing type and the com-
plex type of the nested element. It is always a 1:n association since an XML document
is always tree structured. Because of this, the elements in XML Schema are represented
by associations in GeRoMe. In the example, the elements Airline, Employee and Pilot
play Association (As) roles connecting the model elements corresponding to the com-
plex types AirlineType, EmpType, and PilotType via anonymous ObjectAssociationEnd
(OE) and CompositionEnd (CE) roles. The CompositionEnd role refers to the enclosing
complex type of the XML element. The root element Airline is a special case; as it is
not enclosed in a complex type, the CompositionEnd role for the enclosing type points
to the model element http://../Airport representing the schema.

Model elements defined within other model elements such as attributes and XML
elements are referenced by the Namespace (NS) role of the containing element. For
example, the element Employee is owned by the Namespace role of AirlineType. Fur-
thermore, the complex types play Aggregate (Ag) roles, as they can have attributes, and
ObjectSet (OS) roles, as they can participate in associations. For example, the Attribute
(Att) roles of SSN and Lic Num are connected to the Aggregate role of the correspond-
ing model element. Finally, the subtype relationship between PilotType and EmpType
is represented by a separate anonymous model element DerivP. This model element
plays an IsA role which is connected to the BaseElement (BE) role of EmpType and to
the DerivedElement (DE) role of PilotType.

We have to admit that the GeRoMe representation of a model is not easy to un-
derstand, but this representation is used only internally in a model management tool;
the user will still use her favorite modeling language. The complexity of GeRoMe is
caused by the complexity of the original modeling languages which can be represented
in GeRoMe. To be able to represent the details of several modeling languages in a
generic way, these details have to be present in GeRoMe as well.

The benefit of this generic and detailed representation is that modeling constructs
from different metamodels which have equivalent (or similar) semantics are represented
by the same roles in GeRoMe. This means that the structure of GeRoMe models, even
if they are originally represented in different metamodels, is similar if they model the
same domain. This structural similarity is very important for schema matching as we
will show in the evaluation of our matching system in section 5.



4 Schema Matching in GeRoMeSuite

Based on the generic metamodel GeRoMe, we implemented a schema matching system
with the aim to have an extensible and flexible framework for matching models regard-
less of the modeling language they are represented in. Our system can use any model
that can be imported into the generic modeling language as input for the match opera-
tion. Currently, this includes relational models, XML Schemas and OWL ontologies.

Another requirement was that the system is built up from components that can be
easily combined to new composite algorithms. GeRoMeSuite contains a set of graph
traversal strategies that provide different views on the same model. For each provided
graph traversal, there is a corresponding tree traversal that can be used if a tree structure
is needed. These different views on the structure of the same model influence the re-
sults of structure level matchers. Besides allowing variations of the data structure being
matched, our matchers also consist of arbitrarily combinable and parametrized steps. In
the following, we explain some traversal strategies, the central components of a matcher
in GeRoMeSuite and how to combine these components to a matcher configuration.

4.1 Graph Traversal Strategies

During the development of the matching system, our aim was to exploit the special
characteristics of models represented in GeRoMe. As shown in the example in section
3, a GeRoMe model is a highly connected structure, i.e. model elements are linked by
many different types of relationships. These different types of relationships can be used
to define the structure used by the structure level matchers. For example, the links be-
tween Association, Aggregate, and Attribute roles could be used to define such a struc-
ture. However, there are also other possibilities: the structure implied by the Namespace
roles define the context in which model elements are defined; IsA and other derivation
roles can be used to build up a type hierarchy.

In order to use these different structures in our matcher, we defined different itera-
tors for GeRoMe models which implement certain traversal strategies, i.e. they navigate
a model in a specific way. Our current implementation provides five traversal strategies:

Namespace: Uses the Namespace roles to navigate the model.
Derivation: Builds a type (or class) hiearchy.
Association: Uses mainly Association roles to navigate the model (e.g. XML Schemas

are represented as trees as in most XML editors).
Types: Like the Association iterator, but includes also the model elements representing

types (e.g. Aggregates, ObjectSets, Domains).
Structure: Reproduces the complete structure of a GeRoMe model.

These iterators usually produce graph structures; for matchers which require tree struc-
tures as input, we implemented a “meta”-iterator which produces a tree structure from
a graph. In addition, we can restrict the iterators to return only model elements which
play a Visible role (i.e. elements which have an explicit name). Thus, in total we provide
twenty different iteration strategies.

Fig. 2 shows the Types and Namespace traversals for the model from fig. 1. As it
can be seen from the example, the traversals imply a different structure as the semantics
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Fig. 2. Types and Namespace traversal for the XML schema from fig. 1

of the relationships considered in a traversal strategy is quite different. The namespace
structure is sometimes an “artificial” structure as it does not represent the structure of
the data; it is just the structure in which the schema is defined. The right part of fig. 2
shows the namespace iterator, in which EmpType and PilotType are directly connected
to the root of the schema, although the data of these would be nested under an Airline
element. A traversal of the model corresponding to the structure of the instance data is
produced by the Types traversal strategy which is shown in the left part of fig. 2.

4.2 Matcher Components

Schema-based matchers can be classified into element-level and structure-level match-
ers [24]. Element-level matchers consider an element in isolation, whereas structure-
level matchers also consider the context of an element. Additionally to these two kinds
of matcher components, GeRoMeSuite provides different strategies for aggregation of
multiple input morphisms to one output morphism and different filters for morphisms.

Element Level Matchers are capable of computing an initial morphism between two
models from scratch. They get two models as input and return a morphism between
these two models. Usually, they are based on assessment of similarity for pairs of single
model elements. Most such matchers perform a string comparison on the names of the
elements using some metric. Whereas this assessment depends in most cases on the two
elements alone, it is possible to incorporate the model structure into this step as well.
For instance, the similarity of two elements may be determined by the similarity of the
possible paths to this element through the model.

GeRoMeSuite provides two basic element level matchers. The StringMatcher
compares two model elements without taking into account their structure. It is param-
eterized with a metric that gets two model elements for input and returns a similar-
ity value. Currently, we provide the Levenshtein metric [16] (or edit distance), the
Jaro/Winkler metric [11,28], and an improved string matcher [27]. In the future we
also plan to add a datatype matcher that can assess the similarity of primitive datatypes.

On the other hand, the NamepathMatcher also takes into account the structure
of the two models to be matched. It applies the aforementioned string similarity metrics
to a set of path expressions that lead to a model element. As its similarity assessment



is based on paths to the respective model elements it also requires a tree traversal as
a parameter. To assess similarity of two model elements, the NamepathMatcher
computes the similarity of each pair of paths to the elements and then combines (based
on a configurable strategy) these values to the final similarity assessment.

Structure Level Matchers refine an input morphism based on some strategy and on
the structures of the models to be matched. That is, they receive a single morphism
as input and return a single morphism as output. The general idea of structure level
matchers is that the similarity of neighboring elements contributes to the similarity of
the element itself. This idea is, for example, realized in the Similarity Flooding algo-
rithm [20] which is also implemented in our system. In addition, our schema matcher
provides a children matcher. The children matcher resembles the idea of the Cupid al-
gorithm [18]; if the children of an element A are similar to the children of an element
B, then A and B are also similar. Both structure level matchers require a graph traversal
as input. Furthermore, they are composed of a variety of exchangeable strategy objects
that implement certain parts of the respective matching algorithms.

Our schema matching system relies on well-known schema matching methods. The
goal of this work is not to provide new algorithms for schema matching, but the usage of
a generic metamodel for schema matching and the proof that the generic representation
of models is beneficial.

Aggregation Strategies can be used to combine an arbitrary number of morphisms to a
single morphism using average, maximum or weighted similarities of model elements.

Morphism filters select similarity values from morphisms based on various criteria
such as the maximum distance to the best match, keeping only at least the best K
matches, or applying a simple threshold to the similarity values. These filters can be
adjusted for existing morphisms to mask or unmask links, but they can also be used as
an intermediate step in a matcher to refine the input of subsequent steps.

4.3 Matcher Configuration

Fig. 3 shows an example of how to configure a matcher using the aforementioned com-
ponents. An arbitrary number of matcher components can be chosen from the set of
all matchers already defined by the user and the predefined matchers. In the same way
filter and aggregation steps are added to the matcher. Each component has a result mor-
phism and one or more input morphisms. Furthermore, each matching component may
provide a GUI class that fills a configuration window with its own controls for specifi-
cation of its parameters. When all required parameters have been defined the matcher
configuration is stored in a configuration repository and is then available for execution
and as a component of future custom matchers.

Extensibility Our matching subsystem is easily extensible. Predefined components
such as the different graph and tree traversals or the metrics can be reused for new



Fig. 3. Creating a matcher configuration

component classes. All interfaces of the available matcher steps are clearly defined
and consolidated. For instance, adding a new filter requires only the implementation of
the filter functionality (currently the largest is 32 LOC) and the provision of the user
interface (currently the largest is 25 LOC).

Adding new matching algorithms is also easily possible, it just requires the creation
of a subclass of an abstract Matcher class and the implementation of the match method.
For example, the implementation of Similarity Flooding uses less than 1000 LOC of
which the largest part is used for the implementation of the propagation graph.

For all components, the user interface definition only consists of filling a panel with
controls and adding event listeners that update parameter values in the configuration
object. This panel is then available in various stages of the process. For instance, a filter
can be used for filter steps of a matcher and for filtering a currently displayed morphism.

User Interface Fig. 4 displays the view of a morphism as it is shown after executing
a matcher or loading an existing mapping. Both models are shown as a tree view. The
traversal strategy to be used for the tree view can be chosen from a drop-down box.

The morphism itself is shown as a set of lines between the elements of the two
models in the center of the view. As in other matching systems different color shades
are used to distinguish different degrees of similarity. Links adjacent to selected model
elements are displayed in another color. Furthermore, the link(s) with the maximum
similarity originating from the selected element is (are) distinguished. To further im-
prove the usability of the system, the user can mask all links that are not adjacent to the
currently selected element.



Fig. 4. Viewing and tweaking a morphism

Using a non-modal filtering dialog, all available filters can be adjusted to filter the
currently selected morphism. The filters can be freely narrowed and relaxed until a
satisfactory result is found before the user starts to manually fine-tune the morphism.

5 Evaluation

The matcher component has been evaluated by gaging the metrics that are usually
used for evaluation of schema matching applications [5], that is precision, recall, f-
measure(0.5), and overall. The overall metric was developed especially for schema
matching systems [5]; it should represent the effort to correct the mapping. As adding
mappings is more difficult than removing incorrect mappings, it puts more emphasis on
recall than on precision.

For the purpose of this paper, we evaluated only examples that involved ontologies
and XML schemas. However, we tested our matching system also with several other
examples (also involving other modeling languages) which had a similar results in terms
of matching performance as the examples shown in here. As COMA++ is the only other
system which is able to match XML schemas and ontologies, and is available for us,
we could compare our matching system only to COMA++.

The featured tasks are matching terra.xsd from the Mondial data set (http:
//www.dbis.informatik.uni-goettingen.de/Mondial/) with a manually cre-
ated ontology, matching MapOnto’s DBLP.xsdwith a bibtex ontology (http://cse.
unl.edu/˜scotth/SWont/bib.owl), and the company example (company.xsd
and company-er.owl) from the MapOnto project (http://www.cs.toronto.
edu/semanticweb/maponto/). For all these tasks and configurations tested, our match-
ing system had an execution time of less than 10 seconds.

5.1 Comparison with COMA++

For COMA++ we performed each of these matching tasks with all available combina-
tions of preconfigured matchers and additionally defined new matchers to search for the

http://www.dbis.informatik.uni-goettingen.de/Mondial/
http://www.dbis.informatik.uni-goettingen.de/Mondial/
http://cse.unl.edu/~scotth/SWont/bib.owl
http://cse.unl.edu/~scotth/SWont/bib.owl
http://www.cs.toronto.edu/semanticweb/maponto/
http://www.cs.toronto.edu/semanticweb/maponto/
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Fig. 5. Comparison of GeRoMeSuite with COMA++ for the company example

best possible results. In GeRoMeSuite we used basically five different combined match-
ers. For each of the matchers we used the improved string metric to create an initial
match result which was given as input to either the children matcher (Ch) or our simi-
larity flooding implementation (SF). We placed our focus on varying the parameters of
these structure level matchers such as traversal strategies or combination of component
results to an overall result of the respective matcher. In a next step, we combined these
basic matchers in various ways in which we used the best results of the children matcher
as input for similarity flooding (SF(Ch)) or vice versa (Ch(SF)) or simply combined the
individual result morphisms by computing their average (Avg(Ch, SF)). The following
diagrams show the best results of each matcher on the respective match task.

Fig. 5 presents the results of matching the company example, using the metrics
precision, recall, overall, and f-measure for COMA++ and the five matchers defined
with GeRoMeSuite. The company example is a pair of two relatively small models and
most elements of the models could be mapped. For COMA++ the best results could
be achieved using variations of the original COMA algorithm with different thresholds
or other variations of selection strategies. Each of the five matchers of GeRoMeSuite
outperforms the best result of COMA++ for all quality metrics. Similarity flooding in
our implementation achieved better results than the best configuration of COMA++, but
was outperformed by the children matcher. However, the best result could be achieved
by using the result of the children matcher as initial result for the similarity flooding
algorithm (SF(Ch)). The children matcher used the Association iteration strategy on
this example.

Fig. 6 displays the quality of results for the bibtex/DBLP example. On this example,
both tools did not achieve outstanding results. The reason for the poor performance of
all matchers is that this matching task is quite difficult as labels and structures of the
two models are quite different. GeRoMeSuite’s children matcher (Ch) outperformed
the best result of COMA++. Whereas its recall is slightly worse, its precision is better
by about the same degree. Because the overall metric punishes precision below 0.5,
our overall is slightly better. However, the difference is small enough that it seems
reasonable to state that both matchers achieve about the same performance. Similarity
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flooding achieved a very small overall measure due to its low precision on this example.
Consequently, the children matcher that receives similarity flooding’s results as input
(Ch(SF)) performs poor as well. Overall the simple children matcher returned the best
result for this example.

The last example is the task of matching the XML Schema terra.xsd from the
Mondial database with an ontology of the geographical domain. The results are shown
in fig. 7. Again, GeRoMeSuite’s children matcher by far outperformed the best result of
COMA++. Also, similarity flooding was outperformed by the children matcher. How-
ever, the averaging of the two results (Avg(Ch,SF)) slightly dominates both input mor-
phisms. The children matcher used the Association traversal strategy, similarity flooding
used the Structure traversal strategy on this example.

Thus, on the given matching tasks GeRoMeSuite was at least as good as COMA++
or even outperformed COMA++. However, we must emphasize that we are of course
not as familiar with COMA++ as we are with our own matcher component. There is a
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large number of configuration options for COMA++ and, consequently, an experienced
user may have produced better results with this tool. Nevertheless, we tested more than
50 configurations for COMA++ and presented here only the best results. We tried every
configuration using the default matchers and also created some custom matcher configu-
rations searching for more promising results. It is reasonable to assume that comparable
results can be achieved for other examples.

In the last example it could be seen that averaging of the two results (Avg(Ch,SF))
dominated both, children matcher and similarity flooding. In fact, our tests on other
examples suggest that averaging the results of these two matchers improves the result
in many cases.

Fig. 8 compares the results of our matchers in F-Measure(0.5) for different match-
ing tasks. The combined matchers SF(Ch) and Ch(SF) could not challenge the children
matcher alone. However, the simple aggregation by averaging resulted only in one case
(bibtex) in a mapping that was inferior to the input mappings, but in all other cases the
results had the same or even better quality than the individual matchers alone.

5.2 Effect of Filter Configuration on the Quality

The variation of morphism filters has of course a significant impact on the quality of
the result. GeRoMeSuite provides four filters for morphisms. The epsilon filter allows
all links originating at a model element the confidence of which is within a specified
range from the element’s best match, the TopK filter allows only the best k matches for
each element, and the threshold filter allows links with a confidence measure exceeding
a certain value. These filters can be freely configured, whereas the visible filter, when
enabled, denies all links that involve anonymous model elements such as an anonymous
object property that is mapped to a visible property in the other model.

We made the experience that our system is quite stable with respect to variations
of the filters, i.e. the results do not vary too much if different filter configurations are
applied. Furthermore, the evaluation has shown that if we choose a threshold of about
0.8, the quality of the match result is very close to the best result which can be achieved
with our matcher.
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Fig. 9. Matching the company example with different thresholds

For instance, fig. 9 shows the results of adjusting the threshold filter in GeRoMeSuite
for the company example. The graph shows the results for the children matcher. The
best results are those already displayed in fig. 5. We varied the thresholds with steps
of 0.05 in an interval from 0.3 to 0.95. The optimal values are reached at a threshold
value of 0.85 and 0.90, respectively. However, the results for a threshold of 0.8 or 0.95
were not considerably worse. For most of the examples we have tested, the best result
in terms of f-measure and overall value was produced with threshold values of 0.75 to
0.95.

The stability of the result quality of our matching system with respect to the config-
uration options is important if “real” matching problems have to be solved, i.e. without
having a reference mapping to figure out the best configuration parameters. Using the
configuration mentioned above for matching ontologies with XML Schemas, we are
confident that the quality of the result is very close to the best result that could be pro-
duced with GeRoMeSuite.

5.3 Effect of Traversals on the Quality

In section 4, we explained our approach of providing different structural views on the
same model. Using traversal strategies, structural matchers can be applied to these dif-
ferent structures, which has an effect on the matching results.

Fig. 10 displays the effect on the quality of results of the same Similarity Flood-
ing matcher which uses different traversal strategies to compute its propagation graph.
These are results of matching the geographical example. All matchers had identical con-
figurations except for the traversal strategy. Furthermore, the same filters have been ap-
plied to all matcher results. The traversal strategies used were Association (A), Structure
(S) and Types (T) and variations of these traversals that omit anonymous model elements
from the graph (AV, SV, TV). It can be seen that different graph structures which induce
different propagation graphs result in different morphism quality. However, the impact
of different traversals on the match result is less than expected. This is probably due to
the fact that the similarity of elements in the examples we have tested is mainly deter-
mined by the similarity of their labels. Structural similarity has only a small effect on the
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Fig. 10. Performance of Similarity Flooding Using Different Traversal Strategies

match result. This sounds like a counter argument to the idea of structural matchers, but
the dominance of string matchers is a particular characteristic of the examples we have
chosen. We plan further evaluations on this topic in the context of the Ontology Align-
ment Evaluation Initiative (http://oaei.ontologymatching.org/2007/) which
also includes test cases in which only the structural similarity can be used.

5.4 Discussion of the Results

To conclude, for matching ontologies with XML Schemas the children matcher alone or
the average of the results of the children matcher and the Similarity Flooding algorithm
are a good matcher configuration. The children matcher performed best using the Asso-
ciation traversal strategy whereas for similarity flooding the Structure traversal strategy
was the best choice.

As we implemented only well known schema matching algorithms, the differences
in the results of the tools must stem from their internal model representations. For
matching ontologies with models from different native modeling languages, the us-
age of GeRoMe as a generic data structure seems to be beneficial. From our experience
in the development of the Protoplasm prototype [3], we know that models of different
metamodels are represented significantly different when no generic modeling language
is used. The graphs represent rather the syntactical structure than the semantics of a
model. For example, different labels are used for the edges, and also nodes representing
predefined modeling constructs (such as “OWL Class” and “ComplexType”) can have
different labels, although the semantics of the model elements is quite similar.

The internal graph structures are not exposed by COMA++, but based on the pub-
lications [2,6] and our experience with Protoplasm [3], we can infer that the internal
graphs are similar to the graphs shown in fig. 11. The graphs represent the XML schema
from section 3 (right part of the figure), and an ontology for the same domain.

These graphs might be easier to understand for humans than the GeRoMe repre-
sentation in section 3. However, as we are dealing with automatic schema matching
methods, human-readability is not an issue. For a schema matching tool, the graphs
contain some problems. First of all, the labels of the edges are different except for the
“type” edge. Identical edge labels are for example an important requirement for the
Similarity Flooding algorithm as its main data structure, the propagation graph, is build

http://oaei.ontologymatching.org/2007/
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according to identical edge labels in the two graphs. If the labels are different, then the
propagation of similarity values to neighboring nodes does not work.

Furthermore, the structure of the graphs is different although the same domain is
represented. For example, the association between Airline and Employee/Pilot is not
directly visible in the XML schema. Thus, the structural similarity will be considered
as very low.

6 Conclusion

We implemented a schema matching subsystem for our holistic model management
system GeRoMeSuite [14] to match models represented in different metamodels. Our
results show the usefulness of our generic metamodel GeRoMe for generic model man-
agement tasks. The matcher returned comparatively good results when matching mod-
els represented in different modeling languages. The comparison with COMA++, an-
other matching system capable of matching XML schemas and OWL ontologies, has
shown that GeRoMeSuite achieved better results in all test cases. Our system provides
several algorithms for element level and structure level matchers; these basic matchers
can be combined in a very flexible way which enables the definition of arbitrary matcher
combinations. The evaluation has shown that the combination of matchers leads often
to better results than the individual matchers.

Furthermore, our matching system is quite stable with respect to different scenar-
ios and configuration options. Using a reasonable combination of matchers and a high
threshold value produces a result which is close to the best result that can be achieved
with our matcher. Thus, the application of our system to new scenarios can use a stan-
dard configuration. Therefore, the user does not need to have a deep understanding of
the system, and can still expect a good result of the matching system.

Our results suggest that the usage of a generic metamodel can improve the perfor-
mance even of model management operators that do not rely on detailed semantics of
metamodel constructs, such as the Match operator. Algorithms for matching models are
usually interested only in properties of individual nodes, such as labels or types, and
in the abstract graph structure of the model. However, the unification of structure that



comes along with using a generic metamodel improves their results. Our matching sys-
tem provides also various traversal strategies for models, and is not restricted to one
graph representation of the model. Depending on the structural information available,
the user can choose an appropriate traversal strategy (e.g. IsA hierarchy, associations).

In the near future we plan to improve the usability of our matcher application. Im-
proving the usability and visualization in matching systems is itself an active research
area [25]. Automated focussing of matching elements, collapsing and expanding trees
when exploring a mapping are already included in our current prototype. We also plan
to provide algorithms for sorting the children of tree nodes such that the number of line
crossings is minimized. This would highly increase the readability of morphisms.

As our matching subsystem is very easily extendable, it forms a thorough basis for
further research on schema and ontology matching. Therefore, we will also implement
and evaluate more and new matcher components, and apply them to other homogeneous
and heterogeneous matching scenarios. The currently implemented matching compo-
nents are general purpose components that we can apply to any kind of models. Our
next steps include the definition of special purpose matcher components that exploit the
characteristics of particular metamodels, e.g. OWL ontologies.
Acknowledgements: This work is supported by the DFG Research Cluster on Ultra
High-Speed Mobile Information and Communication (UMIC, http://www.umic.
rwth-aachen.de).
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