
Behavioral matchmaking for service retrieval

Daniela Grigori, Juan Carlos Corrales*, Mokrane Bouzeghoub
PRiSM, Universite de Versailles Saint-Quentin en Yvelines, France
Telematics Engineering Group, University of Cauca, Colombia*

Daniela.Grigori@prism.uvsq.fr; jcorral@unicauca.edu.co; Mokrane.Bouzeghoub@prism.uvsq.fr

Abstract

The capability to easily find useful services (software ap-
plications, software components, scientific computations)
becomes increasingly critical in several fields. Current
approaches for services retrieval are mostly limited to
the matching of their inputs/outputs. Recent works have
demonstrated that this approach is not sufficient to discover
relevant components. In this paper we argue that, in many
situations, the service discovery should be based on the
specification of service behavior (in particular, the conver-
sation protocol). The idea behind is to develop matching
techniques that operate on behavior models and allow de-
livery of partial matches and evaluation of semantic dis-
tance between these matches and the user requirements.
Consequently, even if a service satisfying exactly the user
requirements does not exist, the most similar ones will be re-
trieved and proposed for reuse by extension or modification.
To do so, we reduce the problem of behavioral matching to a
graph matching problem and we adapt existing algorithms
for this purpose. A prototype is presented (available as a
web service) which takes as input two conversation proto-
cols and evaluates the semantic distance between them; the
prototype provides also the script of edit operations that can
be used to alter the first model to render it identical with the
second one.

Keywords: web services, services retrieval, behavioral
matching

1 Introduction

The capability to easily find useful services (software ap-
plications, software components, scientific computations)
becomes increasingly critical in several fields. Examples
of such services are numerous:

• Software applications as web services which can be
invoked remotely by users or programs. One of the
problems arising from the model of web services is the

need to put in correspondence service requesters with
service suppliers, especially for services which are not
yet discovered or which are new, taking into account
the dynamic nature of the Web where services are fre-
quently published, removed or released.

• Programs and scientific computations which are im-
portant resources in the context of the Grid, sometimes
even more important than data [12]. In such a system,
data and procedures are first rank classes which can
be published, searched and handled. Thus, the scien-
tists need to retrieve procedures with desired charac-
teristics, to determine if a required calculation was al-
ready carried out and whether it is more advantageous
to carry out it again or to retrieve data generated previ-
ously.

• Software components which can be downloaded to
create a new application. To reduce the development,
test and maintenance costs, a fast solution is to re-use
existing components.

In all these cases, users are interested in finding suitable
components in a library or collection of models. User for-
mulates a requirement as a process model; his goal is to
use this model as a query to retrieve all components whose
process models match with a whole or part of this query.
If models that match exactly do not exist, those which are
most similar must be retrieved. For a given task, the mod-
els that require minimal modifications are the most suitable
ones. Even if the retrieved models have to be tailored to the
specific needs of the task, the effort for the tailoring will be
minimal.

In this paper we argue that, in many situations, the ser-
vice discovery process requires a matchmaking phase based
on the specification of the component behavior. The idea
behind is to develop matching techniques that operate on
behavior models and allow delivery of partial matches and
evaluation of semantic distance between these matches and
the user requirements. Consequently, even if a service satis-
fying exactly the user requirements does not exist, the most
similar ones will be retrieved and proposed for reuse by ex-

tension or modification. To do so, we reduce the problem of
service behavioral matching to a graph matching problem
and we adapt existing algorithms for this purpose.

In the next section we present several motivating sce-
narios. Section 3 presents existing approaches for service
retrieval and shows their drawbacks for the presented sce-
narios. In section 4 we show how the behavioral matching is
reduced to a graph matching problem; a similarity measure
is defined based on the graph edit distance for which two
new graph edit operations are introduced. Section 5 shows
how the graph matching algorithm can be used for conver-
sation protocol matchmaking. In section 6 we present an
experimental study of the matchmaking algorithm. Finally
section 7 present ongoing work and conclusions.

2 Motivating scenarios

In this section we present two scenarios requiring behav-
ioral matchmaking. The first example situates in the context
of web services integration and consists in retrieving ser-
vices having compatible behavior. The second example is
delta analysis which consists in finding differences between
two models.

Web services integration Consider a company that uses
service S to order office suppliers. Suppose that the com-
pany wants to find retailers (say WalMart or Target) having
compatible web services (a new retailer or replacing the cur-
rent partner). The allowed message exchange sequences are
called conversation protocols and can be expressed for ex-
ample using BPEL abstract processes, WSCL, or other pro-
tocol languages (see, e.g., [5]). The specification of the con-
versation protocol is important, as it rarely happens that ser-
vice operations can be invoked independently from one an-
other. Thus the company will search for a service having a
compatible conversation protocol. Among retailer services,
the most compatible one has to be found. If the service
is not fully compatible, the company will adapt its service
or will develop an adaptor in order to interact with the re-
trieved service. In both situations, the differences between
the business protocols have to be automatically identified.
In the former case, finding the most similar service allows
to minimize the development cost. In the latter case, identi-
fying automatically the differences between protocols is the
first stage in the process of semi-automatically developing
adapters (see [3]).

Delta analysis consists in finding the differences be-
tween two models. For example, the first one is the model
specified by a standard and the second one is the model as
it is implemented in an enterprise. Conversation definitions
can be specified by industry specific standards groups in the
same way that, for example, RosettaNet PIPs are specified
by RosettaNet and used by participating enterprises. Enter-
prises need to verify if their services follow the guidelines

prescribed by the standards. Thus, they need to compare
the conversation model of their existing service with that
prescribed by the standards. Ideally a tool should identify
all the differences between the two models. Based on these
differences the cost of reengineering of the existing service
could be evaluated.

3 Related work

Currently, the algorithms for Web services discovery in
registers like UDDI or ebXML are based on a search by key
words or tables of correspondence of couples (key-value).
Within the framework of the semantic Web, description log-
ics were proposed for a richer and precise formal descrip-
tion of services. These languages allow the definition of
ontologies, such as for example OWL-S, which are used
as a basis for semantic matching between a declarative de-
scription of the required service and descriptions of the ser-
vices offered ([16, 7, 6]). In [16, 6], a published service is
matched with a required service when the inputs and out-
puts of the required service match the inputs and outputs
of the published service (i.e., they have the same type or
one is a generalization of the other). In [13], independent
filters are defined for service retrieval: the name space, tex-
tual description, the domain of ontology that is used, types
of inputs/outputs and constraints. The approach presented
in [10] takes into account the operational properties like ex-
ecution time, cost and reliability.

Service retrieval based of key words or some semantic
attributes is not satisfactory for a great number of applica-
tions. The tendency of recent work is to exploit more and
more knowledge on service components and behavior. The
need to take into account the behavior of the service de-
scribed by a process model was underlined by several re-
searchers [22, 19, 7, 18, 24]. In [7], in order to improve pre-
cision of web service discovery, the process model is used
to capture the salient behavior of a service. A query lan-
guage for services is defined which allows to find services
by specifying conditions on the activities which compose
them, the exceptions treated, the flow of the data between
the activities.

Very recently, authors in the academic world have pub-
lished papers that discuss similarity and compatibility at dif-
ferent levels of abstractions of a service description (e.g.,
[4, 8, 11, 24]). In terms of protocols specification and anal-
ysis, existing approaches provide models (e.g., based on
pi-calculus or state machines) and mechanisms to compare
specifications (e.g., protocols compatibility checking).

In [24], authors give a formal semantics to business pro-
cess matchmaking based on finite state automata extended
by logical expressions associated to states. Computing the
intersection is computationally expensive, and thus does not
scale for large service repositories. To solve this problem,

the authors of [23] present an indexing approach for query-
ing cyclic business processes using traditional database sys-
tems. The choice of finite state automata as a modelling for-
malism limits the expressiveness of the models, for instance
representing parallel execution capabilities can lead to very
large models.

A new behavior model for web services is presented in
[21] which associates messages exchanged between partic-
ipants with activities performed within the service. Ac-
tivity profiles are described using OWL-S (Web Services
Ontology Language). Web services are modelled like non-
deterministic finite automatons. A new query language is
developed that expresses temporal and semantic properties
on services behaviors.

To summarize, the need to take into account the service
behavior in the retrieval process was underlined by several
authors and some very recent proposals exist ([21],[24]).
The few approaches that exist give a negative answer to the
user if a model satisfying exactly his requirements does not
exist in the registries, even if a model that requires a small
modification exists. Our objective is to propose an approach
for service retrieval based on behavioral specification allow-
ing an approximate match. To the best of our knowledge,
there is not another approach allowing to retrieve services
having similar behavior and defining a behavior-based sim-
ilarity measure.

4 A graph-based approach to behavior
matchmaking

In this section we show how the behavioral matching is
reduced to a graph matching problem. Section 4.1 recalls
the principles of the graph matching method that we use, the
error correcting subgraph isomorphism, which is based on
the idea of graph edit operations. Next sections show how
we adapt it to our problem: we extend the set of graph edit
operations and we define a similarity measure for behavior
matchmaking.

A conversation protocol describes the observable behav-
ior of a web service. It complements the web service in-
terface definition by imposing constraints on the order of
exchanged messages. Most of existing proposals (standards
and research models) are graph based. For this reason, we
choose to use a graph representation of conversation proto-
cols in order to compare two models.

Using graphs as a representation formalism for both
user requirements and service models, the service matching
problem turns into a graph matching problem. We want to
compare the process graph representing user requirements
with the model graphs in library. The matching process can
be formulated as a search for graph or subgraph isomor-
phism. However, it is possible that it does not exist a pro-
cess model such that an exact graph or subgraph isomor-

phism can be defined. Thus, we are interested in finding
process models that have similar structure if models that
have identical structure do not exist. The error-correcting
graph matching integrates the concept of error correction
(or inexact matching) into the matching process ([20, 9]).
To make the paper self-contained, in the next section we
briefly recall the principle of this graph matching method
and the basic definitions as given in [14].

4.1 Background and basic definitions

In order to compare the model graphs to an input graph
and decide which of the models is most similar to the input,
it is necessary to define a distance measure for graphs. Sim-
ilar to the string matching problem where edit operations
are used to define the string edit distance, the subraph edit
distance is based on the idea of edit operations that are ap-
plied to the model graph. Edit operations are used to alter
the model graphs until there exist subgraph isomorphism to
the input graph. For each edit operation, a certain cost is as-
signed. The costs are application dependent and reflect the
likelihood of graph distortions. The more likely a certain
distortion is to occur the smaller is its cost. The subgraph
edit distance from a model to an input graph is then defined
to be the minimum cost taken over all sequences of edit
operations that are necessary to obtain a subgraph isomor-
phism. It can be concluded that the smaller the subgraph
distance between a model and an input graph, the more sim-
ilar they are.

In the following we give the definitions of error correct-
ing graph matching as given in [14].

A directed labelled graph is defined by a quadruple G =
(V, E, α, β) where V is the set of vertices, E ⊂ V ×V is the
set of edges, α : V → LV is the vertex labelling function
and β : E → LE is the edge labelling function.

Definition 4.1 Graph isomorphism Let g and g’ be
graphs. A graph isomorphism between g and g ′ is a bi-
jective mapping f : V → V ′ such that

- α(v) = α′(f(v)) for all v ∈ V
- for any edge e = (u, v) ∈ E there exists an edge

e′ = (f(u), f(v)) ∈ E′ such that β(e) = β′(e′) and
for any edge e′ = (u′, v′) ∈ E′ there exists an edge
e = (f−1(u′), f−1(v′)) ∈ E such that β(e) = β′(e′).

If f : V → V ′ is a graph isomorphism between graphs
g and g′, and g′ is a subgraph of another graph g”, i.e. g ′ ⊂
g”, then f is called a subgraph isomorphism from g to g”.

Given a graph G, a graph edit operation δ on G is any of
the following:

◦ substituting the label α(v) of vertex v by l
◦ substituting the label β(e) of edge e by l ′

◦ deleting the vertex v from G (for the correction of
missing vertices). Note that all edges that are incident with

the vertex v are deleted too.
◦ deleting the edge e from G (for the correction of miss-

ing edges).
◦ inserting an edge between two existing vertices (for

the correction of extraneous edges).

Definition 4.2 Edited graph Given a graph and an edit
operation δ , the edited graph δ(G) is a graph in which
the operation δ was applied. Given a graph G and a se-
quence of edit operations ∆ = (δ1, δ2, · · · δk), the edited
graph ∆(G) is a graph ∆(G) = δk(· · · δ2(δ1(G)))..).

Definition 4.3 Ec-subgraph isomorphism Given two
graphs G and G′, an error correcting (ec) subgraph iso-
morphism f from G to G′ is a 2-tuple f = (∆, f∆) where
∆ is a sequence of edit operations and f∆ is a subgraph
isomorphism from ∆(G) to G′.

For each edit operation δ, a certain cost is assigned C(δ).
The cost of an ec-subgraph isomorphism f = (∆, f∆) is the
cost of the edit operations ∆, i.e., C(∆) =

∑k
i=1 C(δi).

Usually, there is more than one sequence of edit operations
such that a subgraph isomorphism from ∆(G) to G ′ ex-
ists and, consequently, there is more than one ec-subgraph
isomorphism from G to G′. We are interested in the ec-
subgraph isomorphism with minimum cost.

Definition 4.4 Subgraph edit distance Let G and G′ be
two graphs. The subgraph distance from G to G ′, ed(G, G′)
is given by the minimum cost taken over all error-correcting
subgraph isomorphism f from G to G′.

4.2 Extension of the sub-graph edit distance

The models to be compared can have different granu-
larity levels for achieving the same functionality. For ex-
ample, the first service has a single operation (activity) to
achieve certain functionality, while in the second service the
same behavior is achieved by composing several operations.
Thus, new edit operations are required. Given a graph G,
we extend the definition of edit operation δ on G by adding
two operations:

◦ decomposing a vertex v into two vertices v1, v2

◦ joining two vertices v1, v2 into a vertex v.
We limit ourselves to a simple case of decomposition,

when a vertex is decomposed into a sequence of two ver-
tices. This simple type of decomposition is sufficient for
applications that we analyzed. A more general decomposi-
tion operation would be to decompose a vertex into a con-
nected subgraph, this is subject of future work.

The operation of decomposing a vertex v into two ver-
tices v1, v2 is executed in the following way :

- all the edges having as destination the vertex v will
have as destination the vertex v1;

- all edges having as source the vertex v, will have as
source the vertex v2;

- an edge between the vertex v1 and v2 will be added.
The joining operation is executed in a similar way. These

two new edit operations allow to model one-to-many depen-
dencies among vertices of two graphs (i.e., a vertex in one
graph correspond to two vertices in the second graph). The
classical edit operations take into account only one-to-one
mappings between vertices of the two graphs. For example,
if a vertex v in the first graph corresponds to the compo-
sition of two vertices in the second graph (v1 followed by
v2), a matching algorithm based on the classical edit dis-
tance would map v to v1 and suppress v2. It would not be
possible to discover that v is mapped to a composition of v1

and v2.

4.3 Similarity measure for behavioral matching

The subgraph edit distance defined previously expresses
the cost of transformation needed to adapt the model graph
in order to cover a subgraph in the input model. This dis-
tance is asymmetric, it represents the distance from the
model graph to the input graph. In order to rank the model
graphs, the similarity measure has to take into account the
number of vertices in the input graph that were covered by
the model graph. If two model graphs have the same sub-
graph distance to the input graph but are matched to sub-
graphs with different number of nodes, the one that matches
a subgraph with more nodes will be preferred.

For this reason, we propose to calculate the similarity
measure based on the total edit distance between the two
graphs. The total distance between the model and the input
graph is defined as the sum of the subgraph edit distance and
the cost of adding the nodes of the input graph not covered
by the ec subgraph isomorphism.

5 Conversation protocol matchmaking

In this section we illustrate the use of the error-correcting
graph matching algorithm for conversation protocol match-
making. We first give an overview of the matchmaking pro-
cess and then we discuss each step in detail; finally, we il-
lustrate it using an example.

We choose to exemplify our approach for business pro-
tocol matchmaking by using the WSCL model. The same
approach can be applied for other models, as long as the
conversation protocol can be transformed to a graph in a
unique way (equivalent representations of a conversation
protocol are reduced to the same process graph). WSCL
is a simple conversation definition language, which offers
the basic constructs to model the sequencing of the inter-
actions or operations of one interface. It thus complements
the interface definition by specifying the invocations order

of the operations. A conversation in WSCL is specified us-
ing the following basic constructs [2]:

◦ Interactions model the actions of the conversation as
document exchanges between two participants. WSCL sup-
ports five types of interactions: Send (the service sends out
an outbound document); Receive (the service receives an
inbound document); SendReceive (the service sends out an
outbound document and then expects to receive an inbound
document in reply); ReceiveSend (the service receives an
inbound document and then sends out an outbound docu-
ment); Empty (does not contain any documents exchanged,
but is used only for modelling the start and end of a conver-
sation.)

◦ Transitions specify the ordering relationships between
interactions.

Each interaction specifies the type (schemas) of XML
document that is expected as input or is produced as output.

The conversation protocol matchmaking process is com-
posed of the following steps. First, the conversations pro-
tocols to be compared are transformed to graphs. Next,
the graphs are expanded in order to have the same level
of granularity in both graphs and the error corecting graph
matching algorithm is applied ([14]). The similarity ana-
lyzer module evaluates the similarity between the graphs..
Finally, the granularity levels are compared and the costs
corresponding to identified differences are added to the to-
tal distance.

Figure 1. Architecture

The architecture of the behavior matchmaking system is
presented in Figure 1. The system is composed of a parser
and a similarity analyzer module. The parser transforms a
WSCL conversation model into a graph whose vertices rep-
resent interactions and whose edges represent transitions.
Each vertex has the the following attributes: name, interac-
tion type and documents.

The similarity analyzer module evaluates the similarity
between the graphs. In the next sections we present in de-
tail the functionalities of its modules (excepting the graph
matchmaking module that implements the algorithm de-
scribed in [14]; for lack of space we refer the reader to [14]).

5.1 Decomposing interactions

After transforming conversation protocols to graphs, the
second step in the behavior matching is graphs expansion.
The decomposition operations are applied in order to have
the same granularity level in both models. The decompo-
sition operation depends on the metamodel of the protocols
to be matched. For instance, for WSCL metamodel, it is
possible that in one protocol an interaction is modelled as
a SendReceive interaction, while in the second protocol the
same functionality is achieved by having a Send interaction
followed by a Receive interaction. Thus, the decomposition
module will transform interactions of type SendReceive or
ReceiveSend in atomic interactions: Send and Receive. A
SendReceive interaction is decomposed into a Send interac-
tion followed by a Receive interaction in the following way:

- all edges having as destination the SendReceive inter-
action will have as destination the Send interaction

- all edges having as source the SendReceive interaction,
will have as source the Receive interaction

- an edge will be added from the Send interaction to the
Receive interaction

- if the SendReceive interaction has outbound document
a and inbound document b , then the Send interaction will
have a as outbound document and the Receive interaction
will have b as inbound document.

In a similar way, a ReceiveSend interaction is decom-
posed into a Receive interaction followed by a Send interac-
tion.

This decomposition function is specific to WSCL model.
For other applications, user can specify a different decom-
position function. The decomposition function has always
the same signature: it takes as argument a vertex and re-
turns two vertices resulting from decomposition (that are
supposed to be sequential). The function behavior is spe-
cific to the application (metamodel of the protocols to be
matched) and consists in specifying how the labels and at-
tributes of the two vertices are obtained from the decom-
posed vertex.

5.2 Comparison rules

The Comparison rules module contains all the
application-dependent functions allowing to calculate
the cost of graph edit operations. These functions are used
by the graph matching module for calculating the distance
between the graphs. In order to support applications with
specialized cost function, user-defined cost function can be
registered in this module. In the following we explain the
cost function used for conversation protocol matchmaking.

The cost for inserting, suppressing edges and vertices
can be set to a constant. The cost for editing a vertex is
calculated by function VertexMatch (see Algorithm 1). As

Algorithm 1 Function VertexMatch
INPUTS: (Nodei,Nodej)
Nodei: Struct (Idi,Typei,Di), Nodej: Struct (Idj,Typej,Dj)
OUTPUT: DistanceNode

if Typei �= Typej (different types) then
Return DistanceNode = 1

else
Calculate document sets similarity TotalSD
if TotalSD > 0 then

Calculate Ids similarity SimId = LS(Idi, Idj)

DistanceNode = 1 − wd ∗ TotalSD + wi ∗ SimId

wd + wi

Return DistanceNode

else
Return DistanceNode = 1

end if
end if

vertices represent WSCL interactions, this cost expresses
the distance between two WSCL interactions. Each interac-
tion has a label (Id) and two attributes: the interaction type
(Type) and documents set (D) (in or outbound documents).
The matchmaking gives priority to type comparison, and if
two interactions have the same type, it compares the similar-
ity of the set of documents TotalSD; if there is a similarity
between them (TotalSD > 0), it calculates the similarity
of the interactions names (SimId).

The function SD(Di, Dj) where Di, Dj is the set of
documents of Nodei and Nodej respectively, computes the
best mapping that can be obtained between the documents
of the two sets.

SD(Di, Dj) ={
Max(SD(Di − I, Dj − J) + LS(I, J), Di �= φ, Dj �= φ,

I ∈ Di, J ∈ Dj
0, Di = φ ∨ Dj = φ

The number of mappings established is
Min(|Di|, |Dj|). Function LS calculates the linguis-
tic similarity between document names and is explained in
the next section.

Finally, the total similarity of the document sets is:

TotalSD =
SD(Di, Dj)

k

where, k = No of documents of set Di.

Weights wd and wi indicate the contribution of TotalSD
(similarity of documents being exchanged) and SimId
(similarity of interaction names) respectively in the total
DistanceNode score (0 ≤ wd ≤ 1 and 0 ≤ wi ≤ 1).

5.3 Linguistic comparison

The Linguistic comparison module calculates the lin-
guistic similarity between two labels based on their names
[17]. The labels are often formed by a word or by a com-
bination of words and can contain abbreviations. To obtain
a linguistic distance between two strings, we use existing
algorithms: NGram, Check synonym, and Check abbrevia-
tion. The NGram algorithm estimates the similarity accord-
ing to a number of common qgrams between labels names
[1]. The Check synonym algorithm uses a linguistic dictio-
nary (e.g. Wordnet [15] in our implementation) to find out
the synonyms between the labels names while the Check
abbreviation one uses an abbreviation dictionary according
to the application domain.

If all the algorithms return 1, there is an exact matching.
On the other hand, if all the algorithms return 0, it means
that there are no matching between labels. If the NGram
value and the Check abbreviation value are equal to 0, and
Check Synonym is between 0 and 1, the total linguistic sim-
ilairty value will be equal to the Check Synonym one. Fi-
nally, if the three algorithms values are between 0 and 1,
the similarity LS ([17]) is the average of them:

LS =

{
1 if (m1 = 1 ∨ m2 = 1 ∨ m3 = 1)
m2 if (0 < m2 < 1 ∧ m1 = m3 = 0)
0 if (m1 = m2 = m3 = 0)
m1+m2+m3

3 if m1, m2, m3 ∈ (0, 1)

where, m1 = Sim(NGram), m2=Sim(Synonim Matching) and m3=
Sim(Abbreviation Expansion).

5.4 Comparison of granularity level

The ecgm (error correcting graph matching) is applied to
graphs that were expanded, i.e., contain only atomic Send
or Receive interactions. The granularity comparison mod-
ule checks whether the interactions that were mapped by
the ecgm algorithm have the same granularity level in both
models. For instance, suppose that in the input graph we
have a SendReceive interaction. This was decomposed by
the decomposition module in a Send interaction followed
by a Receive interaction that were mapped with two cor-
responding interactions in the model graph (by the ecgm
algorithm). If these interactions were atomic in the model
graph, the cost of joining operation has to be added to the
total graph distance (line 5 in the table of Figure 2).

The costs for granularity differences that have to be taken
into account for the total distance graph for all cases of fig-
ure (atomic versus non atomic interactions in the model and
input graph) are summarized in the Figure 2. For the sake
of clarity, the table does not present the cases for interac-
tions that have no correspondence in the other graph. If the
mapped interactions have the same granularity level (they
are both atomic or non atomic) there is no cost to be added
to the subgraph edit distance.

Interaction type Interaction type Granularity
of input graph of model graph Diff. Cost

S atomic S atomic 0

R atomic R atomic 0

SR SR 0

RS RS 0

SR (or RS) S atomic + R atomic cj

SR (or RS) S nonat. + R nonat. cd + cj

SR (or RS) S nonat. + R atomic or cd/2 + cj

S atomic + R nonat.
S atomic S nonatomic cd/2
R atomic R nonatomic cd/2

S=Send, R=Receive, SR= SendReceive, RS=ReceiveSend

Figure 2. Cost for granularity differences

A more complicated case (line 7 in the table of Figure 2)
is when a SendReceive interaction SRI in the input graph
is mapped with an atomic Send interaction SM followed by
a Receive interaction RM that is non atomic (belongs to a
SendReceive SRM) in the model graph. In this case, the
cost is cj + cd/2 (cj = cost of joining SM and RM ; cd/2 =
cost for obtaining RM by decomposing SRM interaction in
the model graph).

5.5 Example

Suppose that we would like to find the similarity be-
tween two hotel reservation services whose conversations
have been described using WSCL. The first service has
the following conversation: ReservationRequest interaction
(Type: Receive), RequestCatalog (Type: Receive) followed
by SendCatalog (Type: Send) and CheckAvailability (Type:
ReceiveSend). The second service conversation protocol
has the following sequence of interactions : ReservationRQ
(Type: Receive), Availability (Type: ReceiveSend), Cata-
log (Type: ReceiveSend). Our system converts each ser-
vice WCSL document into a graph (input graph and model
graph, Figure 3). Next, the graphs are decomposed accord-
ing to the interaction type (Decomposed input graph and
model graph, Figure 3) using the decomposition function.
The dotted lines in Figure 3 represent the mappings found
by the system between the two graphs using the comparison
rules. Finally, the cost for granularity differences is added to
the total graph distance. (Catalog Interaction in the model
graph has to be decomposed into two interactions to match
the input graph).

In conclusion, the edit script will show that the two
graphs are similar, but have the following structural dif-
ferences : interactions RequestCatalog (Type: Receive)
and SendCatalog (Type: Send) are modelled as a single
SendReceive interaction in the model graph; interactions for

Figure 3. Example

checking the availability and for asking the catalog are exe-
cuted in different order in the two models.

6 Implementation and experiments

In this section, we present an experimental study of the
matchmaking algorithm. The theoretical complexity of the
graph matchmaking algorithm [14] is (O(m2n2) in the best
case (when the distance between the model and the input
graph is minimal) and O(mnn) in the worst case (m = the
total number of vertices in the input graph; n = the total
number of vertices in the graph to be compared). The goal
of the experiments is to find how well performs the algo-
rithm for conversation protocol matchmaking. Since most
of the conversation protocols have less than 50 interactions,
we considered a maximum of 100 interactions.

We implemented a system having the architecture pre-
sented in the previous section. The prototype is avail-
able at http://200.21.83.91:8080/matching/
input.faces. The system is also available as a web ser-
vice that takes as input two WSCL files and calculates the
similarity between them (http://200.21.83.91:
8080/matching/services/matching?wsdl). It
returns also the script of edit operations required in order
to transform the first conversation protocol to conform with
the second one.

The figure 4 shows the system behavior for two graphs
with different structures (different edge number and loops)
and different values for the identifier of each interaction.
For the comparison of the identifiers and documents names,
the linguistic comparison is used.

Despite the exponential theoretical cost, the graphic
shows that the matchmaking algorithm can be used for
WSCL documents having less than 50 interactions.

7 Conclusion

In this paper we proposed a solution for service retrieval
based on behavioral specification. First we motivated the

Figure 4. Matchmaking two WSCL documents

need to retrieve services based on their conversation model.
By using a graph representation formalism for services, we
proposed to use a graph error correcting matching algo-
rithm in order to allow an approximate matching. Starting
from the classical graph edit distance, we proposed two new
graph edit operations to take into account the difference of
granularity levels that could appear in two models. We ex-
emplified our approach for behavior matching for conver-
sation protocols expressed using the WSCL model and we
developed a protoype that is available as a web service.

The next step of this work will be to address the prob-
lem of comparing a conversation protocol with a set of pro-
tocols in a library. Performance issues related to the ex-
ecution time have to be addressed. We will also exper-
imentally evaluate the performance of the behavior based
retrieval method in terms of precision and recall.

8 Acknowledgements

Juan Carlos Corrales is an Alban Program Fellowship re-
cipient (High-level scholarship program for Latin America,
http://www.programalban.org).

References

[1] R. C. Angell, G. E. Freund, and P. Willett. Automatic
spelling correction using a trigram similarity measure. Infor-
mation Processing and management, 19(4):255–261, 1983.

[2] A. Banerji, C. Bartolini, D. Beringer, V. Chopella, K. Govin-
darajan, A. Karp, H. Kuno, M. Lemon, G. Pogossiants,
S. Sharma, and S. Williams. Web services conversation lan-
guage (wscl) 1.0. In W3C, 2002.

[3] B. Benatallah, F. Casati, D. Grigori, H. R. Motahari Nezhad,
and F. Toumani. Developing adapters for web services inte-
gration. In Proc. of CAISE, 2005.

[4] B. Benatallah, F. Casati, and F. Toumani. Analysis and man-
agement of web services protocols. In Proc. of ER, 2004.

[5] B. Benatallah, F. Casati, and F. Toumani. Web services con-
versation modeling: A cornerstone for e-business automa-
tion. IEEE Internet Computing, 2004.

[6] B. Benatallah, M. Hacid, C. Rey, and F. Toumani. Semantic
reasoning for web services discovery. In Proc. of ESSW,
2003.

[7] A. Bernstein and M. Klein. Towards high-precision service
retrieval. In Proc. of ISWC, 2002.

[8] L. Bordeaux and et al. When are two web services compati-
ble? In Proc. of TES, 2004.

[9] H. Bunke. Recent developments in graph matching. In Proc.
of ICPR, pages 117 – 124, 2000.

[10] J. Cardoso and A. Sheth. Semantic e-workflow composi-
tion. Journal of Intelligent Information Systems, 21:191–
225, 2003.

[11] L. Dong, A. Halevy, J. Madhavan, E. Nemes, , and J. Zhang.
Similarity search for web services. In Proc. of VLDB, 2004.

[12] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A
virtual data system for representing, querying and automat-
ing data derivation. In Proc. of Ssdbm, 2002.

[13] T. Kawamura, J. De Blasio, T. Hasegawa, M. Paolucci, and
K. Sycara. A preliminary report of a public experiment of
a semantic service matchmaker combined with a uddi busi-
ness registry. In Proc. of ICSOC, 2003.

[14] B. Messmer. Graph Matching Algorithms and Applications.
PhD thesis, University of Bern, 1995.

[15] G. Miller. Wordnet: A lexical database for english. Commu-
nications of the ACM, 38(11):39–41, 1995.

[16] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Se-
mantic matching of web services capabilities. In Proc. of
ISWC, 2002.

[17] A. Patil, S. Oundhakar, A. Sheth, and K. Verna. Meteor-s
web service annotation framework. In Proc. of WWW Con-
ference, 2004.

[18] G. Piccinelli, G. Di Vitantonio, and L. Mokrushin. Dynamic
service aggregation in electronic marketplaces. Computer
Networks, 2(37), 2001.

[19] S. S. Bansal and J. M. Vidal. Matchmaking of web services
based on the DAML-S service model. In Proc. of AAMAS,
pages 926–927, 2003.

[20] L. G. Shapiro and R. M. Haralick. Structural descriptions
and inexact matching. IEEE Trans. Pattern Anal. Mach. In-
tell., 3, 1981.

[21] Z. Shen and J. Su. Web services discovery based on behavior
signatures. In Proc. of IEEE SCC, 2005.

[22] D. Trastour, C. Bartolini, and J. Gonzalez-Castillo. A se-
mantic web approach to service description for matchmak-
ing of services. In Proc. of SWWS, 2001.

[23] A. Wombacher, B. Mahleko, and P. Fankhauser. A grammar-
based index for matching business processes. In Proc. of
ICWS, pages 21–30, 2005.

[24] A. Wombacher, B. Mahleko, P. Fankhauser, and E. Neuhold.
Matchmaking for business processes based on choreogra-
phies. In Proc. of EEE, 2004.

