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Abstract. The continuous evolution of life science ontologies requires
the adaptation of their associated mappings. We propose two approaches
for tackling this problem in a largely automatic way: (1) a composition-
based adaptation relying on the principle of mapping composition and
(2) a diff-based adaptation algorithm individually handling change oper-
ations to update the mapping. Both techniques reuse unaffected corre-
spondences, and adapt only the affected mapping part. We experimen-
tally assess and confirm the effectiveness of our approaches for evolving
mappings between large life science ontologies.
Keywords: mapping adaptation, mapping migration, mapping evolu-
tion, ontology evolution, ontology mapping, ontology alignment

1 Introduction

Ontologies and their applications have become increasingly important especially
in the life sciences [1,2]. Typically there are many ontologies within a domain
with overlapping information, e.g., more than 30 anatomy-related ontologies in
the OBO foundry [3]. Mappings between such related ontologies are useful for
various data integration and enhanced analysis tasks. For instance, mappings are
needed to merge several ontologies into an integrated ontology, e.g., the multi-
species anatomy ontology Uberon [4]. While manually curated mappings are
especially valuable to interrelate the concepts of ontologies, it is often too time-
consuming for large ontologies. Hence, semi-automatic matching approaches are
increasingly needed for mapping creation [5,6,7].

The life sciences are a very dynamic field and new research results lead to
a continuous evolution of ontologies so that new versions are periodically re-
leased [8]. Ontology changes include the addition, revision or deletion of concepts
and relationships, and their frequency may substantially vary between ontolo-
gies or different parts of one ontology [9]. Ontology evolution can have an impact
on different dependent artifacts such as ontology mappings [10,11], annotation
mappings [12,13] and ontology-based queries [14,15]. As mappings may become
invalid and out-dated their adaptation is required. For example, a new version



of an ontology in Bioportal [16] or UMLS [17] may require the adaptation of the
associated mappings, so that users and dependent applications can consume the
most recent ones.

In this paper, we study different methods for a largely automatic adap-
tation of ontology mappings. In particular, we aim to avoid an expensive re-
determination of the complete mapping and to reuse all stable parts from the
old mapping. Migrating ontology mappings is not trivial for complex ontology
changes such as the split of a concept into several new concepts. In this case
an earlier correspondence with the unsplit concept may have to be changed to
another or several new correspondences, and an expert user should be supported
to select the correct result. Each type of ontology change may require different
actions to update an ontology mapping. There is only little research so far on
how to best perform the adaptation of mappings (see Sec. 2). Typically, pre-
vious approaches did not consider the impact of different ontology changes on
mappings and also ignored new correspondences introduced by added concepts.

We therefore make the following contributions:

– We present a composition-based approach that uses ontology matching to cre-
ate mappings between versions of an evolved ontology as well as the principle
of mapping composition to create the adapted ontology mapping (Sec. 4).

– We propose a diff-based approach relied on a diff result consisting of the
set of changes that led from the old to the new version of an ontology. The
approach uses a library of change handlers to realize change-specific mapping
adaptations (Sec. 5).

– We evaluate the approaches by adapting mappings between three large life
science ontologies extracted from UMLS. Results reveal that we can adapt
mappings largely automatically. We can also suggest specific mapping adap-
tations for certain types of ontology changes to simplify mapping curation
(Sec. 6).

Additionally, we discuss related work in Sec. 2, present preliminaries on on-
tologies, mappings and the change model in Sec. 3, and conclude in Sec. 7.

2 Related Work

While a significant amount of research has already coped with the evolution of
ontologies [18], the evolution of dependent mappings has received relatively little
attention. In the context of schema evolution and model management [19,20],
it has been proposed to evolve a previously determined mapping by composing
it with a match mapping between the old and the new version of an updated
schema or model. This composition approach has been explored in [21] for schema
mappings and was shown to avoid the full re-calculation of existing mappings.
We investigate and enhance the composition approach for adapting ontology
mappings by not only reusing stable parts of the previous mapping, but by also
extending the mapping, e.g., for added ontology concepts.
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Only few studies specifically investigated the maintenance and evolution of
ontology mappings. In [22] the use of reasoners has been proposed for detecting
and repairing invalid correspondences after ontology changes. Khattak et al. [23]
propose to re-compute only those correspondences associated with changed on-
tology elements. Martins & Silva [24] propose that mapping evolution should
behave similarly to strategies applied for ontology evolution. However, corre-
spondences are only adapted when concepts are removed from the ontology.
Kondylakis & Plexousakis [14] focus on the automatic detection of queries af-
fected by ontology evolution. They assist developers to find and adapt invalid
queries by suggesting sequences of changes affecting such queries.

In our previous work, we empirically analyzed which ontology changes lead
to the addition or deletion of correspondences in an ontology mapping [11]. Dos
Reis et al. [10] have proposed a framework for mapping evolution highlighting
the role of different types of ontology changes for mapping adaptation, as well
as the importance of considering different semantic types of correspondences in
the adaptation process.

In contrast to prior studies, we not only aim at reusing stable parts of previous
ontology mappings, but also extend the mappings for new ontology concepts.
In addition to a composition-based method we propose a diff-based approach
to individually handle different types of ontology changes and to solicit user
feedback on adapted and newly determined correspondences. Unlike previous
studies, we also evaluate the quality of the adapted mappings for large life science
ontologies.

3 Preliminaries

We first define the considered ontology and mapping model (Sec. 3.1) and then
describe the general scenario we investigate in this paper (Sec. 3.2).

3.1 Ontology Versions and Mappings

An ontology O = (C,R,A) consists of a set of concepts C interrelated by directed
relationships R. Each concept c ∈ C is identified by an unambiguous accession
number cacc. Further attributes a ∈ A describe a concept in more detail, e.g.,
labels, synonyms or definitions. A special attribute obsolete indicates whether a
concept is outdated and should thus not be used anymore. A relationship r ∈ R
interconnects two concepts and has a specific type, e.g., ’is a’ or ’part of’. An
ontology version is a release of O, i.e., a particular version is valid until a newer
version becomes available. In the following, we denote two versions of an evolved
ontology with O (old version) and O′ (new version), respectively.

An ontology mapping MO1,O2 interconnects concepts of two different ontolo-
gies O1/O2 by so-called correspondences:

MO1,O2
= {(c1, c2, sim, semType, status)|c1 ∈ O1, c2 ∈ O2, sim ∈ [0, 1],

semType ∈ {=,≤,≥,≈},
status ∈ {”handled”, ”toverify”}}
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O1
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MO1,O2 MO1‘,O2‘

diffO1,O1‘

diffO2,O2‘

O1‘

O2‘

MO1,O1‘

MO2,O2‘

(a) (b)
Change operation Description

addC(c), delC(c) addition/deletion of concept c

toObsolete(c), revokeObsolete(c) set/revoke ‚to obsolete‘ status of c

split(s,T) split a source concept s into several target concepts T

merge(S,t) merge several source concept S into one target concept t

substitute(c,c‘) Substitute concept c by concept c‘

move(c,P,P‘) move a concept c from parents P to parents P‘

addR(r), delR(r) addition/deletion of a relationship r

chgAttValue(c,att,v1,v2) change value of att in c from v1 to v2

addA(a)/delA(a) Addition/deletion of an attribute a

Fig. 1. (a) General scenario. (b) Considered change operations of COnto-Diff.

A correspondence (c1, c2, sim, semType, status) interrelates two concepts c1 ∈
O1 and c2 ∈ O2. We use three further independent attributes to describe a
correspondence in more detail. The sim value represents the similarity measure
between c1 and c2. The higher the value, the more related are both concepts.
We assign a similarity of 1 to manually created correspondences. We further use
a semType to differentiate the semantic connection type. For instance, concepts
can be equivalent (e.g., ’torso’=’trunk’), one concept can be less or more gen-
eral than the other (e.g., ’thumb’≤’finger’) or concepts can be somehow related
(≈). A status signals the state of the correspondences during adaptation. In
particular, a correspondence can be adapted (handled) or needs verification by
an expert (to verify).

To create new mappings between ontologies we rely on semi-automatic match
strategies because a purely manual mapping generation has become increasingly
infeasible for large and complex ontologies [6,7]. For this purpose we use a suc-
cessfully applied match strategy based on a concept’s name and synonyms de-
scribed in [25].

We also support the inversion of ontology mappings, e.g., to get a mapping
MO2,O1

out of MO1,O2
. To this end, we will use an inverse operator that inverts

each correspondence as follows: (c1, c2, sim, semType, status) 7→ (c2, c1, sim, new
SemType, status). In particular, the order of matching concepts is reversed, the
similarity and the status values remain unchanged. The semType is adapted
using the following rules: = 7→=, ≤7→≥, ≥7→≤ and ≈7→≈.

3.2 General Scenario and Change Model

The general scenario investigated in this paper is depicted in Fig. 1a. There
are two ontologies in their old (O1,O2) and new versions (O1′,O2′). A mapping
MO1,O2 interconnects the old versions of the two ontologies. The task investi-
gated is to determine the new mapping MO1′,O2′ which interrelates concepts
of the new ontology versions O1′ and O2′. For this purpose, we need further
mappings between the ontology versions involved. In particular, there are two
mappings MO1,O1′ and MO2,O2′ which interconnect concepts between the ver-
sions. These mappings provide information about how concepts in an old version
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Fig. 2. Mapping evolution example.

are related with concepts in the new version. We generate these mappings by
matching, i.e., we match O1 with O1′ and O2 with O2′, respectively. The pro-
posed composition-based approach (Sec. 4) uses the mappings MO1,O2, MO1,O1′

and MO2,O2′ to create the adapted mapping MO1′,O2′ based on composition.
We further use so-called evolution mappings (diffO1,O1′ and diffO2,O2′)

between the old and new ontology versions. These mappings integrate all changes
that occurred during evolution from O1 to O1′ and O2 to O2′, respectively. An
evolution mapping can be created using a Diff tool such as PromptDiff [26] or
COnto-Diff [27] and contains different types of changes (Fig. 1b lists changes
of COnto-Diff). For instance, there are concept changes such as add, delete,
merge and split, or changes of attribute values. The proposed diff-based approach
(Sec. 5) uses the diff evolution mappings diffO1,O1′ and diffO2,O2′ to create the
adapted mapping MO1′,O2′ .

4 Composition-based Adaptation

This section presents the composition-based approach for mapping adaptation.
Its strength is the reuse of the previous, already validated ontology mapping
to avoid an expensive re-computation of confirmed correspondences. Given that
changes are typically limited to a small subset of ontologies, this promises that
the largest part of the new mapping is easily determined. For illustration purpose,
we use a running example shown in Fig. 2 with an evolution of an anatomy on-
tology (O2 7→ O2′). The ontology changes require an adaptation of the mapping
MO1,O2, in particular to delete the previous correspondence (delCorr) and to add
the new correspondence (addCorr) shown on the right side. Our composition-
based approach achieves the adaptation by composing the previous ontology
mapping MO1,O2 with the mapping MO2,O2′ , as well as by checking whether
added concepts lead to new correspondences.

The composition of two mappings MA,B and MB,C generates a mapping
MA,C between A and C. With mappings as introduced in Sec. 3.1, we define:

MA,C = compose(MA,B ,MB,C) = MA,B ◦MB,C =
{(c1, c2, aggSim(sim1, sim2), getNewType(semType1, semType2),

5



getNewStatus(semType1, semType2))|
c1 ∈ A, c2 ∈ C, b ∈ B : ∃(c1, b, sim1, semType1, status1) ∈MA,B∧

∃(b, c2, sim2, semType2, status2) ∈MB,C}

The generation of a correspondence (c1, c2) in MA,C requires the existence of
two correspondences (c1, b) and (b, c2) connecting to the same concept b ∈ B.
The attribute values of the new correspondence are derived from the values of
the two ’connecting’ correspondences. First, the new similarity is aggregated
from the similarities sim1 and sim2 by computing, e.g., their average or max-
imum (aggSim). Second, the new semantic type is derived from semType1 and
semType2 (getNewType) based on the rule set presented in Fig. 4a. For example,
the combination of ’=’ and ’≤’ would lead to the new semantic type ’≤’. Third,
the new correspondence is assigned the new status (getNewStatus, see Sec.5.2).

CompAdapt (Algorithm 1) shows how we perform composition-based map-
ping adaption for the general case when both ontologies evolve (O1 7→ O1′,
O2 7→ O2′). The algorithm uses as input the previous ontology mapping MO1,O2

as well as the two mappings MO1,O1′ and MO2,O2′ .

Algorithm 1: CompAdapt(MO1,O2,MO1,O1′ ,MO2,O2′)

1 MO1′,O1 ← inverse(MO1,O1′);

2 MO1′,O2 ← compose(MO1′,O1,MO1,O2);

3 MO1′,O2′ ← compose(MO1′,O2,MO2,O2′);

4 return MO1′,O2′ ;

We first generate the inverse mapping MO1′,O1 (line 1) and compose it with
MO1,O2 to create an intermediate mapping between O1′ and O2 (line 2). We
then transitively compose the intermediate mapping with MO2,O2′ to produce
the adapted mapping MO1′,O2′ between O1′ and O2′ (line 3). When exclu-
sively one of the input ontologies evolve, we only need one of the two com-
positions. We perform the first two steps if O1 evolves to O1′, or only per-
form compose(MO1,O2,MO2,O2′) if O2 evolves to O2′. For the running exam-
ple (Fig. 2), we would create eight correspondences including retained corre-
spondences such as (’limbs’,’limbs’). Unfortunately, the composition also creates
the false correspondences ((’lower extremities’,’upper limbs’), (’upper extremi-
ties’,’lower limbs’)) since the concept ’limb segment’ in the intermediate ontology
is connected to several concepts in the ontologies to be composed. We will later
see how our alternate solution (Sec. 5) can cope with such situations.

Composition alone is also unable to determine new correspondences due to
added concepts in the ontologies, e.g., ’trunk’ in O2′. To address this shortcoming
we apply an additional match step as shown in the CompAdaptMatch algorithm:

Algorithm 2: CompAdaptMatch(MO1,O2,MO1,O1′ ,MO2,O2′ ,O1,O1′,O2,O2′)

1 MO1′,O2′ ← CompAdapt(MO1,O2,MO1,O1′ ,MO2,O2′);

2 AddO1 ← O1′\O1;

3 AddO2 ← O2′\O2;

4 MO1′,O2′ ← MO1′,O2′
⋃

match(AddO1,O2′)
⋃

match(O1′,AddO2);

5 return MO1′,O2′ ;

After adapting the mapping using composition (line 1) we identify the added
concepts (AddO1,AddO2) in both ontologies (lines 2–3). We match the added
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concepts with the other ontology to find new correspondences (line 4) and include
them in the adapted mapping. We can simplify the algorithm when exclusively
one of the ontologies has changed by merely matching added concepts of the
changed ontology with the unchanged ontology. In the running example, we
would determine ’trunk’ as an added concept in O2′ and matching would result in
the additional correct correspondence (’trunk’,’trunk’) in the adapted mapping.

5 Diff-based Adaptation

The Diff-based adaptation of ontology mappings considers the individual on-
tology changes, and so-called change handlers to adapt the ontology mapping.
This modular approach is highly flexible and can accommodate different types
of changes as well as distinct automatic or interactive approaches for mapping
adaptation. For example, a concept deletion would lead to the deletion of all
affected correspondences with the composition-based approach, while a change
handler could try to keep a correspondence with a neighbor of the deleted con-
cept. Furthermore, change handlers might request expert verification for pro-
posed mapping changes.

We first explain Diff-based mapping adaptation for the frequent case when
only one of two ontologies changes (Sec. 5.1). We then explain the different
change handlers and their approaches for mapping adaptation (Sec. 5.2). Fi-
nally, we discuss Diff-based adaptation for the general case with two evolving
ontologies (Sec. 5.3). Although the proposed approach is applicable for different
diff techniques to determine ontology changes, we assume the use of our algo-
rithm COnto-Diff [27] for concreteness. COnto-Diff is suited to identify a diff
evolution mapping for two successive versions of an ontology containing typical
change operations such as merge, substitute, split, addC or delC (see Fig. 1b).

5.1 Adaptation Algorithm for One Evolving Ontology

The input data of the algorithm DiffAdapt (Algorithm 3) are the ontology map-
ping to be adapted (MO1,O2), the two versions of the domain ontology O1, O1′,
a diff between them (diffO1,O1′) as well as the current version of the range on-
tology O2. We assume that the change handlers are listed in the order in which
they should be applied for mapping adaptation(CH). This ordering is feasible
since COnto-Diff ensures that a concept is the subject of at most one of the
considered change operations.

Algorithm 3: DiffAdapt(MO1,O2,diffO1,O1′ ,O1,O1′,O2,CH)

1 Minfl ← getInfluencedCorrs(MO1,O2, diffO1,O1′ , CH);

2 MO1′,O2 ←MO1,O2 \Minfl; //reuse unaffected mapping part

3 foreach ch ∈ CH do
4 diffPart← diff.filter (ch.getHandledOperations());

5 ch.handleChg(Minfl, diffPartO1,O1′ , O1, O1′, O2);

6 MO1′,O2 ←MO1′,O2 ∪Minfl;

7 return MO1′,O2;
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Fig. 3. Change handlers

We first identify all correspondences that are influenced by changes from the
input diff. Therefore, we check if the domain concept of each correspondence
was subject to a change operation listed in CH. All influenced correspondences
in Minfl are initially set to status to verify, since they might require user veri-
fication. By contrast, we reuse unaffected correspondences (status handled) by
adding them directly to the new mapping MO1′,O2 (line 2). For instance, in the
running example (Fig. 2), ’limbs’ and ’body’ remain unchanged in O2 so that we
keep the correspondences (’limbs’,’limbs’) and (’body’,’body’). The influenced
mapping part Minfl is then handled by the specified list of individual Change
Handlers (lines 3-5). The mapping Minfl is iteratively adapted, i.e., each change
handler removes outdated correspondences from and adds new correspondences
to Minfl. Depending on the used method in the change handler, the status of
new correspondences is either set to handled or to verify. Finally, we take the
union of the reused correspondences in MO1′,O2 and the adapted mapping part
Minfl and then return the resulting mapping (lines 6-7).

5.2 Change Handlers

We provide a handler for each type of ontology change to implement appropriate
approaches for mapping adaptation. These handlers can easily be adapted and
extended to adjust mapping adaptation, request users’ feedback in certain cases
or deal with new types of ontology changes. Fig. 3 illustrates main adaptation
choices for some major change operations namely merge, substitute, split and
delC. It shows how correspondences from MO1,O2 are adapted according to the
evolution from O1 to O1′. In the following, we present the change handlers
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in the order in which they are applied in the algorithm DiffAdapt: CHmerge,
CHsubstitute, CHsplit, CHdelC , CHtoObsolete, CHaddC and CHrevokeObsolete.

In the merge operation, two or more source concepts from O1 are merged
into one target concept in O1′. The merge handler migrates all correspondences
once associated with any of the O1 concepts to the target concept in O1′. Thus,
each correspondence from MO1,O2 associated with concepts to be merged are re-
moved and new correspondences to the target concept are added. In the running
example (Fig. 2) ’head’ and ’neck’ concepts are merged as ’head and neck’. All
correspondences once related to ’head’ or ’neck’ are assigned to the new concept
’head and neck’. Algorithm 4 details the sketched approach of the merge handler.
It checks for each correspondence corr (line 1) and merge operation merge (line
2) if the domain concept of corr is equal to one of the source concepts in merge
(lines 5-6). If so, the affected correspondence is adapted.

Algorithm 4: MergeHandler(M ,Merge,O1,O1′,O2)

1 foreach corr ∈M do
2 foreach merge ∈Merge do
3 S ← merge.getSourceIDs();
4 t← merge.getTargetID();
5 foreach s ∈ S do
6 if s = corr.getDomainID() then
7 newType← getNewType(corr.getType(),≤);
8 newStatus← getNewStatus(corr.getType(),≤);
9 newCorr ← createCorr(t, corr.getRangeID(),

10 corr.getSim(), newType, newStatus);
11 M.remove(corr).add(newCorr);

The merge handler supports an adaptation of the semantic type of added cor-
respondences. For example, for merge({a, b, c}, d) it usually holds that concepts
a, b, c are less general (≤) than d. Hence, we combine ≤ with the semantic type of
the old correspondence (=,≤,≥,≈) to derive the new semantic correspondence
type.

Such an adaptation of the semantic correspondence type is needed for differ-
ent types of changes and was also applied for mapping composition. To combine
semantic types of correspondences (operation getNewType) and to determine the
new correspondence status (operation getNewStatus) we currently use a set of
combination rules as shown in Fig. 4a. The basic idea is that the semantic type
with lower binding strength imposes the new semantic type. Following the defi-
nition of semantic relation in [28], = has a higher binding strength than ≤ and
≥ which in turn are stronger than ≈. ≤ and ≥ are of equal binding strength
such that the new semantic type of their combination can not be determined by
rules (gray fields). The status to verify is set to ≈ since a user necessarily needs
to check this correspondence and its semantic type. For all other combinations
as shown in Fig. 4a, the status of the correspondence is handled.

For the substitute(a, b) change operation, the applied strategy is similar to
the one used for merge. In this case, the concept a ∈ O1 is substituted by the
target concept b ∈ O1′. Since a is involved in a correspondence with z in O2, the
correspondence between a and z is removed and the new correspondence from b
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spondence status (getNewStatus). (b) Example of conflicting changes for two evolving
ontologies.

to z is added. We can assume a = b as semantic type for substitute, and combine
this with the old semantic type of the correspondence to derive the new one.

The adaptation of correspondences affected by split change operations is more
complex. For example, split(a, {b, c, d}) caused a single source concept a ∈ O1
to be split into several target concepts b,c,d ∈ O1′. In the mapping adaptation,
we first remove all correspondences associated with the split source concept a.
We consider two strategies for adding new correspondences. First, one can add
all possible combinations of correspondences between the split target concepts
b, c, d and the unmodified range concept z in O2 (”take all”). Second, we can
restrict the output result to the best correspondence(s), i.e., the one(s) with the
highest similarity based on a local match between b, c, d and z (”take best”).

Also for split, new adapted correspondences obtain an individual new se-
mantic type based on the rules in Fig. 4a and assuming that d ≥ a, b, c holds
for split. All correspondences get status to verify since these are only recom-
mendations and an expert needs to decide about their validity. In the running
example (Fig. 2) ’limb segment’ was split into ’lower limbs’ and ’upper limbs’.
Using the ”take all” strategy, we would present all four possible combinations
between ’lower extremities’, ’upper extremities’ and ’lower limbs’, ’upper limbs’
to the user. Using the ”take best” strategy, we can correctly identify the most ad-
equate correspondences ’lower limbs’ with ’lower extremities’, and ’upper limbs’
with ’upper extremities’.

For deletion of concepts (delC(a)) we also consider two strategies. First, all
correspondences referencing deleted concepts in O1′ are removed (see Fig. 3)
(strategy ”del corr”). This is the case for ’tail’ in the running example. Second,
correspondences can be transferred to their parent concept, if possible (”keep
corr”). Thus, correspondences related to the deleted concept a are removed, but
new ”more general” correspondences are created. In particular, the domain of
the new correspondence is the first super concept (asup) of a. In case of multiple
inheritance, the correspondence can be transferred to all parents. The status is
set to to verify since a user has to check the adapted correspondences. The new
semantic type is derived by following the ≤ parent relationship in O1 combined
with the semantic type of the old deleted correspondence. For toObsolete changes
we apply the same handler.

For all concept additions and revokeObsolete operations in O1′ we apply an
automatic matching step with the whole range ontology O2. The status of the
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new recommended correspondences is set to to verify. One can either apply a
very restrictive selection of correspondences to show only the best matches to
experts, and avoid many false positives, or to be less restrictive in order to get
a perfect recall and let the selection up to the user. In the running example,
diffO2,O2′ contains an addition of the concept ’trunk’ which is matched to O1
such that (’trunk’,’trunk’) is correctly identified by selecting only the top result.

5.3 Adaptation Algorithm for Two Evolving Ontologies

In case where both ontologies change (domain and range of the correspondences),
we can adapt the mapping by applying the DiffAdapt (Algorithm 3) twice as
follows:

Algorithm 5: DiffAdaptBoth(MO1,O2,diffO1,O1′ ,diffO2,O2′ ,O1,O1′,O2,O2′,CH)

1 MO1′,O2 ← DiffAdapt(MO1,O2, diffO1,O1′ , O1, O1′, O2, CH);

2 MO2,O1′ ← inverse(MO1′,O2);

3 MO2′,O1′ ← DiffAdapt(MO2,O1′ , diffO2,O2′ , O2, O2′, O1′, CH);

4 return inverse(MO2′,O1′);

The input of algorithm DiffAdaptBoth (Algorithm 5) is similar as for Diff-
Adapt but requires two versions for both input ontologies O1, O1′, O2, O2′,
as well as two diff mappings diffO1,O1′/diffO2,O2′ . First, we adapt the given
ontology mapping with respect to changes in the domain ontology to get MO1′,O2.
To adapt the mapping regarding changes in the range ontology we call DiffAdapt
with the inverse mapping MO2,O1′ and the range diff diffO2,O2′ (line 3). Finally,
we invert the mapping again and return it (line 4).

When both ontologies change, some correspondences might be affected by
changes of the domain and range concept at the same time. For instance, if both
concepts of a correspondence are split into several concepts, we can produce
wrong results by independently handling these changes one after the other. A
possible problem scenario is shown in Fig. 4b. Applying the ”take all” strategy
twice would create too many correspondences, namely the local cross-product.
By contrast, ”take best” might lead to a wrong selection of (’lower extremi-
ties’,’limbs’) in the first step, such that we can only find (’lower extremities’,’lower
limbs’) after the adaptation concerning the range ontology. To deal with such
situations when both ontologies have evolved, we propose to handle these con-
flicting changes together in an extra step. We can first identify correspondences
involved in conflicts and modify the input mapping before we run DiffAdaptBoth.
In particular, we recommend to check conflicting change combinations as split-
split, merge-split and substitute-split where it is helpful to do the migration on
both sides in one step.

6 Evaluation

To evaluate the proposed approaches for mapping adaptation, we use three large
life science ontologies: SNOMED-CT (SCT), NCI Thesaurus (NCI) and FMA.
We use the integrated ontology UMLS to extract two mappings NCI-FMA and
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Fig. 5. (a) Ontology changes (b) Ontology size (c) Mapping size (d) Mapping changes.

SCT-NCI in two versions for 2009 and 2012 (see [29] for extraction details).
We adapt the mapping versions from 2009 with the proposed algorithms, and
use the 2012 versions as reference mappings for evaluating the quality of the
mappings adapted. It is important to notice that such reference mappings can
be considered as a ’silver standard’, i.e., these mappings are not complete, and
curators manually correct them by modifying also correspondences associated
with concepts that did not underlie changes. In this evaluation we eliminate such
correspondences from the mappings since they do not change due to ontology
modifications and can thus not be detected. To assess the quality of the adapted
mappings with respect to the 2012 reference mappings, we calculate the standard
metrics of Precision, Recall and F-Measure.

In the following we first analyze the used data sets (Sec. 6.1) and then eval-
uate the quality of the proposed mapping adaptation approaches (Sec. 6.2).

6.1 Ontology and Mapping Analysis

Fig. 5 gives an overview of changes in the considered ontology versions (a) and
mapping versions (d) as well as of their sizes (b,c). From 2009 to 2012, FMA
remains completely stable while NCI and SCT have been revised considerably.
Besides some merge operations (22 for NCI) there was a notable number of ∼180
(240) concept splits for NCI (SCT). In SCT an enormous amount of >22.000
concepts has been set to obsolete while NCI has been extended by ∼20.000 con-
cepts during 2009 and 2012. The 2009 mapping version of NCI-FMA is relatively
small (∼2300) compared to SCT-NCI (∼20400) (Fig. 5c). During the considered
time interval of three years, the NCI-FMA mapping grew by ∼5% and SCT-NCI
by even 14%. The SCT-NCI mapping has been affected by more changes, namely
8% of the correspondences have been deleted from the old and 19% were added
to the new mapping version. Thus, NCI-FMA has a higher rate of unchanged
correspondences and might be easier to adapt than SCT-NCI.

6.2 Mapping Adaptation Results

Fig. 6 shows the quality of the mapping adaptation results for NCI-FMA (left)
and SCT-NCI (right). To have a basic reference for analyzing how much each
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Fig. 6. Results on the Quality of Mapping Adaptation.

adaptation approach contributes, we mark the impact of unaffected (stable) cor-
respondences in the adapted mapping (Unaff ). The dotted and dashed lines high-
light the recall (Recunaff ) and F-Measure (F -Measunaff ) of Unaff. We compare
results with the composition-based adaptation (CA) and its match extension
(CA+m). Moreover, we apply the diff-based adaptation (DA) using the major
handlers CHmerge, CHsubstitute, CHsplit (”take best”), CHdelC and CHtoObsolete

(”del corr”), and as an extension (DA+C) the CHaddC and CHrevokeObsolete han-
dlers. Note that our approach is flexible and can be easily extended to handle
also attribute and structural changes. In the evaluation scenario, this showed to
have a negative impact on the quality of adapted mappings, such that we omit
it in this study. We consider this an issue for future investigations.

For both cases analyzed, the basic quality of Unaff is already very high, since
94% (80%) of the NCI-FMA (SCT-NCI) mappings were unaffected and could
be reused. For the adaptation of the relatively stable NCI-FMA mapping all
considered approaches perform similarly well and achieve a very high F-Measure.
SCT-NCI is a more challenging mapping adaptation scenario and helps to better
differentiate the relative effectiveness of the proposed approaches. Compared to
Unaff, CA is less precise and increases the recall only marginally. This is caused
by the fact that the applied compose approach takes all possible combinations
of existing correspondences, and no further selection takes place. An additional
match of new concepts (CA+m) significantly increases the recall by 18.6% for
SCT-NCI and slightly improve F-Measure compared to Unaff (despite a reduced
precision for automatically generated match correspondences).

For SCT-NCI, the diff-based approaches clearly outperform the composition-
based approaches. They not only reuse unaffected correspondences but can fur-
ther improve recall with relatively high precision due to the individual change
handling. DA+C performs best overall since it utilizes additional change han-
dlers. In particular, it can find additional match correspondences for added con-
cepts leading to a significant increase in recall and F-Measure. While this is
similar to the high recall of CA+m, the precision and thus F-Measure remains
higher for DA+C (∼94% instead of ∼90%). The recall could even be further
increased by using a lower match threshold than the applied 1.0, and let experts
select the correct correspondences out of the recommended matches in DA+C.
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Based on these results, we recommend that ontology mappings might be
adapted in a semi-automatic manner as follows: (1) first, determine a consistent
adapted mapping using the DA approach; (2) apply further strategies such as
DA+C that provide recommendations of new correspondences; (3) apply expert
knowledge based on the adaptation results to complete the mapping and validate
those correspondences with to verify status.

7 Conclusion

Ontology evolution can potentially invalidate previously created mappings. We
proposed a composition- and a diff-based approach for adapting ontology map-
pings as a consequence of ontology evolution. Both approaches can reuse un-
affected correspondences from existing mappings and adapt only the changed
parts in a (semi-)automatic way. The composition-based approach is conceptu-
ally simpler but can be already sufficient for ontologies that change only slightly.
The diff-based approach is more powerful by supporting different change-specific
approaches for mapping adaptation and by enabling experts to verify proposed
correspondences. The conducted evaluation for large life science ontologies con-
firmed the high effectiveness of the proposed approaches. Both of them benefit
from matching new concepts to produce a more complete mapping.

For future work, we plan to realize a more refined adaptation of semantic
mappings. The techniques presented already support the migration of semantic
mappings, but this has to be investigated in more detail and evaluated for real-
world semantic mappings. Additionally, in further evaluation expert users should
analyze the quality of mappings for the different adaptation strategies.
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