
Holistic Schema Matching for Web Query Interface

Weifeng Su1, Jiying Wang2, and Frederick Lochovsky1

1 Hong Kong University of Science & Technology, Hong Kong
{weifeng,fred }@cs.ust.hk

2 City University, Hong Kong
wangjy@cityu.edu.hk

Abstract. One significant part of today’s Web is Web databases, which can dy-
namically provide information in response to user queries. To help users submit
queries to and collect query results from different Web databases, the query inter-
face matching problem needs to be addressed. To solve this problem, we propose
a new complex schema matching approach, Holistic Schema Matching (HSM).
By examining the query interfaces of real Web databases, we observe that at-
tribute matchings can be discovered from attribute-occurrence patterns. For ex-
ample,First Name often appears together withLast Name while it is rarely
co-present withAuthor in the Books domain. Thus, we design a count-based
greedy algorithm to identify which attributes are more likely to be matched in
the query interfaces. In particular, HSM can identify bothsimple matchingand
complex matching, where the former refers to 1:1 matching between attributes
and the latter refers to 1:n or m:n matching between attributes. Our experiments
show that HSM can discover both simple and complex matchings accurately and
efficiently on real data sets.

1 INTRODUCTION

Today, more and more databases that dynamically generate Web pages in response to
user queries are available on the Web. These Web databases compose thedeep Web,
which is estimated to contain a much larger amount of high quality information and
to have a faster growth than the static Web [1, 3]. Moreover, data in the deep Web are
usually structured, which make them much easier to query using database techniques
compared to the unstructured data in the static Web.

While each static Web page has a unique URL by which a user can access the page,
mostWeb databasesare only accessible through a query interface. Once a user submits a
query describing the information that he/she is interested in through the query interface,
the Web server will retrieve the corresponding results from the back-end database and
return them to the user.

To build a system/tool that helps users locate information in numerous Web databases,
the very first task is to understand the query interfaces and help dispatch user queries
to suitable fields of those interfaces. The main challenge of such a task is that different
databases may use different fields or terms to represent the same concept. For example,
to describe the genre of a CD in the MusicRecords domain,Category is used in some
databases whileStyle is used in other databases. In the Books domain,First Name and
Last Name are used in some databases whileAuthor is used in others to denote the
writer of a book.

2

In this paper, we specifically focus on the problem of matching across query inter-
faces of structured Web databases. The query interface matching problem is related to
a classic problem in the database literature,schema matching, if we define an entry or
field in a query interface as anattribute and all attributes in the query interface form
a schemaof the interface3. Schema matching maps semantically related attributes be-
tween pairs of schemas in the same domain. When matching the attributes, we call a 1:1
matching, such asCategory with Style, asimple matchingand a 1:n or m:n matching,
such asFirst Name, Last Name with Author, acomplex matching. In the latter case,
attributesFirst Name andLast Name form a concept group before they are matched
to attributeAuthor. We call attributes that are in the same concept groupgrouping at-
tributesand attributes that are semantically identical or similar to each othersynonym
attributes. For example, attributesFirst Name andLast Name are grouping attributes,
andFirst Name with Author or Last Name with Author are synonym attributes.

Discovering grouping attributes and synonym attributes in the query interfaces of
relevant Web databases is an indispensable step to dispatch user queries to various Web
databases and integrate their results. Considering that millions of databases are available
on the Web [3], computer-aided interface schema matching is definitely necessary to
avoid tedious and expensive human labor.

Although many solutions have been proposed to solve the schema matching prob-
lem, current solutions still suffer from the following limitations:

1. simple matching: most schema matching methods to date only focus on discovering
simple matchings between schemas [2, 6, 9, 16].

2. low accuracy on complex matching: although there are some methods that can iden-
tify complex matchings, their accuracy is practically unsatisfactory [5, 12].

3. time consuming: some methods employ machine-learning techniques that need a
lot of training time and some have time complexity exponential to the number of
attributes [8, 10].

4. domain knowledge required: some methods require domain knowledge, instance
data or user interactions before or during the matching process [2, 5, 8, 14, 16, 17].

In this paper, we propose a new interface schema matching approach,Holistic
SchemaMatching (HSM), to find matching attributes across a set of Web database
schemas of the same domain. HSM takes advantage of the term occurrence pattern
within a domain and can discover both simple and complex matchings efficiently with-
out any domain knowledge.

The rest of the paper is organized as follows. Section 2 reviews related work and
compares our approach to previous approaches. In section 3, we introduce our obser-
vations on Web database query interfaces and give an example that motivates our ap-
proach. Section 4, the main section of the paper, presents the holistic schema matching
approach HSM. Our experiments on two datasets and the results are reported in section
5. Section 6 concludes the paper and discusses several further open research issues.

2 RELATED WORK

Being an important step for data integration, schema matching has attracted much atten-
tion [2, 5–10, 12, 14, 16, 17]. However, most previous work either focuses on discover-

3 The terms “schema” and “interface” will be used in this paper interchangeably.

3

ing simple matchings only or has un-satisfactory performance on discovering complex
matchings. This is because complex matching discovery is fundamentally harder than
simple matching discovery. While the number of simple matching candidates between
two schemas is bounded by the product of the sizes of the two schemas, the number of
complex matching candidates is exponential with respect to the size of the two schemas.

As a result, the performance of some existing complex matching discovery algo-
rithms is not satisfactory. [5] tries to convert the problem of matching discovery into the
problem ofsearchingin the space of possible matches. [12] views the input schemas
as graphs and designs a matching algorithm based on a fixpoint computation using the
fact that two nodes are similar when their adjacent nodes are similar. Both approaches
can handle simple matchings well (average accuracy around 78% in [5] and 58% in
[12]), but their accuracy drops dramatically for complex matchings (around 55% in [5]
and negative accuracy in [12]). [17] out performs [5, 12] by utilizing different kinds of
information, such as linguistic similarity, type similarity and domain similarity between
attributes. However, it also needs user interaction during the matching process to tune
system parameters.

Different from most existing approaches, [2] and [16] are notable in that they focus
on exploiting instance-level information, such as instance-value overlapping, instead
of employing schema-level information, like attribute label/name or schema structures.
However, these two approaches can only handle simple matchings. In addition, data
instances are very hard to obtain in the Web database environment.

[14, 10] are similar approaches in that they manage to combine multiple algorithms
and reuse their matching results. [14] proposes several domain-independent combina-
tion methods, such asmaxandaverage, and [10] employs a weighted sum and adapts
machine learning techniques to learn the importance of each individual component for
a particular domain. Although the approach in [10] is able to learn domain-specific
knowledge and statistics, it requires a lot of human efforts to manually identify correct
matchings as training data.

In contrast to the above works, our approach is capable of discovering simple and
complex matchings at the same time without using any domain knowledge, data in-
stances or user involvement. The HSM approach proposed in this paper can be con-
sidered as a singlematcherthat only focuses on exploiting domain-specific attribute
occurrence statistics. HSM is specifically designed, and is thus more suitable, for the
hidden Web environment where there are a large number of online interfaces to match
whose attributes are usually informative in order to be understood by ordinary users.
Compared with the above works, HSM is not suitable for a traditional database envi-
ronment, where there are often only two schemas involved in the matching process and
the attribute names could be very non-informative, such asattr1 andattr2, depending
on the database designers.

Our HSM approach is very close to DCM developed in [7], which discovers com-
plex matchings holistically using data mining techniques. In fact, HSM and DCM are
based on similar observations that frequent attribute co-presence indicates a synonym
relationship and rare attribute co-presence indicates a grouping relationship. However,
HSM has two major differences (advantages) compared to DCM:

1. measurement: DCM defines a H-measure,H = f01f10
f+1f1+

, to measure the negative
correlation between two attributes by which synonym attributes are discovered.
Such a measure may give a high score for rare attributes, while HSM’s matching

4

score measure does not have this problem. Suppose there are 50 input schemas,
where 25 schemas are{A1, A3}, 24 schemas are{A1, A4} and the remaining one
is {A1, A2, A4}. In these schemas,A3 andA4 are actual synonym attributes ap-
pearing a similar number of times andA2 is a rare and “noisy” attribute that only
appears once. According to the negative measure of DCM, the matching score
H23 = 1×25

1×25 = 1, and the matching scoreH34 = 25×25
25×25 , also 1. In contrast, HSM

measures the matching scores asX23 = 0.96 andX34 = 12.5 (see section 4.1). In
this extreme case, DCM cannot differentiate frequent attributes from rare attributes,
which affects its performance.

2. matching discovery algorithm: The time complexity of HSM’s matching discov-
ery algorithm is polynomial with respect to the number of attributes,n, while the
time complexity of DCM is exponential with respect ton. DCM tries to first iden-
tify all possible groups and then discover the matchings between them. To discover
grouping attributes, it calculates the positive correlation between all combinations
of groups, from size 2 to sizen (the worst case). In contrast, HSM only considers
the grouping score between every two attributes, and the complex matching is dis-
covered by adding each newly found group member into the corresponding group
incrementally. Consequently, HSM discovers the matchings much faster than DCM
does.

Our experimental results in section 5.2 show that HSM not only has a higher accuracy
than DCM, but is also much more efficient in real Web databases.

3 INTUITION: PARALLEL SCHEMAS

In this section, we first present our observations about interface schemas and interface
attributes of Web databases in a domain, on which the HSM approach is based. Then,
examples are given to motivate the intuition of HSM.

3.1 Observations

In Web databases, query interfaces are not designed arbitrarily. Web database designers
try to design the interfaces to be easily understandable and usable for querying impor-
tant attributes of the back-end databases. For Web databases in the same domain that
are about a specific kind of product or a specific topic, their query interfaces usually
share many characteristics:

1. Terms describing or labeling attributes are usually unambiguous in a domain al-
though they may have more than one meaning in an ordinary, comprehensive dic-
tionary. For example, the wordtitle has ten meanings as a noun and two meanings
as a verb in WordNet [13]. However it always stands for “the name of a book” when
it appears in query interfaces of the Books domain. In particular, because we are
dealing with query interfaces, an ambiguous term is usually accompanied by other
words to make it unambiguous.

2. According to [8], vocabulary of interfaces in the same domain tends to converge at
a relatively small size. It indicates that the same concepts in a domain are usually
described by the same set of terms.

5

3. Synonym attributes are rarely co-present in the same interface. For example,Au-
thor andLast Name never appeared together in any query interface that we inves-
tigate in the Books domain.

4. Grouping attributes are usually co-present in the same interface to form a “larger”
concept. For example, in the Airfares domain,From is usually paired withTo to
form a concept, which is the same as the concept formed by another frequently
co-present attribute pair,Departure city andArrival city. This phenomenon is rec-
ognized ascollocationin natural language [11] and is very common in daily life.

(a) AddAll.com

(b) hwg.org (c) Amazon.com (d) Randomhouse.com

Fig. 1. Examples of query interfaces.

3.2 Motivating Examples

We use the query interfaces shown in Figure 1 to illustrate the main idea of HSM. Let
us first consider the schemas in Figure 1(a) and 1(b). The two schemas are semantically
equal4, i.e., any single attribute or set of grouping attributes in one of them semantically
corresponds to a single attribute or set of grouping attributes in the other. If we com-
pare the two schemas by putting them in parallel and deleting the attributes that appear
in both of them (according to observation 1), we get the matching correspondence be-
tween the grouping attributes{First Name, Last Name} and the attributeAuthor.

Definition 1 Given two schemasS1 and S2, each of which are comprised of a set of
attributes, the two schemas form aparallel schemaQ, which comprises two attribute
sets{{S1 − S1

⋂
S2} and{S2 − S1

⋂
S2}}.

AddAll.com hwg.org
Author First Name

Last Name
(a)

Amazon.comRandomHouse.com
Author First Name
Subject Last Name

Publisher Keyword
Category

(b)
Table 1.Examples of parallel schemas.

Table 1(a) shows the parallel schema formed by the schemas in Figure 1(a) and
1(b). The complex matching{First Name, Last Name}={Author} is directly avail-
able from this parallel schema. However, in most cases, matching is not so easy because

4 We ignore the word “(Optional)” that appears in Figure 1(b) because it will be discarded during
query interface preprocessing [7].

6

two target schemas may not be semantically equal, such as the schemas in Figure 1(c)
and 1(d). After putting these two schemas in parallel and deleting common attributes,
the parallel schema in Table 1(b) is obtained. Unfortunately, correct matchings are not
directly available from this parallel schema.

To address this problem, we consider any two attributes cross-copresent in a parallel
schema to be potential synonym attributes. For exampleAuthor with First Name and
Author with Last Name in Table1(b) are potential synonym attributes. As a result, if
two attributes are potential synonym attributes appearing in many parallel schemas, we
may be statistically confident to find the synonym relationship between them (observa-
tion 3).

Furthermore, we also notice thatFirst Name andLast Name are always co-present
in the same query interface, which indicates that they are very likely to be grouping
attributes that form a concept group (observation 4). Suppose we also know thatAuthor
with First Name andAuthor with Last Name are synonym attributes. We can compose
an attribute group byFirst Name and Last Name, with both of the two members
matched toAuthor. That is,{First Name, Last Name}={Author} is discovered as a
complex matching.

4 HOLISTIC SCHEMA MATCHING ALGORITHM

We formalize the schema matching problem as the same problem described in [7]. The
input is a set of schemasS = {S1, . . . , Su}, in which each schemaSi (1 ≤ i ≤ u)
contains a set of attributes extracted from a query interface and the set of attributesA =
∪u

i=1Si = {A1, . . . , An} includes all attributes inS. We assume that these schemas
come from the same domain. The schema matching problem is to find all matchings
M = {M1, . . . ,Mv} including both simple and complex matchings. A matchingMj

(1 ≤ j ≤ v) is represented asGj1 = Gj2 = . . . = Gjw, whereGjk (1 ≤ k ≤ w) is a
group of attributes5 andGjk is a subset ofA, i.e.,Gjk ⊂ A. Each matchingMj should
represent the semantic synonym relationship between two attribute groupsGjk andGjl

(l 6= k), and each groupGjk should represent the grouping relationship between the
attributes within it. More specifically, we restrict each attribute to appear no more than
one time inM (observation 1 and 4).

A matching example is{First Name, Last Name} = {Author} in the Books do-
main, where attributesFirst Name andLast Name form an attribute group and at-
tributeAuthor forms another group and the two groups are semantically synonymous.
Besides this matching, suppose another matching{Author} = {Writer} is found. Ac-
cording to our restriction, we will not directly include the latter matching in the match-
ing setM. Instead, we may adjust the original matching to{First Name, Last Name}
= {Author} = {Writer} or {First Name, Last Name, Writer} = {Author}, depending
on whether the relationship found betweenWriter and{First Name, Last Name} is a
grouping or a synonym relationship.

The workflow of the schema matching algorithm is shown in Figure 2. Before the
schema matching discovery, two scores,matching scoreandgrouping score, are calcu-
lated between every two attributes. The matching score is used to evaluate the possibility
that two attributes are synonym attributes and the grouping score is used to evaluate the
possibility that two attributes are in the same group in a matching.

5 An attribute group can have just one attribute.

7

Fig. 2. Holistic Schema Matching Workflow.

The matching score is calculated in two steps. First,Synonym Attribute Candidate
Generationtakes all schemas as input and generates all candidates for synonym at-
tributes based on the observation that synonym attributes rarely co-occur in the same
interface schema. Then,Matching Score Calculationcalculates matching scores be-
tween the candidates based on their cross-copresence count (see section 4.1) in the
parallel schemas.

Grouping Score Calculationtakes all schemas as input and calculates the grouping
score between every two attributes based on the observation that grouping attributes
frequently co-occur in the same schema.

After calculating the grouping and matching score between every two attributes,
we use a greedy algorithm inSchema Matching Discoverythat iteratively chooses the
highest matching score to discover synonym matchings between pairs of attributes. At
the same time, the grouping score is used to decide whether two attributes that match to
the same set of other attributes belong to the same group. At the end, a matching list is
outputted, including both simple and complex matchings. The overall time complexity
of HSM isO(un2+n3) wheren is the number of attributes andu is the number of input
schemas. We will explain the time complexity of HSM in detail later in this section.

The rest of this section is organized according to the workflow shown in Figure
2. Subsection 4.1 presents how to calculate the matching score between every two at-
tributes. Subsection 4.2 shows how to calculate the grouping score between every two
attributes, and finally subsection 4.3 describes how the matchings can be identified us-
ing the grouping and matching scores. In these subsections, the schemas in Table 2 will
be used as examples of input schemas.

Table 2.Examples of input schemas.

S1 S2 S3 S4 S5
Title Title Title Title Title

First Name Author Author First Name Author
Last Name Subject CategoryLast NameCategory
Category Publisher Publisher
Publisher

4.1 Matching Score Calculation

As discussed above, in HSM the matching scores between two attributes are calculated
in two steps: Synonym attribute candidate generation and matching score calculation.

8

Synonym Attribute Candidate Generation A synonym attribute candidate is a pair of
attributes that are possibly synonyms. If there aren attributes in the input schemas, the
maximum number of synonym attribute candidates isC2

n = n(n−1)
2 . However, not ev-

ery two attributes fromA can be actual candidates for synonym attributes. For example
in the Books domain, attributesTitle andAuthor should not be considered as synonym
attribute candidates, whileAuthor andFirst Name should. Recall that, in section 3.1,
we observed that synonym attributes are rarely co-present in the same schema. In fact,
Author andFirst Name do seldom co-occur in the same interface, whileTitle andAu-
thor appear together very often. This observation can be used to reduce the number of
synonym attribute candidates dramatically.

Example 1 For the four input schemas in Table 2, if we make a strict restriction that
any two attributes co-present in the same schema cannot be candidates for synonym
attributes, the number of synonym attribute candidates becomes 5 (shown in Table 3),
instead of 21 when there is no restriction at all.

Table 3.Synonym attribute candidates.

1 First Name, Author
2 First Name, Subject
3 Last Name, Author
4 Last Name, Subject
5 Category, Subject

In HSM, we assume that two attributes (Ap, Aq) are synonym attribute candidates
if Ap and Aq are co-present in less thanTpq schemas. Intuitively,Tpq should be in
proportion to the normalized frequency ofAp andAq in the input schemas setS. Hence,
in our experiments, we set the co-presence threshold ofAp andAq as

Tpq =
α(Cp + Cq)

u
(1)

whereα is determined empirically,Cp andCq are the count of attributeAp andAq in S,
respectively, andu is the number of input schemas. In out experiments,α is empirically
set to be 3.6

Suppose there are 50 input schemas and two attributesA1 andA2 that occur 20 and
25 times, respectively, thenT12 = 2.7. This means thatA1 andA2 should be co-present
in no more than two schemas to be synonym attribute candidates.

We useL = {(Ap, Aq), p = 1..n, q = 1..n, p 6= q, Cpq < Tpq} to represent the set
of synonym attribute candidates, whereCpq is the count of the co-occurrences ofAp

andAq in the same schema.

Matching Score Calculation For any two attributesAp andAq, a matching scoreXpq

measures the possibility thatAp andAq are synonym attributes. The bigger the score,
the more likely that the two attributes are synonym attributes.

Definition 2 Given a parallel schemaQ, we callAp andAq to becross-copresentin
Q if Ap ∈ S1 − S1

⋂
S2 andAq ∈ S2 − S1

⋂
S2.

6 Experiments have best performance when theα ∈ [2, 4]. We select a middle value of [2,4]
here.

9

If we compare every two schemas, we can getDpq = (Cp − Cpq)(Cq − Cpq) parallel
schemas in whichAp andAq are cross-copresent. The biggerDpq is, i.e., the more
oftenAp andAq are cross-copresent in a parallel schema, the more likely thatAp and
Aq are synonym attributes. HoweverDpq itself is not able to distinguish the scenario as
in Example 2:

Example 2 Suppose there are 50 input schemas, where 15 schemas are{A1, A3}, 15
schemas are{A1, A4}, 15 schemas are{A1, A5} and the rest 5 are{A2}. Our intuition
is that the matchingA3 = A4 = A5 should be more preferred than matchingA1 = A2

because it is highly like thatA2 is a noise attribute and occur randomly.Dpq alone is not
able to correctly catch this case becauseD12 = D34 = D35 = D45 = 225. Meanwhile,
we also notice thatC1 + C2 = 50 andC3 + C4 = C3 + C5 = C4 + C5 = 30. Hence if
we divideDpq byCp + Cq, we can reduce the problem caused by noise attributes, such
asA2 above.

Hence, we formulate the matching score betweenAp andAq as:

Xpq =

{
0 if (Ap, Aq) /∈ L
(Cp−Cpq)(Cq−Cpq)

(Cp+Cq) otherwise,
(2)

Specifically designed for the schema matching problem, this matching score has the
following important properties:

1. null invariance[15]. For any two attributes, adding more schemas that do not con-
tain the attributes does not affect their matching score. That is, we are more inter-
ested in how frequently attributesAp andAq are cross co-present in the parallel
schemas than how frequently they are co-absent in the parallel schemas.

2. rareness differentiation. The matching score between rare attributes and the other
attributes is usually low. That is, we consider it is more likely that a rare attribute
is cross co-present with other attributes by accident. Example 2 shows the score’s
penalty over noise attributes.

Example 3 Matching scores between the attributes from the schemas in Table 2 are
shown in Table 4, given the synonym attribute candidates in Table 3.

Table 4.Matching scores.

Title First Last Cate- Publi- Au- Sub-
Name Name gory sher thor ject

Title 0 0 0 0 0 0
First Name 0 0 0 1.2 0.67
Last Name 0 0 1.2 0.67
Category 0 0 0.75
Publisher 0 0
Author 0
Subject

In this example, we can see that the matching scores between all the actual synonym
attributes are non-zero and high, such as the score betweenFirst Name andAuthor and
the score betweenCategory andSubject, which is desirable. The matching scores be-
tween some non-synonym attributes are zero, such as the score betweenTitle andCat-
egory and the score betweenPublisher andAuthor, which is also desirable. However,

10

the matching scores between some non-synonym attributes are also non-zero yet low,
such as the score betweenFirst Name andSubject, which is undesirable. To tackle this
problem, our matching discovery algorithm is designed to be greedy such that it always
considers the matchings with higher scores first when discovering synonym attributes
(see section 4.3).

We useX = {Xpq, p = 1..n, q = 1..n, p 6= q} to denote the set of matching scores
between any two different attributes.

The time complexity for matching score calculation isO(un2), as there areu schemas
to go through and it takes a maximum ofO(n2) time to get the co-occurrence count be-
tween any two attributes to generate the synonym candidates and calculate the matching
scores.

4.2 Grouping Score Calculation

As mentioned before, a grouping score between two attributes aims to evaluate the
possibility that the two attributes are grouping attributes. Recall observation 4 in section
3.1 that grouping attributes are usually co-present in the same interface schema to form
a “larger” concept. That is, attributesAp andAq are more liable to be grouping attributes
if Cpq is big. However usingCpq only is not sufficient in many cases. Suppose there
are 50 input schemas, where 8 schemas are{A1, A2}, 10 schemas are{A1, A3}, 10
schemas are{A3, A4}, and the rest are{A4}. In this example,C12 = 8 andC13 = 10.
Note thatA2 always appears together withA1 andA3 does not co-occur withA1 half
of the time, which indicates thatA1 andA2 are more possible to be a group thanA1 and
A3. Given cases like that, we consider two attributes to be grouping attributes if the less
frequent one is usually co-occur with the more frequent one. We propose the following
grouping score measure between two attributesAp andAq:

Ypq =
Cpq

min(Cp, Cq)
. (3)

We need to set a grouping score thresholdTg such that attributesAp andAq will
be considered as grouping attributes only whenYpq > Tg. Practically,Tg should be
close to 1 as the grouping attributes are expected to co-occur most of the time. In our
experiment,Tg is an empirical parameter and the experimental results show that it has
similar performance in a wide range (see section 5.2).

Example 4 Grouping scores between the attributes from the schemas in Table 2 are
shown in Table 5.

Table 5.Grouping scores between every two different attributes.

Title First Last Cate- Publi- Au- Sub-
Name Name gory sher thor ject

Title 1 1 1 1 1 1
First Name 1 0.5 0.5 0 0
Last Name 0.5 0.5 0 0
Category 0.67 0.67 0
Publisher 0.67 1
Author 1
Subject

11

In this example, we can see that the actual grouping attributesFirst Name andLast
Name have a large grouping score, which is desirable. However, it is not very ideal
that some non-grouping attributes also have large grouping scores, e.g.,Publisher and
Subject. This is not a problem in our matching discovery algorithm, which is designed
to be matching score centric and always consider the grouping scores together with the
matching scores when discovering grouping attributes (see section 4.3).

We useY = {Ypq, p = 1..n, q = 1..n, p 6= q} to denote the set of grouping scores
between any two different attributes. The time complexity of grouping score calculation
is O(un2) as there areu schemas to go through and it takes a maximum ofO(n2) time
to go through each schema to obtain the co-occurrence counts for any two attributes.

4.3 Schema Matching Discovery

Algorithm 1 Schema Matching Discovery
Input:
A = {Ai, i = 1...n}: the set of attributes from input schemas
X = {Xpq, p = 1 . . . n, q = 1 . . . n, p 6= q}: the set of matching scores between two attributes
Y = {Ypq, p = 1 . . . n, q = 1 . . . n, p 6= q}: the set of grouping scores between two attributes
Tg: the threshold of grouping score
Output:
M = {Mj , j = 1...v}: the set of complex matchings where each matchingMj is represented as
Gj1 = . . . = Gjw, andGjk, k = 1...w stands for a group of grouping attributes inA
1: begin
2: M← ∅
3: while X 6= ∅ do
4: choose the highest matching scoreXpq in X
5: if Xpq = 0 then break;
6: end if
7: if neitherAp norAq appears inM then
8: M←M+ {{Ap} = {Aq}}
9: else ifonly one ofAp andAq appears inM then

10: /*SupposeAp appears inMj andAq does not appear inM*/
11: if For each attributeAi in Mj , Xqi > 0 then
12: Mj ← Mj + (= {Aq})
13: else if there exists a matching groupGjk in Mj such that for any attributeAl in

Gjk,Yql > Tg, and for any attributeAm in other groupsGjx, x 6= k, Xqm > 0
then

14: Gjk ← Gjk + {Aq}
15: end if
16: end if
17: X ← X −Xpq

18: end while
19: returnM
20: end

With the matching score and grouping score between any two attributes, we propose
an iterative matching discovery algorithm, as shown in Algorithm 1. In each iteration,

12

a greedy selection strategy is used to choose the synonym attribute candidates with the
highest matching score (Line 4) until there is no synonym attribute candidate available
(Line 5). SupposeXpq is the highest matching score in the current iteration. We will
insert its corresponding attributesAp andAq into the matching setM depending on
how they appear inM:

1. If neitherAp norAq has appeared inM (Line 7 - 8),{Ap} = {Aq}will be inserted
as a new matching intoM.

2. If only one ofAp andAq has appeared inM (Line 9 - 16), suppose it isAp that
has appeared inMj (thej-th matching ofM), thenAq will be added intoMj too
if:

– Aq has non-zero matching scores between all existing attributes inMj . In this
case,{Aq} is added as a new matching group intoMj (Line 11 - 12).

– there exists a groupGjk in Mj where the grouping score betweenAq and any
attribute inGjk is larger than the given thresholdTg, andAq has non-zero
matching score between any attribute in the rest of the groups ofMj . In this
case,{Aq} is added as a member into the groupGjk in Mj (Line 13 - 15).

– If both Ap andAq have appeared inM, Xpq will be ignored because each
attribute is not allowed to appear more than one time inM. The reason for this
constraint is that ifAp andAq have been added intoM already, they must have
had higher matching scores in a previous iteration.

Finally, we deleteXpq fromX (Line 17) at the end of each iteration.
One thing that is not mentioned in the algorithm is how to select the matching score

if there is more than one highest score inX . Our approach is to select a scoreXpq where
one ofAp andAq has appeared inM but not both. This way of selection makes full use
of previously discovered matchings that have higher scores. If there is still more than
one score that fits the condition, the selection will be random7.

Example 4 illustrates the matching discovery iterations using the attributes from the
schemas in Table 2.

Example 5 Before the iteration starts, there is no matching among attributes (Figure
3(a)). In the first iteration,First Name with Author andLast Name with Author have
the highest matching score from Table 4. As the matching set is empty now, we ran-
domly select one of the above two pairs, say,First Name with Author. Hence,{First
Name}={Author} is added toM (Figure 3(b)) and the matching score betweenFirst
Name and Author is deleted fromX . In the second iteration,Last Name with Au-
thor has the highest matching score. BecauseAuthor has already appeared inM,
Last Name can only be added into the matching in whichAuthor appears, i.e.,{First
Name}={Author}. Suppose the grouping thresholdTg is set to 0.9. We then letLast
Name form a group withFirst Name as their grouping score is above the thresh-
old (Table 5). Hence, the matching{First Name}={Author} is modified to be{First
Name, Last Name}={Author} in M (Figure 3(c)). After the group is formed, the
matching score ofLast Name with Author is deleted fromX . In the third iteration,
Category and Subject have the highest matching score. Accordingly, the matching
{Category}={Subject} is added toM (Figure 3(d)) and the matching score between
them is deleted fromX . In the fourth and fifth iterations, no more attributes are added

7 Actually tie occurs very seldom in our experiments.

13

toM because all attributes associated with the current highest matching score, such as
First Name with Subject, have already appeared inM, i.e., they have been matched
already. After that, no matching candidates are available and the iteration stops with
the final matching results shown in Figure 3(d).

(a) (b) (c) (d)

Fig. 3. Matching discovery iterations.

The greediness of this matching discovery algorithm has the benefit of filtering bad
matchings in favor of good ones. For instance, in the above example, even though the
matching score betweenFirst Name andSubject is non-zero, the algorithm will not
wrongly match these two attributes because their matching score is lower than the score
betweenFirst Name andAuthor, and also lower than the score betweenCategory and
Subject.

Another interesting and beneficial characteristic of this algorithm is that it is match-
ing score centric, i.e., the matching score plays a much more important role than the
grouping score. In fact, the grouping score is never considered alone without the match-
ing score. For instance in the above example, even though the grouping score between
Publisher andSubject is 1, they are not considered by the algorithm as grouping at-
tributes. Recall that a matching{Category}={Subject} is found in the early iterations.
In order forPublisher to form a group withSubject, it must have a non-zero matching
score withSubject’s matching opponent, i.e.,Category. Obviously, this condition is
not satisfied in the example. Similarly, althoughTitle has high grouping scores with all
the other attributes, it forms no groups as its matching score with all the other attributes
is zero.

The time complexity of the matching discovery algorithm isO(n3) because a max-
imum of n2 (i.e., the number of scores inX) iterations are needed, and within each
iteration a maximum ofn comparisons (i.e., the number of attributes inM) are needed.

To conclude, the overall time complexity of HSM isO(un2 + n3) since the time
complexity of its three steps, matching score calculation, grouping score calculation
and schema matching discovery areO(un2), O(un2) andO(n3), respectively.

5 EXPERIMENTS

We choose two datasets, TEL-8 and BAMM, from the UIUC Web integration reposi-
tory [4], as the testsets for our HSM matching approach. The TEL-8 dataset contains
query interface schemas extracted from 447 deep Web sources of eight representative
domains: Airfares, Hotels, Car Rentals, Books, Movies, Music Records, Jobs and Auto-
mobiles. Each domain contains about 20-70 schemas and each schema contains 3.6-7.2

14

attributes on average depending on the domain. The BAMM dataset contains query
interface schemas extracted from four domains: Automobiles, Books, Movies and Mu-
sic Records. Each domain has about 50 schemas and each schema contains 3.6-4.7
attributes on average depending on the domain.

In TEL-8 and BAMM, Web databases’ query interfaces are manually extracted
and their attribute names are preprocessed to remove some irrelevant information, e.g.,
“search for book titles” is cleaned and simplified to “title”. In addition, the data type of
each attribute is also recognized in TEL-8 which can be string, integer or datetime. For
details of the preprocessing and type recognition, interested readers can refer to [4].

5.1 Metrics

We evaluate the set of matchings automatically discovered by HSM, denoted byMh, by
comparing it with the set of matchings manually collected by a domain expert, denoted
byMc.

To facilitate comparison, we adopt the metric in [7],target accuracy, which eval-
uates how similarMh is to Mc. Given a matching setM and an attributeAp, a
Closenym setCls(Ap|M) is used to refer to all synonym attributes ofAp in M.

Example 6 For a matching set{{A1, A2}={A3}={A4}}, the closenym set ofA1 is
{A3, A4}, the closenym set ofA2 is also{A3, A4}, the closenym set ofA3 is {A1,
A2, A4} and the closenym set ofA4 is {A1, A2, A3}. If two attributes have the same
closesym set, they are grouping attributes, such asA1 with A2. If two attribute have
each other in their closenym sets, they are synonym attributes, such asA1 with A3 and
A3 with A4.

The target accuracy metric includestarget precisionandtarget recall. For each at-
tributeAp, the target precision and target recall of its closesym set inMh with respect
toMc are:

PAp(Mh,Mc) =
|Cls(Ap|Mc) ∩ Cls(Ap|Mh)|

|Cls(Ap|Mh)| ,

RAp(Mh,Mc) =
|Cls(Ap|Mc) ∩ Cls(Ap|Mh)|

|Cls(Ap|Mc)| .

According to [7], thetarget precisionand target recallof Mh (the matching set
discovered by a matching approach) with respect toMc (the correct matching set) are
the weighted average of all the attributes’ target precision and target recall (See equ. (4)
and (5)). The weight of an attributeAp is set as Cp∑

k
Ck

in which Cp denotes the count

of Ap in S. The reason for calculating the weight in this way is that a frequently used
attribute is more likely to be used in a query submitted by a user.

PT (Mh,Mc) =
∑

Ap

Cp∑
k Ck

PAp(Mh,Mc), (4)

RT (Mh,Mc) =
∑

Ap

Cp∑
k Ck

RAp(Mh,Mc). (5)

15

5.2 Experimental Results

Similar to [7], in our experiment we only consider attributes that occur more than an
occurrence-percentage thresholdTc in the input schema setS, whereTc is the ratio of
the count of an attribute to the total number of input schemas. This is because occur-
rence patterns of the attributes may not be observable with only a few occurrences. In
order to illustrate the influence of such a threshold on the performance of HSM, we run
experiments withTc set at 20%, 10% and 5%, and show the results below.

Result on the TEL-8 dataset:Table 6 shows the matchings discovered by HSM in the
Airfares and CarRentals domains, whenTc is set at 10%. In this table, the third column
indicates whether the matching is correct:Y means fully correct,P means partially
correct andN means incorrect. We see that HSM can identify very complex match-
ings among attributes. We note thatdestination in Airfares (the fourth row in Table 6)
should not form a group by itself to be synonymous to other groups. The reason is that
destination co-occurs with different attributes in different schemas, such asdepart,
origin, leave from to form the same concept, and those attributes are removed because
their occurrence-percentages are lower than 10%.

Table 6.Discovered matchings for Airfares and CarRentals whenTc = 10%.

Domain Discovered Matching Correct?
Airfares {departure date (datetime), return date (datetime)} = {depart (datetime), return (datetime)} Y

{adult (integer), children (integer), infant (integer), senior (integer)} ={passenger (integer)} Y
{destination (string)} = {from (string), to (string)} ={arrival city (string), departure city (string)} P

{cabin (string)} = {class (string)} Y
CarRentals{drop off city (string), pick up city (string)} ={drop off location (string), pick up location (string)} Y

{drop off (datetime), pick up (datetime)={ pick up date (datetime), Y
drop off date (datetime), pick up time (datetime), drop off time (datetime)}

Table 7.Target accuracy for TEL-8.

Domain Tc = 20% Tc = 10% Tc = 5%
PT RT PT RT PT RT

Airfares 1 1 1 .94 .90 .86
Automobiles 1 1 1 1 .76 .88

Books 1 1 1 1 .67 1
CarRentals 1 1 .89 .91 .64 .78

Hotels 1 1 .72 1 .60 .88
Jobs 1 1 1 1 .70 .72

Movies 1 1 1 1 .72 1
MusicRecords 1 1 .74 1 .62 .88

Average 1 1 .92 .98 .70 .88

(a) HSM withTg = 0.9

Domain Tc = 20% Tc = 10% Tc = 5%
PT RT PT RT PT RT

Airfares 1 1 1 .71 .56 .51
Automobiles 1 1 .93 1 .67 .78

Books 1 1 1 1 .45 .77
CarRentals .72 1 .72 .60 .46 .53

Hotels .86 1 .86 .87 .38 .34
Jobs 1 .86 .78 .87 .36 .46

Movies 1 1 1 1 .48 .65
MusicRecords 1 1 .76 1 .48 .56

Average .95 .98 .88 .88 .48 .58

(b) DCM

Table 7(a) presents the performance of HSM on TEL-8 when the grouping score
thresholdTg is set to 0.9. As expected, the performance of HSM decreases when we
loose the occurrence-percentage thresholdTc (from 20% to 5%), meaning that more
rare attributes are taken into consideration. The phenomenon is because the occurrence
pattern of the rare attributes is not obvious with only a few occurrences. Nevertheless,
we can see that the performance of HSM is almost always better than the performance of
DCM, which was implemented with the optimal parameters reported in [7], especially
for a small occurrence percentage threshold such as 5%, as shown in Table 7(b).

16

We note that the target recall is always higher than the target precision because we
do not remove the less likely matchings, which are discovered in later iterations with
small matching scores. These less likely matchings will affect the target precision, while
they are likely to improve the target recall. One reason that we do not set a threshold to
filter lower score matchings is that the threshold is domain dependent. We also consider
that it is much easier for a user to check whether a matching is correct than to discover
a matching by himself/herself.

Table 8.Target accuracy for BAMM-8

Domain Tc = 20% Tc = 10% Tc = 5%
PT RT PT RT PT RT

Automobiles 1 1 .56 1 .75 1
Books 1 1 .86 1 .82 1
Movies 1 1 1 1 .90 .86

MusicRecords 1 1 .81 1 .72 1

Average 1 1 .81 1 .80 .97

(a) HSM withTg = 0.9

Domain Tc = 20% Tc = 10% Tc = 5%
PT RT PT RT PT RT

Automobiles 1 1 .56 1 .45 1
Books 1 1 .63 1 .47 .78
Movies 1 1 1 1 .45 .53

MusicRecords 1 1 .52 1 .36 .55

Average 1 1 .81 1 .43.3 .72

(b) DCM

Result on the BAMM dataset:The performance of HSM on BAMM is shown in Table
8(a), when the grouping score thresholdTg is set to 0.9 and the target accuracy of DCM
on BAMM is listed in Table 8(b). Again, HSM always outperforms DCM.

We note that the target precision in the Automobiles domain is low whenTc = 10%.
Again, the reason is that we do not remove the matchings with low matching scores,
which are less likely to be correct matchings. We also note an exception that, in the
Automobiles domain, the precision whenTc = 5% is much better than the precision
whenTc = 10%. This is because there are some incorrect matchings identified when
Tc = 10%, while most newly discovered matchings whenTc = 5% are correct.

Table 9.Target accuracy of HSM on TEL-8 dataset with different grouping score thresholds when
Tc = 10%.

Domain Tg = .7 Tg = .8 Tg = .9 Tg = .95
PT RT PT RT PT RT PT RT

Airfares 1 .94 1 .94 1 .94 1 .94
Automobiles 1 1 1 1 1 1 1 1

Books 1 1 1 1 1 1 1 1
CarRentals .69 .71 .75 .81 .89 .91 .86 .88

Hotels .72 1 .72 1 .72 1 .72 1
Jobs 1 1 1 1 1 1 1 1

Movies 1 1 1 1 1 1 1 1
MusicRecords.74 1 .74 1 .74 1 .74 1

Average .89 .96 .90 .97 .92 .98 .92 .98

Table 10.Target accuracy of HSM on BAMM dataset with different grouping score thresholds
whenTc = 10%.

Domain Tg = .7 Tg = .8 Tg = .9 Tg = .95
PT RT PT RT PT RT PT RT

Automobiles .55 1 .55 1 .55 1 .55 1
Books .86 1 .86 1 .86 1 .92 1
Movies 1 1 1 1 1 1 1 1

MusicRecords 1 1 1 1 1 1 1 1

Average .85 1 .85 1 .85 1 .87 1

17

Influence of grouping score threshold:The performance of HSM with differentTg on
TEL-8 is shown in Table 9. We can see thatTg actually does not affect the performance
of HSM much in a wide range. The target accuracy of HSM is stable with different
Tg, except for the target accuracy in domain CarRentals. A similar phenomenon can be
observed when we run experiments on BAMM using differentTg, as shown in Table
10. The explanation is as follows:

1. We use a greedy algorithm to always consider high matching scores first and the
grouping score plays a minor role in the algorithm. Therefore, the change of group-
ing score threshold does not make much difference.

2. As we observed, an attribute usually co-occurs with the same set of attributes to
form a larger concept. Hence, most grouping attributes have a grouping score equal
to 1. This makes the grouping attribute discovery robust to the change ofTg. The
reason why the target accuracy in domain CarRentals changes withTg is that some
attributes in this domain co-occur with different sets of attributes to form the same
concept, which makes their grouping scores less than 1 and thus the accuracy is
affected by the threshold.

Actual Execution Time: As we have pointed out, HSM discovers matchings in time
polynomial to the number of attributes while DCM discovers matchings in time expo-
nential to the number of attributes. In our experiments, both HSM and DCM are imple-
mented in C++ and were run on a PC with an Intel 3.0G CPU and 1G RAM. Table 11
shows the actual execution time accumulated on TEL-8 and BAMM with differentTc. It
can be seen that HSM is always order of magnitude faster than DCM. The time needed
by DCM grows faster whenTc is smaller, i.e., when more attributes are considered for
matching. It should be noted that DCM takes more than three hours to generate all the
matchings when the occurrence-percentage thresholdTc = 5%.

Table 11.Actual execution time in seconds.

Dataset BAMM TEL− 8
20% 10% 5% 20% 10% 5%

DCM 0.861 5.171 12.749 2.332 15.813 12624.5
HSM 0.063 0.202 0.297 0.207 0.781 2.313

speedup ratio13.7 25.6 42.9 11.3 20.2 5458

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present a holistic schema matching approach, HSM, to holistically
discover attribute matchings across Web query interfaces. The approach employs sev-
eral steps, including matching score calculation that measures the possibility of two
attributes being synonym attributes, grouping score calculation that evaluates whether
two attributes are grouping attributes, and finally a matching discovery algorithm that
is greedy and matching score centric. HSM is purely based on the occurrence patterns
of attributes and requires neither domain-knowledge nor user interaction. Experimental
results show that HSM discovers both simple and complex matchings with very high
accuracy in time polynomial to the number of attributes and the number of schemas.

However, we also notice that HSM suffers from some limitations that will be the
focus of our future work. In Airfares domain in Table 6, although the matching{from,

18

to}={arrival city, departure city} has been correctly discovered, HSM is not able to
identify the finer matchings{from}={arrival city} and{to}={departure city}. To ad-
dress this problem, we can consider to employ some auxiliary semantic information
(i.e., an ontology) to identify the finer matchings.

We also plan to focus on matching the rare attributes for which HSM’s performance
is not stable. One promising direction may be to exploit other type of information, such
as attribute types, linguistic similarity between attribute names, instance overlapping,
and/or schema structures.
Acknowledgment: This research was supported by the Research Grants Council of
Hong Kong under grant HKUST6172/04E.

References

1. M. K. Bergman. The deep Web: Surfacing hidden value.
http://www.brightplanet.com/technology/deepweb.asp, Dec. 2000.

2. A. Bilke and F. Naumann. Schema matching using duplicates. In21st Int. Conf. on Data
Engineering, pages 69 – 80, 2005.

3. K. C.-C. Chang, B. He, C. Li, and Z. Zhang. Structured databases on the Web: Observations
and implications. Technical Report UIUCDCS-R-2003-2321, CS Department, University of
Illinois at Urbana-Champaign, February 2003.

4. K. C.-C. Chang, B. He, C. Li, and Z. Zhang. The UIUC Web integration repos-
itory. Computer Science Department, University of Illinois at Urbana-Champaign.
http://metaquerier.cs.uiuc.edu/repository, 2003.

5. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. imap: Discovering complex
semantic matches between database schemas. InACM SIGMOD Conference, pages 383 –
394, 2004.

6. A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data sources: A
machine-learning approach. InACM SIGMOD Conference, pages 509 – 520, 2001.

7. B. He and K. C.-C. Chang. Discovering complex matchings across Web query interfaces: A
correlation mining approach. InACM SIGKDD Conference, pages 147 – 158, 2004.

8. B. He, K. C.-C. Chang, and J. Han. Statistical schema matching across Web query interfaces.
In ACM SIGMOD Conference, pages 217 – 228, 2003.

9. W. Li, C. Clifton, and S. Liu. Database Integration using Neural Network: Implementation
and Experience. InKnowledge and Information Systems,2(1), pages 73–96, 2000.

10. J. Madhavan, P. Bernstein, A. Doan, and A. Halevy. Corpus-based schema matching. In21st
Int. Conf. on Data Engineering, pages 57–68, 2005.

11. C. Manning and H. Schutze.Foundations of Statistical Natural Language Processing. MIT
Press, May, 1999.

12. S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph matching
algorithm. In18th Int. Conf. on Data Engineering, pages 117–128, 2002.

13. G. Miller. WordNet: An on-line lexical database. International Journal of Lexicography,
1990.

14. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching.The
VLDB Journal, 10:334–350, 2001.

15. P. Tan, V. Kumar, and J. Srivastava. Selecting the right interestingness measure for associa-
tion patterns. InACM SIGKDD Conference, pages 32 – 41, 2002.

16. J. Wang, J. Wen, F. Lochovsky, and W. Ma. Instance-based schema matching for Web
databased by domain-specific query probing. In30-th Int. Conf. Very Large Data Bases,
pages 408–419, 2004.

17. W. Wu, C. Yu, A. Doan, and W. Meng. An interactive clustering-based approach to integrat-
ing source query interfaces on the deep Web. InACM SIGMOD Conference, pages 95–106,
2004.

