
Optimizing Similarity Computations for
Ontology Matching - Experiences from GOMMA

Michael Hartung1,2, Lars Kolb1, Anika Groß1,2, and Erhard Rahm1,2

1 Department of Computer Science, University of Leipzig
2 Interdisciplinary Center for Bioinformatics, University of Leipzig

{hartung,kolb,gross,rahm}@informatik.uni-leipzig.de

Abstract. An efficient computation of ontology mappings requires opti-
mized algorithms and significant computing resources especially for large
life science ontologies. We describe how we optimized n-gram match-
ing for computing the similarity of concept names and synonyms in our
match system GOMMA. Furthermore, we outline how to enable a highly
parallel string matching on Graphical Processing Units (GPU). The eval-
uation on the OAEI LargeBio match task demonstrates the high effective-
ness of the proposed optimizations and that the use of GPUs in addition
to standard processors enables significant performance improvements.
Keywords: ontology matching, GPU, parallel hardware

1 Introduction

Mappings (alignments) between ontologies are important for many life science
applications and are increasingly provided in platforms such as BioPortal [13].
New mappings are typically determined semi-automatically with the help of on-
tology match systems such as GOMMA (Generic Ontology Matching and Map-
ping Management) [10] utilizing different matchers to evaluate the linguistic and
structural similarity of concepts [3]. Ontology matching is challenging especially
for large ontologies w.r.t. both effectiveness (achieving a high quality mapping)
and efficiency, i.e., fast computation [16]. Results of the 2012 OAEI [14] Large-
Bio task1 showed that some systems still have problems or are even unable to
match large ontologies such as the Foundation Model of Anatomy (FMA) [5] or
the Thesaurus of the National Cancer Institute (NCIT) [11].

For high efficiency, it is important to reduce the search space by avoiding the
comparison of dissimilar concepts [2,9], and to utilize optimized implementations
for frequently applied similarity functions such as n-gram, Jaccard, TF-IDF (e.g.,
by using fast set intersection [1], or pruning techniques [18]). Libraries such as
SimMetrics2 typically provide a comfortable and general interface getSim(string1,
string2) for multiple similarity measures but often lack efficient implementations.
For example, they either lack pre-processing steps to transform strings into repre-
sentations permitting faster comparisons or they cause redundant pre-processing
steps when matching a particular string multiple times.

1 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2012/
2 http://sourceforge.net/projects/simmetrics/

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2012/
http://sourceforge.net/projects/simmetrics/

A promising direction to speed-up processing-intensive computations such
as string comparisons is the utilization of Graphical Processing Units (GPU)
supporting a massively parallel processing even on low-cost graphic cards. The
availability of frameworks like CUDA and OpenCL further stimulated the inter-
est in general purpose computation on GPUs [15]. Algorithms like BLAST [17],
database joins [8] or duplicate detection/link discovery systems [4,12] have al-
ready been adapted for GPU execution. Unfortunately, GPUs and their program-
ming languages like OpenCL have several limitations. For instance, only basic
data types can be used, the memory capacity of a GPU is restricted to a specific
size, and data must first be transferred to the GPU. Furthermore, no dynamic
memory allocation is possible, i.e., the resources required by an algorithm must
be known and allocated a priori. These restrictions need to be considered in a
new solution for computing string similarity in match systems such as GOMMA.

In this experience paper, we make the following contributions:

• We describe how we optimized n-gram matching for linguistic matching in
GOMMA including the use of integer representations for n-grams. (Sec. 2)

• We propose a new method for n-gram matching on GPU. The technique is
not limited to n-gram and can also be applied to other token-based string
metrics (e.g., Jaccard). We further describe how GOMMA can exploit both
CPU and GPU resources for improved efficiency. (Sec. 3)

• We evaluate our techniques on a real-world match problem, namely the
FMA-NCI match task from the OAEI LargeBio track. The results show
that we are able to significantly reduce the execution times on CPU as well
as GPU compared to the standard solution. (Sec. 4)

2 Optimizing n-gram Similarity Computation

GOMMA uses the n-gram string comparison to determine the similarity of names
and synonyms for pairs of concepts of two input ontologies O and O′. The ex-
ample in Fig. 1 shows the names/synonyms for three concepts per ontology. The
match result is a mapping MO,O′ = {(c, c′, sim) | c ∈ O, c′ ∈ O′, sim ∈ [0, 1]}
consisting of correspondences between concepts and their match similarity. Given
that a concept has a name and potentially several synonyms, there can be several
n-gram similarities per pair of concepts. GOMMA thus applies an aggregation
function agg, e.g., maximum or average, to aggregate multiple similarity values.
Finally, GOMMA uses a threshold t to restrict the mapping to the most likely
correspondences.

A naive n-gram matcher first splits the string attribute values to be compared
into overlapping tokens of length n. For our example and n=3 (Trigram), the c2
strings limbs and extremity are split into {{lim,imb}, {ext,xtr,tre,rem,emi,mit,ity}}
while the single c′2 attribute value limbs is tokenized into {{lim,imb,mbs}}. To
determine the similarity between two concepts, we (1) need to compute the dice

coefficient for each pair of token sets TS1-TS2 (diceSim(TS1,TS2)= 2·|TS1
⋂

TS2|
|TS1|+|TS2|)

and (2) aggregate the single similarities. For instance, when determining the sim-
ilarity between c2 and c′2, we compute two single similarities diceSim({lim,imb},

Fig. 1. Example trigram similarity computation. Attribute values (names, synonyms)
are converted to sorted token vectors (upper part). Tokens are represented as integers
based on a dictionary (lower left part). Individual similarities are aggregated with the
max function to determine an overall similarity between two concepts (lower right part).

{lim,imb,mbs})=0.8 and diceSim({ext,xtr,tre,rem,emi,mit,ity}, {lim,imb,mbs})=0
which are aggregated using the max function: sim(c2, c

′
2)=max(0.8, 0)=0.8.

There are several possibilities to compute the set intersection (TS1 ∩ TS2)
that can have a large impact on efficiency, e.g., a nested loop over both element
sets or the use of hash tables. Furthermore, in case of string-valued tokens, even
the check whether two tokens (strings) are equal is a quite complex operation.
In general, the larger the sets and the longer the tokens are, the more time is
required to compute set overlaps. Since such similarity computations frequently
occur in match workflows for a large number of concepts, it turns out that an effi-
cient implementation of the token set intersection is a key factor to speed up the
matching of large ontologies. In recent years, different optimization techniques
for set similarity joins (e.g., prefix, suffix, and length filtering) were proposed in
the context of near duplicate detection [18]. We omit those orthogonal optimiza-
tions in favor of readability and leave their application for future work.

GOMMA’s optimized n-gram matcher is described in Algorithm 1. It is based
on two optimizations: the use of integer representations for tokens and a sort-
merge-based computation of token set overlaps. As in the naive approach, we
first split a concept’s string attribute values into token sets (Line 6). We then
convert all n-grams into integer values based on a global dictionary (Line 8). The
dictionary is built dynamically, i.e., each time a new n-gram is observed during
the tokenization, it is added to the dictionary and, from then on, represented
by its integer-valued index in the dictionary. Additionally, we sort the integer
values of each token vector in ascending order (Line 10). Thus, after this pre-
processing, a concept has a set of sorted token vectors (stvs) representing the

Algorithm 1: ngramSim(O,O′, Attr, agg, t)

1 foreach c ∈ O ∪O′ do
2 c.stvs← ∅; // sorted token vectors
3 S ← c.getAttrValues(Attr);
4 foreach s ∈ S do
5 stv ← [] ; // empty token vector
6 tokens← tokenizeNGrams(s);
7 foreach t ∈ tokens do
8 n← getNumericTokenId(t);
9 stv.append(n);

10 c.stvs← c.stvs ∪ {stv.sort()};

11 M ← ∅;
12 foreach c ∈ O do
13 foreach c′ ∈ O′ do
14 Sims← ∅;
15 foreach stv ∈ c.stvs do
16 foreach stv′ ∈ c′.stvs do
17 s← diceSim(stv, stv′);
18 Sims← Sims ∪ {s};

19 sim ← agg(Sims);
20 if sim ≥ t then
21 M ←M ∪ {(c, c′, sim)};

22 return M ;

Algorithm 2: diceSim(stv1, stv2)

1 left← 0;
2 right← 0;
3 overlap← 0;

4 l1 ← stv1.length();
5 l2 ← stv2.length();

6 while (left<l1) ∧ (right<l2) do
7 if stv1[left]==stv2[right] then
8 overlap++;
9 left++;

10 right++;

11 else if stv1[left]<stv2[right]
then

12 left++;

13 else
14 right++;

15 return 2 · overlap / (l1 + l2);

n-grams of their string attribute values as integers. For example, the trigrams of
c2 are represented as {[9,10], [11,12,13,14,15,16,17]}.

We then iterate over all concepts of O and O′ and compare the sorted token
vectors of concepts with each other. In case of multiple attribute values for a
concept, the single similarities are aggregated to an overall similarity using the
specified aggregation function agg. Our pre-processing allows for a very efficient
overlap computation (Algorithm 2) similar to the Sort-Merge-Join used for ef-
ficient join computation in databases. Since all token sets are represented by
sorted token vectors stv, we can do interleaved linear list scans to compute the
overlap. We thus only perform |stv1|+|stv2| comparisons in the worst case with
a fast integer-based token comparison. For instance, when comparing {lim,imb}
with {lim,imb,mbs}, we compare [9,10] with [9,10,21] requiring merely the com-
parison of the two integer pairs 9-9 and 10-10.

GOMMA also supports the parallel execution of string matching for disjoint
sets of concept pairs to utilize multiple processors or cores for improved execution
time. In the evaluation (Sec. 4), we will also consider this performance option.

3 GPU-based n-gram Similarity Computation

A GPU-based implementation needs to overcome common GPU limitations,
namely (1) lack of string data type, (2) only restricted data structures such
as arrays, and (3) a priori allocation of a fixed and limited amount of memory.
Since our algorithm operates on integer values, the first limitation is already
solved. For the second limitation we will use an index structure based on arrays.

Fig. 2. GPU input and output data structures for running example and top-k=2.

We will overcome the third limitation by partitioning large input ontologies,
adapting memory-efficient data types, and determining only the best matches
per concept to restrict the mapping size. We further use an execution scheme
that minimizes expensive data transfers between main memory and GPU. In
the following, we describe the utilized data structures and outline the n-gram
similarity computation on GPUs.

Input data structure: In contrast to dynamically growing data structures
(e.g., lists or maps) usable for CPU-based computations, GPU-based process-
ing necessitates the preallocation of the required memory on the target device.
Because the number of attributes per concept and the number of n-grams per
attribute value varies, a mapping to fixed-length data structures is required. For
this purpose, we adopt a multi-level index structure (illustrated in Fig. 2 for the
running example) consisting of three arrays per input ontology: concept index
(ci), attribute index (ai), and gram index (gi). The arrays ci and ai represent
the concepts and their attributes, respectively, while gi holds the sorted token
vectors of the input concepts. For each concept, there is one entry in ci pointing
to its first string attribute in ai. The number of attributes for concept j thus is
ci[j+1]-ci[j]. Each ai entry represents a particular string and points to the first
token of its value in gi. The last (dummy) entries of ci/ai are used to mark the
end of each index. Using this structure, one can easily access the tokens of an
attribute of a particular concept. For instance, to access the tokens of concept
c2 ∈ O, we first read ci[2]=3 and ci[2+1]=5 to find the lower (inclusive) and
the upper (exclusive) bound of its attributes in ai. Hence, the concept has two
attributes represented by ai[3]=8 and ai[5-1]=10. The values at these positions
can be used to access the sorted token vectors beginning at gi[8] and gi[10], re-
spectively. To save memory and transfer costs, we use short instead of integer
data types to represent the tokens (2 instead of 4 bytes per token).

Output data structure: The memory for storing the match result must be
reserved a priori as well. To limit the result size, we utilize the observation that
it is sufficient to consider only the top-k best correspondences (above threshold
t) for each concept without reducing match quality. This approach marks an
upper bound of the required memory to allocate on the GPU. Our output data
structure consists of two arrays corrs and sims. The former contains the ids of

Fig. 3. Execution scheme for hybrid CPU/GPU-based n-gram similarity computation
minimizing the data transfer between the host program and the GPU.

the (at most) top-k matches per concept, the latter contains the corresponding
similarities. For our running example, we would create two arrays of length 6 to
store the best two matches for each concept of O (see bottom of Fig. 2). Again,
the amount of memory and data transfer can be reduced by using the short data
type (instead of float) to express the similarity values. In particular, we limit
their precision to three decimal places which is sufficient for match processes,
e.g., the similarity value 0.8 for c2-c′2 is expressed by a short value of 800.

N-gram execution on GPU: Compared to CPUs, the architecture of GPU
hardware exhibits a large number of simpler compute cores that execute the same
instruction on multiple data partitions. In this study, we rely on the OpenCL
framework for general purpose computation GPUs. OpenCL code is written in
C as so-called compute kernels, whose submission is controlled by a host pro-
gram executed on the CPU. The actual number of kernel instances running in
parallel depends on the GPU’s number of cores, its amount of memory, the ker-
nel programs memory requirements, and the size of the input and output data.
OpenCL assigns a global unique identifier to each kernel instance. This identifier
is used to compute global memory offsets for loading and storing input data that
a particular kernel is operating on.

In general, the input ontologies and the |O| · k resulting correspondences
exceed the available memory of the GPU. Thus, we up-front split both input
ontologies into partitions Pi ⊆ O and Qi ⊆ O′, analogously as in our previous
work on parallel ontology matching [7]. We then iteratively ship pairs (Pi, Qi)
for comparison to the GPU. The GPU executes a kernel instance for each c ∈ Pi

that compares c with all c′ ∈ Qi and determines its top-k correspondences above
t. The partial results are later unified by the host program. For this purpose, we
utilize a job queue that supports the parallel n-gram similarity computation of
different partition pairs on both the GPU as well as on the CPU. A dedicated
thread takes match tasks from this queue and submits them to the GPU. In
addition to this GPU thread, several CPU threads can access the job queue
from the opposite end to independently perform matching on the CPU. We
select jobs and ship partitions using the scheme displayed in Fig. 3. This scheme
ensures that after completion of a GPU job only a single partition needs to be
transferred to the GPU. The other partition remains in the GPU’s memory and

is reused for the next job. For instance, when the GPU finished the P0-Q3 job,
it starts to execute P0-Q4 next. In this case, only the partition Q3 needs to be
replaced by Q4 and P0 can be reused. Furthermore, it is beneficial to split the
larger of the two input ontologies into partitions. If it even fits entirely into the
device’s memory, only partitions from the smaller ontology need to be replaced.

4 Evaluation

We analyzed the execution time for computing the FMA-NCIT mapping which
is part of the LargeBio match task in OAEI [14]. The task consists of three sub-
tasks namely, small (3,720×6,551 concepts), large (28,885×25,678 concepts), and
whole (79,042×66,914 concepts). To create mappings of high quality, we applied
the GOMMA match workflow with top-k=1 and n=3 (Trigram) used in OAEI
2012 (for details and quality results see [6]). The experiments were carried out
on an Intel i5-2500 machine (4x3.30GHz, 8GB memory). We further used the
following mid-range GPU: Asus GTX660 with 960 CUDA cores/2GB memory.

The first experiment evaluates the execution times for the three sub-tasks
utilizing either one CPU thread or the GPU. For CPU-based processing, we com-
pare the proposed SortInt n-gram matching with two alternatives using nested-
loop (NLString) and hash set look-ups (HashString) for computing the token set
overlap. The results displayed in Fig. 4 (left) show that SortInt-CPU significantly
outperforms both standard algorithms. For the whole task, it requires ≈8 min
compared to about 26 min (104 min) for HashString (NLString), i.e., it improves
runtime by up to a factor of 13. This shows that our pre-processing step pays
off, i.e., converting strings into integer values and sorting are non-expensive
(<1 sec in all tasks) but valuable steps for an optimized overlap computation.
The application of SortInt on the GTX660 GPU allows for a further significant
improvement compared to the CPU implementation. The execution time for the
whole task is reduced by another factor of 5 to merely 99 sec. Thus, transferring
the data into the GPU pays off, i.e., the massively parallel hardware in the form
of hundreds of CUDA cores substantially speeds up the computation.

In a second experiment, we evaluate how application on multiple cores either
without GPU (NoGPU) or in combination with GPU resources affects execution
times. As shown in Fig. 4 (right), we observe that parallel CPU processing is very

~
 3

m
in

~
 2

1
m

in ~
 1

0
4

m
in

5
2

s
e

c

~
 6

m
in ~

 2
6

m
in

2
0

s
e

c

1
1

6
s

e
c ~

 8
m

in

6
s

e
c 2

2
s

e
c

9
9

s
e

c

1

10

100

1000

10000

small large whole

E
x

e
cu

ti
o

n
 t

im
e

 i
n

 s

n-gram implementations on one CPU or GPU

CPU-NLString CPU-HashString

CPU-SortInt GTX660-SortInt

0

100

200

300

400

500

600

NoGPU GTX660

E
x

e
cu

ti
o

n
 t

im
e

 i
n

 s

Combined CPU/GPU execution of SortInt (only whole task)

1xCPU 2xCPU 3xCPU 4xCPU

Fig. 4. Runtime of n-gram algorithms on CPU/GPU (left) and combined (right).

effective, e.g, when using four CPU threads, the execution time can be reduced
to 137 sec (factor of 3.5) for the whole match task. The combined execution on
CPU and GPU can further improve the execution time to about 67 sec for three
and four CPU threads (factor of 2). The fourth CPU thread does not further
improve the execution time due to the dedicated GPU thread for data transfer.
Overall, one can see that even a moderately powered GPU can substantially
reduce the execution time for string and thus for ontology matching.

5 Conclusion and Future Work

We studied how similarity functions like n-gram used for linguistic matching in
GOMMA can be optimized by algorithmic tuning as well as by massively parallel
processing on GPUs. The results indicate that intelligent pre-processing (e.g.,
integer conversion, sorting) of the input ontologies pays off substantially and
speeds up ontology matching. The GPU-based execution of algorithms like n-
gram matching requires some effort to overcome the GPU limitations but boosts
performance even further. In the future we plan to investigate further GPU-based
similarity computations and the impact of different kinds of GPU hardware.

References

1. Ding, B., König, A.C.: Fast set intersection in memory. PVLDB 4(4) (2011)
2. Ehrig, M., Staab, S.: QOM–quick ontology mapping. In: Proc. ISWC (2004)
3. Euzenat, J., Shvaiko, P.: Ontology matching. Springer-Verlag New York (2007)
4. Forchhammer, B., et al.: Duplicate Detection on GPUs. In: BTW (2013)
5. Foundation Model of Anatomy: http://fma.biostr.washington.edu/
6. Gross, A., Hartung, M., Kirsten, T., Rahm, E.: GOMMA Results for OAEI 2012.

In: Proc. 7th Ontology Matching Workshop (2012)
7. Gross, A., Hartung, M., Kirsten, T., Rahm, E.: On matching large life science

ontologies in parallel. In: Proc. DILS (2010)
8. He, B., et al.: Relational joins on graphics processors. In: Proc. SIGMOD (2008)
9. Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer ap-

proach. Data & Knowledge Engineering 67(1) (2008)
10. Kirsten, T., Gross, A., Hartung, M., Rahm, E.: GOMMA: A Component-based

Infrastructure for managing and analyzing Life Science Ontologies and their Evo-
lution. Journal of Biomedical Semantics 2, 6 (2011)

11. NCI Thesaurus: http://ncit.nci.nih.gov/
12. Ngonga Ngomo, A., et al.: When to reach for the cloud: Using parallel hardware

for link discovery. In: Proc. ESWC (2013)
13. Noy, N., et al.: BioPortal: ontologies and integrated data resources at the click of

a mouse. Nucleic acids research 37(suppl 2) (2009)
14. Ontology Alignment Evaluation Initiative: http://oaei.ontologymatching.org/
15. Owens, J., et al.: GPU computing. Proceedings of the IEEE 96(5) (2008)
16. Rahm, E.: Towards Large Scale Schema and Ontology Matching. In: Schema

Matching and Mapping. Springer (2011)
17. Vouzis, P., Sahinidis, N.: GPU-BLAST: using graphics processors to accelerate

protein sequence alignment. Bioinformatics 27(2) (2011)
18. Xiao, C., Wang, W., Lin, X., Yu, J.X., Wang, G.: Efficient similarity joins for

near-duplicate detection. ACM Trans. Database Syst. 36(3) (2011)

http://fma.biostr.washington.edu/
http://ncit.nci.nih.gov/
http://oaei.ontologymatching.org/

	Optimizing Similarity Computations for Ontology Matching - Experiences from GOMMA

