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Abstract— A Web Resource Space Model (RSM) is a semantic
data model for specifying, storing, managing and locating Web
resources by appropriately classifying the contents of resources.
For the task of detecting and retrieving relevant RSMs, one needs
means for measuring the similarity between RSMs on a canonical
scale. This paper proposes a general framework to automatically
measure the similarity between RSMs, we break down the overall
task and analyze the similarity between resource space models
from three different levels, i.e. coordinate, axis and resource
space. A variety of strategies and measurements that capture
those differences are presented. Moreover, we theoretically ana-
lyzed the variation of similarities about Join, Disjoin, Merge and
Split operations on RSMs. The empirical results of our method
on Ontology Alignment Evaluation Initiative (OAEI) benchmark
data set are also present in this paper.

I. INTRODUCTION

A Web Resource Space Model (in simple RSM) is a seman-
tic data model for specifying, storing, managing and locating
Web resources by appropriately classifying the contents of
resources [1]. A Web resource space is a multi-dimensional
classification space, it makes use of the advantage that classi-
fication is a method of efficiently managing various resources
and a basic method for human beings to know the real
word and synthesize experience. The resource space model
maps various resources (information, knowledge and service)
into a multi-dimensional semantic space. The model is a
semantic coordinates system that normalizes the classification
semantics. The normal form theory and integrity theory of the
RSM ensure the correctness of representation and operation
on the resource space. The RSM is equipped with the SQL-
like Resource Operation Language ROL to implement such
operation as Join, Disjoin, Merge and Split [1]. Compared to
ontology, RSM is based on strict mathematic foundations and
it can provide many flexible functions and operations. RSM
makes an excellent complement to current ontology technique
for resource management.

However, in open or evolving systems, such as the semantic
web, different parties would, in general, adopt different RSMs.
Thus, just using RSM, like just using ontology, does not reduce
heterogeneity: it raises heterogeneity problems at a higher
level. The efficient resource management highly depends on
the human behavior mode of dealing with resources and the
mode of storing resources in the resource space. Up to now,
we still hard to use existing taxonomy and commonsense
as the classification method to establish consensus between

designers and users. With the growing access to heterogeneous
and independent data repositories, the treatment of differences
in the structure and semantics of the data stored in those
repositories play a major role in information systems. Recent
investigation in information retrieval and data integration have
emphasized the use of semantic similarity functions as a
mechanism for comparing objects that can be retrieved or
integrated across heterogeneous repositories. We needs means
for measuring the similarity between RSMs on a canonical
scale.

So, how may we measure the similarity of RSMs or of
RSM parts? One could make use of the similarity of RSMs’
corresponding ontologies. Although the Resource Space can
be automatically constructed by transforming Web Ontology
Language description files (e.g. RDF1, OWL2) [2], we should
not ignore the intrinsic differences between ontology and re-
source space. For instance, the inheritance structure of classes
in RSMs should be tree(s), however most of the ontology
descriptions (e.g. OWL) support multi-inheritance, and the
inheritance structure is not a tree but a graph. Moreover, the
ontology descriptions define the classes and their properties in
a integrated way, but in RSM the classes and the properties
are defined in separated axes. It means that a same RSM could
be transformed from different ontologies, thus the similarity
between the ontologies cannot reflect the distinction of RSMs.
For the task of detecting and retrieving relevant RSMs, we
should design a novel approach to measuring the similarity
between RSMs. In this paper, we propose a solution through
comparing the structural and semantic differences between
different RSMs. To our knowledge, this paper is the first work
measuring the similarity between RSMs.

The rest of this paper is organized as follows: In Sec-
tion 2, the related works are briefly introduced. Section 3
describes the preliminaries of resource space model as well
as the comparison between RSM and ontology. A general
framework of measuring the similarity between RSMs as well
as its implementation and properties are given in Section 4.
We break down the overall task and analyze the similarity
between resource space models from three different levels, i.e.
coordinate, axis and resource space. The theoretical properties

1http://www.w3.org/RDF/.
2The W3C (www.w3.org) recommended the Web Ontology Language

(OWL) in 2004 to support advanced Semantic Web applications by facility
publication and sharing of ontology.
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of the similarity about RSM operations (including on Join,
Disjoin, Merge and Split) and the complexity analysis of
the method are also presented in this section. In Section 5,
the experimental results on Ontology Alignment Evaluation
Initiative(OAEI) benchmark data set are given. Finally, the
conclusion and future work are presented in Section 6.

II. RELATED WORK

The methods of evaluating the similarity between ontology
entities have been studied widely [3][4][5][6][7][8][9][10].
Many different matching solutions have been proposed so far
from various viewpoints, e.g., databases, information systems,
and artificial intelligence. Among the process of calculating
the similarity between ontologies, ontology matching plays
a prominent important role. Ontology matching finds corre-
spondences between semantically related entities of different
ontologies. These correspondences may stand for equivalence
as well as other relations, such as consequence, subsump-
tion, or disjointness between ontology entities. To obtain the
overall similarity between two ontologies, Meadche and Staab
proposed a set of measures for describing the similarity of
different ontology parts at the lexical and conceptual level
[7][11]. Andrea et al. have presented a model for semantic
similarity across different ontologies. The similarity model
provides a systematic way to detect similar entity classes
across ontologies based on the matching process of each of
the specification components in the entity class representa-
tions (i.e., synonym set, distinguishing features, and semantic
neighborhoods) [9]. Doan et al. have developed Glue, a system
that employs learning techniques to semi-automatically create
semantic mappings between ontologies [4]. Ram and Park
provided a systematic method for automatically detecting and
resolving various semantic conflicts in heterogenous schemas
[8]. J. Euzenat presented the state of the art and the latest
research results in ontology matching by providing a detailed
account of matching techniques and matching systems in
a systematic way from theoretical, practical and application
perspectives [5]. Moreover, the evaluation criteria of ontology
matching algorithms has also been discussed in [12] based
on extending classical precision and recall rates. However, the
systematic method for automatically measuring the similarity
between resource space models has seldom been investigated
so far.

Resource space model maps various resources (information,
knowledge and service) into a multi-dimensional semantic
space [1]. The mappings between three typical semantic
models ( Web Ontology Language, Relational Database Model
and Resource Space Model) as well as related strategies and
theories enable one to support the other have been investigated
in [13]. Different from ontology description language which
stores a entity and its properties together, resource space model
separates them into different axes. The mapping from OWL
description onto resource space includes: mapping inheritance
hierarchy onto inheritance axis, mapping properties onto prop-
erty axes, mapping individuals onto resources. In particular,
Resource space can be constructed based on transforming

existing ontologies, the detailed method has been proposed
in [2].

Matching coordinates between two resource spaces is sim-
ilar to matching entities between ontologies. To measure the
similarity between resource spaces, we also need to analyze
the difference between their axes. Compared with the method
analyzing ontology entity difference by counting their super-
class or subclass number [7], the tree distance approach is
more suitable when evaluating the difference between axes,
since the axis in resource space model can be viewed as a
ordered labeled tree. However, the tree edit distance problem
is difficult one. It has been proven that, if the trees are not
ordered, the problem is NP-complete [14]. A survey about
this problem has been presented in [15]. Despite the inherent
complexity of the mapping problem in its generic formulation,
there are serval practical applications that can be modelled us-
ing restricted formulations of it. The algorithms with quadratic
costs have been proposed in [16][17][18]. Tree edit distance
also has been used in measuring the similarity between XML
documents. Nierman and Jagadish have proposed a structural
similarity matric for XML documents based on an edit distance
between ordered labeled trees [19].

III. PRELIMINARIES OF RESOURCE SPACE MODEL

A resource space is a multi-dimensional classification space.
The basic semantic elements of the Resource Space Model
are resource, resource space, axis and coordinate. A resource
space consists of a name and a set of axes, denoted as
RS(X1, X2, · · · , Xn). Each axis Xi represents a classification
method. Xi is partitioned by a set of coordinates denotes as
Xi =< Ci1, Ci2, · · · , Cim >.

A C represents a set of resources, denoted as R(C). The
semantics of a coordinate is represented by name, basic
datatype, a set of concepts, or a coordinate tree (low-level
coordinates finely classify their common ancestor). Thus, the
measure of similarity between two coordinates should at least
include these three parts.

An axis regulates a set of coordinates. An axis presents
higher classification level than its coordinates. Two axes can be
regarded as equivalent if their name are the same in semantics
and the names of all the corresponding coordinates are the
same in semantics.

A resource space regulates a set of axes and the refined
classification relationship. A resource is determined by locat-
ing the point it belongs to and by selecting from the resource
set according to its name and content description.

A. Operations of the Resource Space

The following are four operations of the resource space
model [2]:

1) Join operation: If two resource spaces RS1 and RS2

specify the same type of resources and they have n
(n ≥ 1) common axes, then they can be joined into
one resource space RS such that RS1 and RS2 share
these n common axes and |RS| = |RS1| + |RS2| − n,
where |RS| represents the number of dimensions of the
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TABLE I

THE COMPARISON OF RSM AND ONTOLOGY

.
RSM Ontology

Dimension N 2
Class Inheritance Single Multiple
Class Hierarchy Tree Graph

Class and Property Definition Separately Together
Visualization 3D 2D

Operation Split, Join, etc. Insert, Delete, etc.
Query Language ROL SPARQL

RS. RS is called the join of RS1 and RS2, denoted
as RS1 · RS2 ⇒ RS.

2) Disjoin operation: A resource space RS can be disjoined
into two resource spaces RS1 and RS2 (denote as
RS ⇒ RS1 · RS2 ) that specify the same type of
resources as that of RS such that they have n (1 ≤ n ≤
min(|RS1, RS2|)) common axes and |RS|−n different
axes, and |RS| = |RS1| + |RS2| − n.

3) Merge operation: If two resource spaces RS1 and RS2

specify the same type of resources and satisfy: (1)
RS1 = RS2 = n; and (2) have n − 1 common axes,
and there exist two different axes X1 and X2 satisfying
the merge condition, then the two spaces can be merged
into one RS by retaining the n−1 common axes in the
new space and including a new axis X = X1 ∪ X2.

4) Split operation: A resource space RS can be split into
two resource spaces RS1 and RS2 that store the same
type of resources as that of RS and that have |RS| − 1
common axes by splitting an axis X into two: X ′ and
X ′′, such that X = X ′ ∪ X ′′. This split operation is
denoted as RS ⇒ RS1 ∪ RS2.

To analyze the quality of a RSM, we can use following
criterions: A first-normal-form (1NF) resource space is a
resource space and there does not exist name duplication
(semantic overlap) between coordinates at any axis. A second-
normal-form (2NF) resource space is a first-normal-form, and
for any two coordinates are independent from each other. A
third-normal-form (3NF) resource space is a second-normal
form and any two axes of it are orthogonal with each other.

B. The relationship between RSM and Ontology

The Resource Space can be automatically constructed by
transforming Web Ontology Language description files, but
this two typical semantic models have many intrinsic differ-
ences.

We briefly outline the main differences between RSM and
Ontology descriptions (e.g. RDF, OWL) in the following:

• Most of the ontology descriptions support multi-
inheritance, thus the inheritance structure is a graph, If
the inheritance hierarchy is a tree or trees, it can be
transformed into an axis to represent the category of
resource. However the inheritance structure of classes in
RSMs should be tree(s). The graph should be converted
into tree(s) because the coordinates on an axis in a RSM

should be tree(s). The degree of matching between two
models determines the efficiency.

• The ontology descriptions define the classes and their
properties in a integrated way, but in a RSM the classes
and the properties are defined in separated axes.

• RSM is a multi-dimensional semantic space, while on-
tology can be viewed as a 2-dimensional semantic space.
This character also determines their visualization meth-
ods.

• A suitable user interface for RSM navigation should be
designed in the 3D space, but ontology is often visualized
in 2D space for convenience, although there still exists
some softwares can display ontology in 3D model [20].

• RSM provides a set of flexible operations on it, despite
the normal operations on a ontology, such as insert
and delete. Moreover, the two models use different
query language ROL (Resource Operation Language) and
SPARQL (Simple Protocol and RDF Query Language)
respectively.

Thus, due to the existence of those distinctions, we should
not expect to measure the similarity between RSMs by directly
using the methods designed for ontologies. We propose a novel
solution in the next section.

IV. SIMILARITY BETWEEN RESOURCE SPACES

A. Framework

The framework of calculating the similarity between two re-
source spaces are demonstrated in Figure 1. As we mentioned
in previous section, a resource space model includes three
granularities: coordinate, axis and space. Obviously, if we
want to measure the similarity between two RSMs, we should
know the similarity of each axes pair first; and analogously, we
should figure out the differences of coordinate pairs before we
calculate the similarity of two axes. Thus, the process involves
those three main steps:

• Step 1: Calculate the similarity of each coordinate pair,
and in each coordinate pair, the coordinates should belong
to different axes;

• Step 2: Calculate the axis similarity after mapping the
corresponding coordinates. Since an axis in a resource
space can be viewed as a hierarchical tree, we can
measure the difference between two axes by measuring
the tree edit distance of two hierarchical trees;

• Step 3: After calculating the similarity of axes and
mapping the corresponding axes which belong to different
resource spaces. We can calculate the similarity between
two resource spaces based on aggregating the similarities
of those axes pairs in the final.

As shown in Figure 1, it should be noted that the prepro-
cessing step, viz. transform ontology to resource space model,
is an optional step if we have already constructed the resource
space. In that situation, we may compare two resource space
models from the step 1, i.e. coordinate similarity calculation,
directly.
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Fig. 1. The framework of measuring the similarity between resource spaces, where 1-3 represent the main processing steps and 0 represents preprocessing
step.

B. Similarity of Coordinates

Different from ontology description language which stores
a entity and its properties together, the resource space model
separates them into different axes. The mapping from OWL
description onto resource space includes: mapping inheritance
hierarchy onto inheritance axis, mapping properties onto prop-
erty axes, and mapping individuals onto resources [13]. To
measure the similarity between two resource spaces, first of
all, we should distinguish two kinds of axes in resource spaces,
they are property axes and concept axes3. Moreover, the
property axes can be further classified into object properties
axes and datatype axes. The coordinates in different types of
axes should be compared according to different methods and
criterions.

For instance, a class Image has properties: format and year.
The format property includes JPEG, BMP, etc., it should be
viewed as object property. We can adapt name-based tech-
niques [5] to measure the similarity between object properties.
Meanwhile the year property is described as numbers, it should
be viewed as datatype property. We can compare them based
on their internal structures, such as domain comparison [5]
method.

Definition 1: (Coordinate Similarity) Given two coordi-
nates Ci and Cj , the similarity between those two coordinates
is defined as follows:

• If Ci and Cj are both in datatype axes, σc(Ci, Cj) =
πnσn(Ci, Cj) + πdσd(Ci, Cj);

• If Ci and Cj are both in concept axes or both in object
axes, σc(Ci, Cj) = σn(Ci, Cj);

• otherwise, σc(Ci, Cj) = 0.

Parameter πn and πd define the importance of coordinate
name and datatype respectively when Ci and Cj are both
datatype coordinates, and πn + πd = 1.

To measure the similarity between two concepts, the string
edit distance formulated by Levenshtein [21] is a well-
established method. It measures the minimum number of token
insertions, deletions, and substitutions requires to transform
one string into another using a dynamic programming algo-
rithm.

3It has also been called as inheritance axis in [13].

σc(Ci, Cj) =
max(|Ci|, |Cj |) − eds(Ci, Cj)

max(|Ci|, |Cj |) ∈ [0, 1]. (1)

Example 1: The string edit distance is denoted as eds in
Equation 1. For example, the string edit distance between the
two coordinate names InProceedings and In Proceedings
is 1, eds(InProceedings, In Proceedings) = 1,
because one insertion operation changes the
string InProceedings into In Proceedings, thus
σc(InProceedings, In Proceedings) = 13/14.

Moveover, a more compressive method for evaluating the
difference between two concepts can be adapted by using
external lexicons or dictionaries, such as WordNet [22]. Since
there exists a lot of synonyms in our vocabularies, they have
the same or similar meanings but have quite different spellings.

Datatype coordinates are often represented as multiplicities,
so we compare them using multiplicity similarity. Given two
datatype coordinates Ci and Cj with expression domain range
[l, h] and [l′, h′], the similarity between them is described as
follows:

σd(Ci, Cj) =

⎧⎨
⎩

0 l′ > h or l > h′
min(h, h′) − max(l, l′)
max(h, h′) − min(l, l′)

otherwise.

Example 2: If we compare a datatype with range [0, 6] to
datatypes with range [2, 8], [8, 12] and [0,∞] respectively, the
comparison will yield 0.5, 0 and 6/MAXINT.

Note that since in this paper we focus on discussing the
overall procedure of evaluating similarity between resource
spaces, the various methods weighting the difference of two
concepts and properties will not be exhaustively discussed
here. Please see a survey of such methods in [5] for details.

C. Similarity of axes

Two axes can be regarded as equivalent if their name are
same in semantics and the names of all the corresponding
coordinates are same in semantics. However, when axes are
designed by different users or organizations, it is hard to
guarantee the axes will be completely equivalent. To measure
the different between two axes, we should match the corre-
sponding coordinates of these two axes first.
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Based on the definition of the similarity of coordinates, we
can derive the similarity of two axes. First of all, we should
make alignment between coordinates before we measure the
similarity between two axes. There are two notions of optimal
matching of two sets of coordinates in this context. The first
one is a optimum called stable marriage which consists of
an assignment such that any permutation of two assignments
provides a worse result. An algorithm for computing stable
marriage is the Gale-Shapley algorithm [23].

Definition 2: (Stable marriage matching) Given two sets of
concepts c and c′ and a similarity function σ : c× c′ → [0, 1],
extract a one-to-one alignment M ⊆ c × c′, such that for any
(p, q) ∈ M , σ(p, q) + σ(r, s) ≥ σ(p, s) + σ(r, q).

Another matching strategy is the global optimum, or max-
imum weight matching. It is the assignment for which there
does not exist any other assignment with better weighting.

Definition 3: (Maximum weight matching) Given two sets
of concepts c and c′ and a similarity function σ : c × c′ →
[0, 1], extract a one-to-one alignment M ⊆ c × c′, such that
for any one-to-one alignment M ′ ⊆ c × c′,

∑
(p,q)∈M

σ(p, q) ≥
∑

(p,q)∈M ′
σ(p, q)

The matching strategies can be used in the coordinate
matching phase as we described in this section, moreover these
strategies also can be used in the axis matching phase as we
discussed in next subsection.

The detailed process of calculating axis similarity is de-
scribed in Algorithm 1. In this algorithm, after matching the
coordinates come from two different axes, we filter the align-
ments with low similarity (lower than user given threshold),
then we can measure the similarity between the axes based
on aggregating the similarity of coordinates and hierarchical
difference of the concepts.

Algorithm 1 SimAxis(X,Y )
1: for each coordinate pair (Ci, Cj), Ci ∈ X and Cj ∈ Y

do
2: calculate the similarity σc(Ci, Cj) =

SimCoordinate(Ci, Cj).
3: end for
4: select coordinate pairs (Ci, Cj) into set Λ using a match-

ing strategy.
5: (optional) filter alignments in Λ with low similarity.

6: σ̄c =
1
|Λ|

∑
(Ci,Cj)∈Λ σc(Ci, Cj).

7: σa = σ̄c × |X| + |Y | − edt(X,Y )
|X| + |Y | .

8: return

Definition 4: For two axes X(C1, C2, · · · , Cn) and
Y (C ′

1, C
′
2, · · · , C ′

m), where n and m present the coordinate
number of axes X and Y respectively, the similarity between
two axes X and Y is defined as σa, and σa ∈ [0, 1].

Since an axis in a resource space can be viewed as a
hierarchical tree, we can measure the difference between

Fig. 2. A Mapping Example

two axes by measuring the tree edit distance [14] of two
hierarchical trees.

In Algorithm 1, equation σ̄c =
1
|Λ|

∑
(Ci,Cj)∈Λ σc(Ci, Cj)

represents the average coordinate similarity in mapping set Λ,
and edt(X,Y ) represents the tree edit distance between axes
X and Y .

Example 3: Suppose there are two hierarchical trees T1

and T2, their nodes and the mapping between T1 and
T2 are demonstrated in Figure 2, and with the similar-
ity σc(R1, R2) = 1.0, σc(A1, A2) = 1.0, σc(C1, C2) =
0.9, σc(E1, E2) = 0.9. Based on the mapping between T1

and T2, we can calculate the tree edit distance edt(T1, T2) =
2, which means we insert node ′B′ and delete node ′D′.
According to Algorithm SimAxis, we have σ̄c(T1, T2) = (1+
1+0.9+0.9)/4 = 0.95, then we get σa = (10−2)/10×0.95 =
0.76.

Theorem 1: If two axes X(C1, C2, · · · , Cn) and
Y (C ′

1, C
′
2, · · · , C ′

n, · · · , C ′
m) , where m ≥ n ≥ 0,

have n common coordinates, then the similarity between X
and Y σa(X,Y ) is n/m.

Proof: Without loss of generality, suppose
C1, C2, · · · , Cn and C ′

1, C
′
2, · · · , C′

n are the common
coordinates between axes X and Y , moreover we assume
that for any i ∈ [1, n], Ci = C ′

i, it means that σa(Ci, C
′
i) = 1.

Moreover, for |Λ| = n and max(|X|, |Y |) = m, thus we have
σa(X,Y ) = n/m.

Lemma 1: For any axes X , we have: 1) σa(X,X) = 1; 2)
σa(X, ∅)=0; 3) σa(∅, ∅) = 1.

This Lemma can be immediately concluded from the result
of Theorem 1.

Theorem 2: If an axis X can be split into two X1 and X2,
such that X = X1 ∪ X2, X1 ∩ X2 = ∅, |X| = n, |X1| = n1

and |X2| = n2, where 0 ≤ n1, n2 ≤ n, then we have:
1) σa(X,X1) = n1/n,
2) σa(X,X2) = n2/n,
3) σa(X,X1) + σa(X,X2) = 1;

Proof: For axes X1 and X2 are split from X , X1 and
X2 have n1 and n2 common coordinates with X respectively,
from the result of Theorem 1, we have σa(X,X1) = n1/n
and σa(X,X2) = n2/n. Moreover, since X1 ∪ X2 = X and
X1 ∩ X2 = ∅, we can conclude that |X1| + |X2| = |X|, i.e.
n1 + n2 = n, thus we have σa(X,X1) + σa(X,X2) = 1.
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D. Similarity between Resource Spaces

For the sake of simplicity, we suppose that all axes have
the same importance in a resource space model.

Definition 5: For two resource spaces
RS(X1, X2, · · · , Xn) and RS′(Y1, Y2, · · · , Ym), where
n and m present the dimension(axis) number of resource
space RS and RS′ respectively, the similarity between
resource space RS and RS′ is defined as σR.

Algorithm 2 SimResourceSpace(RS,RS′)
1: for each axis pair (Xi, Yj), Xi ∈ RS and Yj ∈ RS′ do
2: calculate the similarity σa(i, j) = SimAxis(Xi, Yj).
3: end for
4: select axis pairs (Xi, Yj) into set Δ using a mapping

strategy.
5: filter the alignments in Δ with low similarity.
6: σR = min(n/m,m/n)

∏
(Xi,Yj)∈Δ σa(Xi, Yj)

7: return

Theorem 3: If two resource spaces RS(X1, X2, · · · , Xn)
and RS′(X ′

1, X ′
2, · · · , X ′

n, · · · , X ′
m), where m ≥ n ≥ 0,

have n common axes, then the similarity between RS and
RS′ σR(RS,RS′) is n/m.

Proof: Without loss of generality, suppose that axes
X1, X2, · · · , Xn and X ′

1, X ′
2, · · · , X ′

n are the common axes
between resource space RS and RS′, for any 1 ≤ i ≤ n, we
have σa(Xi, X

′
i) = 1, due to |Λ| = n and max(|X|, |Y |) = m,

thus we have σa(X,Y ) = n/m.
Lemma 2: 1) σR(RS,RS)=1; 2) σR(RS, ∅)=0; 3)

σR(∅, ∅)=1;
This Lemma can be immediately concluded from the result

of Theorem 3.
Theorem 4: If a resource space RS(X1, X2, · · · , Xn) is

split into two resource spaces RS1 and RS2 that store the
same type of resources as that of RS and have n−1 common
axes by splitting an axis X into two axes X ′ and X ′′ such
that X = X ′ ∪ X ′′ and X ′ ∩ X ′′ = ∅, then we have:

1) σR(RS,RS1) = σa(X,X ′) ∈ [0, 1],
2) σR(RS,RS2) = σa(X,X ′′) ∈ [0, 1],
3) σR(RS,RS1) + σR(RS,RS2) = 1.

Proof: Without loss of generality, suppose
X1, X2, · · · , Xn−1 are common axes and only
axis Xn is split into two axes X ′

n and X ′′
n , thus

σa(Xn, X ′
n) ∈ [0, 1] and σa(Xn, X ′

n) ∈ [0, 1]. For
X = X ′ ∪ X ′′ and X ′ ∩ X ′′ = ∅, according to
Theorem 1, we have σa(Xn, X ′

n)+σa(Xn, X ′
n) = 1.

Moveover, in this circumstance, since min(n/m,m/n) = 1
and σa(Xi, X

′
i) = 1 (1 ≤ i ≤ n − 1), we have

σR(RS,RS1) = σa(Xn, X ′
n), σR(RS,RS2) = σa(Xn, X ′′

n)
and σR(RS,RS1) + σR(RS,RS2) = 1.

Theorem 5: If a resource space RS(X1, X2, · · · , Xn) can
be disjoined into two resource spaces RS1 and RS2 (denoted
as RS ⇒ RS1 ·RS2) that specify the same type of resources
as that of RS and have m(1 ≤ m ≤ min(|RS1|, |RS2|) < n)
common axes and n−m different axes, and |RS| = |RS1|+
|RS2| − m, then we have:

1) σR(RS,RS1) = |RS1|/n,
2) σR(RS,RS2) = |RS2|/n,
3) σR(RS,RS1) + σR(RS,RS2) − m/n = 1.

Proof: Since RS1 and RS2 are disjoined from RS, thus
RS1 and RS2 have |RS1| and |RS2| common axes with RS
respectively. For any axis X in RS1 or RS2 we can find X ′

which σa(X,X ′) = 1, thus σR(RS,RS1) = |RS1|/n and
σR(RS,RS2) = |RS2|/n. Moveover, since |RS| = |RS1| +
|RS2| −m, we have σR(RS,RS1) + σR(RS,RS2)−m/n =
(|RS1| + |RS2|)/n − m/n = 1.

Example 4: Suppose we have a resource space
RS(X1, X2, X3, X4, X5) with five different axes, RS
can be disjoined into two resource spaces RS1(X1, X2, X3)
and RS2(X1, X2, X4, X5), so RS1 and RS2 have 2 common
axes and 5 − 2 = 3 different axes. According to Theorem
5, we have: σR(RS,RS1) = 0.6, σR(RS,RS2) = 0.8, and
σR(RS,RS1) + σR(RS,RS2) − 2/5 = 1.

Lemma 3: If σR(RS,RS1) = a, σR(RS,RS2) = b, where
a, b ∈ [0, 1], then σR(RS1, RS2) ∈ [max(0, a + b − 1), 1];

Proof: If a+b ≤ 1, the possible value of σR(RS1, RS2)
is in the interval [0, 1], and if a+b > 1, σR(RS1, RS2) is in the
interval [a+b−1, 1]. More specifically, in those two cases, no
matter whether a+b is greater or less than 1, σR(RS1, RS2) =
1 when RS1 = RS2. Combining above two cases, we can
conclude that σR(RS1, RS2) ∈ [max(0, a + b − 1), 1].

E. Complexity Analysis

Since the number of axis is far less than the number of
coordinate, the main computational burden lies on step 1, step
2 and the coordinate matching procedure among the whole
processes.

In step 1, we need calculate similarity of each coordinate
pair. Suppose there are total n1 and n2 coordinates in two
different axes which belong to different resource spaces. We
should calculate n1n2 different pairs in the worst case. In co-
ordinate matching process, if we use stable marriage matching
strategy, the computation complexity is O(min(n1, n2)n1n2).

In step 2, we need calculate the tree edit distance. Although
it has been proven that, if the trees are not ordered, the problem
is NP-complete [14], there are serval practical applications
that can be modelled using restricted formulations of it. For
example, the first algorithm for the mapping problem was
presented in [16], and its complexity is O(n1n2h1h2), where
n1 and n2 are the sizes of the trees and h1 and h2 are
their heights. This is a dynamic programming algorithm that
recursively calculates the edit distance between the strings
formed by the sets of children vertices of each internal vertex
in the tree. In [17], an algorithm was presented with cost
(d2n1n2min(h1, l1)min(h2, l2)), where d is the edit distance
between trees and l1 and l2 are the number of leaves in each
tree. In [19], the top-down edit distance problem with cost
O(n1n2) was proposed. Thus, the computational complexity
of calculating the similarity between two axes is approximately
O(min(n1, n2)n1n2).

Further, the whole computational complexity for eval-
uating the similarity between two resource spaces is
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Fig. 3. A fragment of the ontology in OAEI benchmark package

∑|RS1|
i=1

∑|RS2|
j=1 O(min(ni, nj)ninj), where |RS1| and |RS2|

represent the dimensions.

V. EXPERIMENTS

We implement the our framework using Jena4 Package. It
provides a programmatic environment for RDF, RDFS and
OWL, SPARQL and includes a rule-based inference engine.
Since there is no resource space data set yet, we built re-
source spaces from transforming existing ontologies. We select
Ontology Alignment Evaluation Initiative (OAEI) benchmark
systematic suite5 which has been used to evaluate different
ontology matching techniques.

A. Data Set

Ontology Alignment Evaluation Initiative benchmark sys-
tematic suite is an artificial data set built from one OWL
ontology on bibliography topic. It contains 33 named class,
24 object properties, 40 data properties, 56 named individuals
and 20 anonymous individuals. Figure 3 shows a fragment of
OAEI ontologies benchmark. The picture is created by using
Java package Protégé6 and Jambalaya7.

The table below summarizes what has been retracted from
the reference ontology. There are here 6 categories of alter-
ation: Name of entities that can be replaced by (R/N) random
strings, (S)ynonyms, (N)ame with different conventions, (F)
strings in another language than english. Comments Comments
can be (N) suppressed or (F) translated in another language.
Specialization Hierarchy can be (N) suppressed, (E)xpansed
or (F)lattened. Instances can be (N) suppressed Properties can
be (N) suppressed or (R) having the restrictions on classes
discarded. Classes can be (E)xpanded, i.e., replaced by several
classes or (F)latened.

4http://jena.sourceforge.net/
5http://oaei.ontologymatching.org/
6Protégé: http://protege.stanford.edu/.
7Jambalaya: http://www.thechiselgroup.org/jambalaya.

B. Experimental Results

A fraction of experimental results is shown in Table III.
In Table III column 2, 3 and 4 list the similarity between
corresponding axes, the number in parenthesis indicates the
coordinate number of its axis, and the similarity between each
resource space and Test 101 are shown in the last column.

From the experimental results, we can conclude that: 1)
the similarity between resource spaces can partially reflect the
overall similarity between their corresponding ontologies. 2)
The accuracy of measuring similarity between resource spaces
is highly depended on the accuracy of the coordinate matching.
However, we can improve the accuracy by using the alignment
result of ontology matchings.

VI. CONCLUSIONS AND FUTURE WORK

A Web Resource Space Model is a semantic data model for
specifying, storing, managing and locating Web resources by
appropriately classifying the contents of resources. For the task
of detecting and retrieving relevant RSMs, one needs means
for measuring the similarity between RSMs on a canonical
scale. This paper proposes a general framework to measure
the similarity between RSMs, we break down the overall task
and capture the similarity of resource space models into three
different levels, i.e. the coordinate, the axis and the overall
resource space. The theoretical properties of the similarity of
RSMs are analyzed, including on Join, Disjoin, Merge, Split
operations. The empirical tests on OMEI benchmark data set
are also given.

For simplifying the discussion, in this paper we ignore the
instances in resource spaces, however our current model can
be extended by comparing the instance difference between
resource space models and it belongs to our next research
agenda. Another future direction of our work includes
expending current framework to evaluating the similarity
between Extended Resource Space Models [24] which can
deal with the uncertainty in resource classification and
resource operation by incorporating probability concepts.
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