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Abstract—Determining similarity between trees is an impor-
tant problem in a variety of areas. The subtree similarity-search
problem is that of finding, given a tree Q and a large set of
trees Γ = {T1, . . . , Tn}, the subtrees of trees among Γ that are
most similar to Q. Similarity is defined using some tree distance
function. While subtree similarity-search has been studied in the
past, solutions mostly focused on specific tree distance functions,
and were usually applicable only to ordered trees. This paper
presents an efficient new algorithm that solves the subtree
similarity-search problem, and is compatible with a wide family
of tree distance functions (for both ordered and unordered trees).
Extensive experimentation confirms the efficiency and scalability
of the algorithm, which displays consistently good runtime even
for large queries and datasets.

I. INTRODUCTION

Tree structured data is used extensively in many fields.
Comparing two given trees to determine their similarity is
highly important in a variety of contexts, including applications
in natural language processing [1], document similarity [2],
medical image processing [3], comparison of RNA secondary
structures [4], quantifying neuronal morphology [5], discover-
ing and comparing shape classes [6], [7], character recognition
[8], similarity joining and querying of XML documents [9]–
[11], and information extraction [12].

In past work, many different functions have been devised
which take two trees and return a measure of their distance.
The cost of calculating these functions varies, ranging from
simple linear time algorithms, to algorithms which must solve
NP-hard problems. One way of measuring tree similarity is tree
edit distance [13]. The tree edit distance between two trees is
the minimal cost of applying edit operations (node insertion /
deletion / renaming) in order to transform one tree to the other,
where each edit operation is associated with a certain cost. As
such, tree edit distance is NP-complete for unordered trees,
and computable in polynomial time for ordered trees. Other
tree distance functions were developed which are quicker to
evaluate (often yielding near-linear runtime), such as pq-gram
distance [14] or binary branch distance [15], among many
others. Such functions usually summarize certain tree features
and then compare them to derive a distance measure. Methods
that run in linear time for comparing trees were proposed
in [16].

An important problem that arises when dealing with tree
structured data, is to locate fragments of trees in a database
which are similar to a given sample tree (according to some
distance function). Usually, one of the following variations is
considered:

• Tree-to-tree similarity-search: Given a tree Q and a
database of trees Γ = {T1, T2, . . . , Tn}, find the trees
Ti most similar to Q.

• Subtree similarity-search1: Given a tree Q and a
database of trees Γ = {T1, T2, . . . , Tn}, find the
subtrees of trees Ti, which are most similar to Q.

We note that both variations are also useful in solving the
approximate join problem, in which, given two sets of trees
Γ1,Γ2, we wish to output a join of their members based on
some upper bound on the distance between joined trees.

Subtree similarity-search is generally harder to solve than
tree-to-tree similarity-search (as it must consider many more
trees) and is the focus of this paper. Specifically, we will be
focusing on finding the top-k most similar subtrees in the
database, to a given query tree.

There has been substantial research on tree-to-tree
similarity-search, particularly in the context of approximate
joins. Past work includes [15], [17], [18], which use the tree
edit distance measure, but leverage upper and lower bounds
to perform filtering, in order to reduce the number of edit
distance computations. A different tree distance function for
ordered trees, called pq-grams, was proposed in [19], as a
possible replacement to tree edit distance, with a significantly
lower runtime. This measure was extended to unordered trees
in [20].

There has also been some previous work on subtree
similarity-search, specifically for tree edit distance over or-
dered trees. In particular, [9] solves subtree similarity-search
using tree edit distance by presenting a clever algorithm that
traverses the tree in post-order, while attempting to minimize
the number of edit distance computations needed (with mem-
ory use depending only on the size of input from the user).
Using a different approach, [21] solves the subtree similarity-
search problem for unit-cost tree edit distance, by leveraging
structural regularities in the database trees and heavily relying
on index structures. We note that both of these methods require
non-linear computations, due to the nature of the tree edit
distance function.

It is noteworthy that all of the aforementioned solutions
(other than [16]) are tailored for a specific tree distance
function.2 On the other hand, in this paper we present an
algorithm for solving the subtree similarity-search problem,

1This problem is sometimes called approximate subtree matching [9], [10].
2We note that [18] gives a general algorithm but focuses on tree edit distance

in the paper.



a

Tree TA

b

c

b

u d c v

e

a

Tree TB

b

e d

Fig. 1: Two trees TA and TB .

which is compatible with a wide family of tree distance
functions, which we call composite profile distance functions.
As composite profile distance functions are generally of lower
complexity than tree edit distance, our algorithm is highly
efficient in practice. In addition, in our solution, the trees
may be ordered or unordered, depending only on limitations
imposed by the distance function used. Our algorithm traverses
over the database in near-linear time, with small memory usage
dominated mostly by the size of the user query (up to a factor
determined by the distance function used) and by the maximal
height of a tree in the database.

Our algorithm is applicable to any distance function that
can be formulated as a composite profile distance function.
In particular, as this is the case for pq-grams [14], windowed
pq-grams [20] and binary branch distance [15], our algorithm
is also the first solution for subtree similarity-search for these
measures. To summarize, the main contributions of this paper
are:

• We introduce a coherent framework for the subtree
similarity-search problem, capable of expressing a
large general family of tree distance functions, called
composite profile distance functions.

• We show how several tree distance functions consid-
ered in the past can be cast within our framework.

• We present an efficient algorithm for solving the sub-
tree similarity-search problem for composite profile
distance functions, that runs in time that is close to
linear.

• We experimentally prove the efficiency and scalability
of our algorithm over both real and synthetic datasets.

II. METHODS FOR MEASURING TREE DISTANCE

A variety of methods for computing the distance between
trees have been developed. One well-known measure is tree
edit distance, which is computable in polynomial time for
ordered trees, and is NP-complete for unordered trees [13].
Unfortunately, even for ordered trees, computing tree edit
distance is not always feasible. If the trees are very large, the
runtime becomes prohibitively high.

For this reason, many other functions that measure distance
between trees have been proposed, which have better runtime
— often linear in the size of the input. Next, we will review a
few such functions informally. As will become apparent later,
our algorithm solves the subtree similarity-search problem for
a large family of functions, including those discussed here.

A. pq-gram Distance

First presented in [14], pq-gram distance is a tree distance
function for ordered trees, in which the main idea is to break
down trees into constant-sized fragments called pq-grams,
which represent both tree structure and content.

Given a tree T and two integers p, q > 0, the tree is
extended with new nodes having special new labels (denoted ∗)
according to the parameters p, q, by (1) adding p−1 ancestors
to the root, (2) adding q−1 children before each first child and
after each last child and (3) adding q children to each leaf node.
Then, the extended tree is decomposed into many small con-
nected subgraphs having p + q nodes (v1, . . . , vp; v

′
1, . . . , v

′
q)

where v1, . . . , vp is a path of parent-child nodes and v′1, . . . , v
′
q

are consecutive children of vp. These subgraphs are called pq-
grams. Finally, the multiset of string representations of these
pq-grams is used to represent the content and structure of the
original tree. We denote this multiset by φt

p,q(T ). Next, given
two trees, [14] measures their similarity by comparing their
pq-gram multisets using the formula in the following example.

Example 2.1: Consider the trees TA, TB shown in Fig-
ure 1. Their corresponding pq-gram multisets (for p = 2, q =
1) are:

φt
2,1(TA) = {{(*, a; b), (*, a; b), (*, a; e), (a, b; c), (a, b; d),

(a, b; c), (a, e; *), (b, c; *), (b, d; *), (b, c; *)}}
φt
2,1(TB) = {{(*, a; b), (a, b; e), (a, b; d), (b, e; *), (b, d; *)}}

Using the following normalized pq-gram distance function [14]
to calculate the distance between TA, TB ,

|φt
2,1(TA) ⊎ φt

2,1(TB)| − 2|φt
2,1(TA) C φt

2,1(TB)|
|φt

2,1(TA) ⊎ φt
2,1(TB)| − |φt

2,1(TA) C φt
2,1(TB)|

we obtain a distance value of 15−2·3
15−3 = 0.75. Note that this

distance formula is normalized to the range [0, 1]. A non-
normalized version has also been defined in [14].

As shown in [14], the pq-gram distance can be used as a
lower bound on fanout weighted tree edit distance, which is a
variant of tree edit distance that is defined in the same paper.

Several variations to the pq-gram distance have been pro-
posed in [22]. These attempt to give special attention to text
nodes in the context of XML document trees, by defining the
tree’s multiset elements for text data differently.

B. Windowed pq-gram Distance

Recall that pq-gram distance is well-defined only for or-
dered trees. This function has been extended to deal with
unordered trees, with the introduction of windowed pq-grams
in [20]. In this variation, sibling nodes in the tree are first
sorted, and then a procedure which is reminiscent of pq-gram
generation is performed. For instance, in the tree TA from Fig-
ure 1, the sibling nodes u, v are first sorted lexicographically by
their labels so that v will appear before u, and then a procedure
which extends the tree with new nodes (labeled ∗) takes place,
followed by extraction of tuples of nodes from this extended
tree. The result is a multiset of fragments which provide an
order-agnostic representation of the tree. Once again, [20]
measures tree similarity by comparing the multisets associated
with two given trees.



C. Binary Branch Distance

A different tree distance function for ordered trees, called
binary branch distance, was introduced by [15]. Intuitively,
to compare trees T and S using binary branch distance, one
first transforms T and S into binary trees, and then compares
subcomponents of these binary trees one with another.

To be more precise, each node v in T will correspond to a
node v′ in the binary version T ′ of T . The left child of v′ is
the node u′ corresponding to the first child u of v in T . The
right child of v′ is the node w′ corresponding to the next right
sibling w of v in T . (If v has no children or no right sibling,
a ∗-labeled node is added to the binary tree instead.)

Next, [15] associates a binary branch with each node v in
T , which is simply a tuple (l(v); l(vl), l(vr)) where l(v) is the
label of a node v, and vl, vr are the left and right children of
v, respectively, in the binary version T ′ of T . The multiset of
all binary branches of all of nodes in T is denoted φt

BiB (T ).
Similarly to pq-distance, [15] calculates the similarity between
two given trees by comparing their associated multisets.

In [15] it is shown that the binary branch distance can be
used as a lower bound on tree edit distance.

Example 2.2: Consider the trees TA, TB shown in Figure 1
and their binary branch multisets:

φt
BiB (TA) = {{(c; *, *), (b; c, b), (d; *, c), (c; *, *),

(b; d, e), (e; *, *), (a; b, *)}}
φt
BiB (TB) = {{(e; *, d), (d; *, *), (b; e, *), (a; b, *)}}

To calculate the distance between TA and TB , [15] uses a
procedure equivalent to obtaining the symmetric difference of
the multisets,

|φt
BiB (TA) ⊎ φt

BiB (TB)| − 2|φt
BiB (TA) C φt

BiB (TB)|

thereby deriving a value of 11− 2 · 1 = 9. Note that unlike in
Example 2.1, the formula used to calculate distance between
the two multisets is not normalized.

D. Commonalities Among Similarity Functions

In this section we briefly surveyed 4 functions. The first,
tree edit distance, makes a rather complicated analysis of two
given trees in order to measure their similarity. The rest of
the functions significantly reduce the complexity of measuring
similarity, by using a two-phase method:

• Phase 1: Summarize the interesting features of each
tree using a multiset.

• Phase 2: Measure the distance between multisets of
different trees using some multiset distance function.

The aim of this paper is to find a general algorithm for subtree
similarity-search that is suitable for functions that work in
two such phases. We define the precise framework in the next
section.

III. FORMAL FRAMEWORK

We present the necessary formal definitions. We start by
introducing some notation for trees and multisets. Then, we
present two notions needed to compare trees: (1) tree profile
functions, used to summarize a tree as a multiset, and (2)
multiset-distance functions used to compare multisets. Using
these two types of functions, we will be able to formally define
the problem of interest.

A. Trees and Multisets

We use Σ to denote an infinite alphabet of labels. If T =
(V,E) is a directed labeled tree, we use r(T ) to denote the
root of T , and l(v) ∈ Σ to denote the label of a node v ∈ V .
We use height(T ) to denote the height of T , i.e., the number
of nodes on the longest path from the root of T to a leaf node.
We will use V(T ) to denote the nodes of T . We denote the
number of nodes |V(T )| in the tree by |T |. Given a node v, we
denote by Tv the subtree whose root is v. Finally, we denote by
SubTrees(T ) the set of all subtrees of T , i.e., SubTrees(T ) =
{Tv | v ∈ V(T )}. Note that T ∈ SubTrees(T ).

In this paper we often use multisets. We will usually use
the letter x to denote elements in a multiset. We denote the
number of times an element x appears in a multiset M by
|M |x. We denote the multiset union and multiset intersection
between two multisets M1,M2 by M1 ⊎M2 and M1 C M2,
respectively. For each element x that appears at least once in
either M1 or M2, it holds that x appears |M1|x+ |M2|x times
in the multiset M1 ⊎M2, and x appears min {|M1|x, |M2|x}
times in the multiset M1 C M2.

B. Tree Profile Functions

Similarity between trees can be defined in a variety of
ways, as demonstrated in Section II. Many similarity measures
have been defined that compare trees by utilizing some type
of structural summary of the tree. We call such a structural
summary a profile, and it is defined formally next.

Definition 3.1: A tree profile function φt is a function that
takes a tree T as its input, and returns a multiset of objects.
This multiset φt(T ) is called the profile of T .

Example 3.2: Given a tree T , consider the tree profile
function φt

lab(T ) which returns the multiset of all labels of
nodes in T , i.e.,

φt
lab(T ) = {{l(v) | v ∈ V(T )}} .

Consider the tree TA in Figure 1. It holds that φt
lab(TA) =

{{c, b, d, c, b, e, a}}. Note that comparing the multisets φt
lab(S)

and φt
lab(T ) for two trees S and T disregards all structural

information in the trees, as such information is ignored by
φt
lab .

Other tree profile functions, which do give importance to
structural information in the tree, include φt

p,q (the pq-gram
profile of a tree [14]), φt

BiB (the binary branch profile of a
tree [15]), and the windowed pq-grams profile of a tree [20],
among others. These functions were introduced in Section II.

In principle, tree profile functions can be defined arbitrarily.
We note that many previously studied tree profile functions



display a certain type of locality, which can be very helpful
when devising algorithms that compare the values of tree
profile functions for multiple trees. The simplest type of
locality is when the tree profile function can be computed by
locally considering each node in the tree, as follows.

Definition 3.3: Let T be a tree. A function φv is a vertex
profile function if it takes as input a node v ∈ V(T ) and
returns a multiset of objects.

Let V be a set of nodes and φv be a vertex profile function.
For the sake of readability, we will use the following notation
throughout the paper: φv(V ) =

⊎
v∈V φv(v).

Definition 3.4: A tree profile function φt is simple if
there exists a vertex profile function φv such that φt(T ) =
φv(V(T )).

It is quite easy to see that φt
lab is simple. However, there

are tree profile functions of interest that are not simple. As we
will also be interested in such functions, we define a wider
class of tree profile functions, called composite tree profile
functions.

Definition 3.5: Let T be a tree. A tree profile function
φt is composite if there exist two vertex profile functions
φv
local , φ

v
global such that:

φt(T ) = φv
local(r(T )) ⊎ φv

global(V(T ) \ {r(T )}) . (1)

Thus, a composite tree profile function uses one function
to summarize the root r(T ) of the tree and a different function
to summarize the remainder of the nodes. Observe that every
simple tree profile function is also a composite tree profile
function, but the opposite is not always the case.

Example 3.6: The function which maps a tree to its pq-
gram profile [14] is composite. Let T be a tree, and let v ∈
V(T ). We define φv

global(v) as all pq-grams of T that have v
as their root, and we define φv

local(v) as the multiset union of
φv
global(v) with the multiset of all pq-grams of the subtree Tv

that contain a prefix of ∗-labeled nodes. See Figure 4 for an
example.

In a similar fashion, the function mapping a tree to its
profile of windowed pq-grams [20] can be shown as composite.

The function which maps a tree to its profile of binary
branches [15] is also composite. For each node v we define
φv
global(v) = {{(l(v); l(vl), l(vr))}} where vl is the first (left-

most) child of v (or a ∗-labeled node if v is a leaf), and vr is
leftmost right sibling of v (or a ∗-labeled node if v has no right
siblings). We also define φv

local(v) = {{(l(v); l(vl), ∗)}}, since
in the subtree rooted in v, v does not have a right sibling.

Remark 3.7: We note that while the difference between
simple and composite profile functions may not be clear at
first, the definition of composite profile functions is helpful in
the context of subtree similarity-search. For a given tree T ,
each node v ∈ V(T ) is the root of the subtree Tv, and since a
composite profile function associates a different φv

local(v) for
each node in the tree, this allows us to define a unique profile
multiset for every subtree Tv ∈ SubTrees(T ), rather than just
using a multiset-union over all multisets of descendant nodes,
as in simple profile functions.

C. Profile Distance Functions

Given trees S and T , and a specific tree profile function φt,
we can derive the profiles φt(S), φt(T ), of these trees. Recall
that profiles are simply multisets. Next, we define multiset
distance functions, that are used to compute the distance
between multisets, and thus, can be used to compare the
profiles φt(S) and φt(T ) of trees S and T .

Definition 3.8: Given multisets M1 and M2, a multiset-
distance function d(M1,M2) returns a number signifying the
distance (i.e., the dissimilarity) of M1 and M2. In addition, we
require that d(M1,M2) can be computed from the sizes |M1|,
|M2| and the multiset intersection size |M1 C M2|. In other
words, there exists a function d∗ which takes 3 integer argu-
ments, such that d(M1,M2) = d∗(|M1|, |M2|, |M1 C M2|).

Requiring our multiset-distance functions to be computable
using |M1|, |M2|, |M1 C M2| may seem rather limiting at
first. However, as the following example demonstrates, well-
known measures for comparing multisets can be defined in this
manner.

Example 3.9: Different functions for comparing multisets
have been defined in the past, and used in a variety of areas.
One well known example is Dice difference [23] , defined as

Dice(M1,M2) = 1− 2|M1 C M2|
|M1 ⊎M2|

.

Another well known example is the Tversky index [24],
defined as

Tversky(M1,M2) =

1− |M1 C M2|
|M1 C M2|+ α|M1 \M2|+ β|M2 \M1|

where α, β ≥ 0 are parameters, usually defined such that
α + β = 1. The parameters α, β let us assign weights that
determine, in a sense, how important it is that M1 C M2

contains elements from each of the two multisets, in an
asymmetric manner.

We note that it holds that |M1 ⊎ M2| = |M1| + |M2|,
and |M1 \M2| = |M1| − |M1 C M2|. Hence, both Dice and
Tversky are multiset-distance functions. Many other multiset
distance functions exist.

Combining the notions of tree profile functions and multiset
distance functions, we define a profile distance function.

Definition 3.10: A profile distance function D is a tuple
(φt, d) where φt is a tree profile function, and d is a multiset-
distance function. Given two trees S, T , we define D(S, T ) =
d(φt(S), φt(T )).

D. Problem of Interest

Given a profile distance function D, a quantity bound k ∈
N, a corpus of (large) trees Γ = T1, . . . , Tn and a (small) tree
of interest Q, we are interested in finding the k subtrees of trees
in Γ most similar to Q. In the following, we use SubTrees(Γ)
to denote ∪T∈ΓSubTrees(T ).

Problem 1: The top-k subtree similarity-search problem is
to return a set of trees Topk(Q,Γ) which satisfies the following
two conditions:



• Size is k (if possible):

|Topk(Q,Γ)| = min {k, |SubTrees(Γ)|}

• Contains the best subtrees: for every pair of trees
S1, S2 ∈ SubTrees(Γ), if
◦ S1 ∈ Topk(Q,Γ) and
◦ S2 /∈ Topk(Q,Γ),

then D(Q,S1) ≤ D(Q,S2).

Specifically, we are interested in solving the subtree
similarity-search problem for cases in which the profile dis-
tance function uses a composite tree profile function.

In the remainder of this paper, we will refer to Q as the
query and Γ as the database. To simplify the presentation,
we will assume that Γ contains a single tree. Lifting this
assumption is straightforward.

The subtree similarity-search problem for a composite
profile distance function D = ((φv

local , φ
v
global), d) can trivially

be solved in polynomial time, if φv
local , φv

global and d are
computable in polynomial time. To see how, recall that Γ
defines a linear number of subtrees—one for each node of
each tree T in Γ. For each such subtree S, we can compute
the values φv

global for all its nodes, and the value φv
local for its

root. Given a similar computation of the profile for Q, we can
then compute the multiset-distance function d for the profiles
of each subtree. Finally, we choose the k subtrees with the
smallest distance value.

While the above procedure is polynomial in time, it is
highly inefficient in practice as it repeatedly considers trees and
their contained subtrees. In the following sections we present
an algorithm that is considerably faster, and hence, is feasible
in practice.

IV. A DYNAMIC PROGRAMMING ALGORITHM

We start by considering a dynamic programming solution
to the subtree similarity-search problem for composite tree
profile functions. The algorithm DynamicSearch in Figure 2
receives as input a query Q, a (large) tree T , and a quantity
bound k. Additionally, the algorithm is given a profile distance
function D = (φt, d). We require φt to be a composite tree
profile function, and thus we denote it as (φv

local , φ
v
global).

As we show in Section V, the runtime of this algorithm
can be improved significantly. Nevertheless, we start off by
explaining this simplified algorithm in order to help clarify
the operation of the more sophisticated one later, as the two
algorithms operate similarly.

A. Data Structures and Conventions

The algorithm DynamicSearch uses both hash-maps and a
bounded priority queue as basic data structures. We review
the use of these items, as well as the notation employed, next.

Hash-maps: For a hash-map object m, we denote the value
which is associated by the map to the key x, by m[x]. The
set of all valid keys in a map m is denoted by m.keys . The
algorithm DynamicSearch uses two types of hash-maps:

Algorithm DynamicSearch(Q,T, k,D)
1. QueryQueues ← getQueryQueues (Q)
2. Sizes ← new HashMap
3. Results ← new BoundedPriorityQueue(k)
4. for each v ∈ V(T ) in post-order:
5. global ← IntersectGlobal(QueryQueues, v, φt)
6. local ← IntersectLocal(QueryQueues, v, φt)
7. intersect ← global + local
8. vProfileSize ← Sizes[v] + |φv

local(v)|
9. δ ← d(|φt(Q)|, vProfileSize, intersect)
10. Results.boundedAdd(⟨δ, v⟩)
11. for each x ∈ φv

global(v) s.t. x ∈ φt(Q):
12. u ←QueryQueues[x].dequeue()
13. QueryQueues[x].enqueue(v)
14. add (Sizes[v] + |φv

global(v)|) to Sizes[v.parent ]
15. free the memory allocated for Sizes[v]
16. return Results

Algorithm IntersectGlobal(QueryQueues, v, φt)
1. count ← 0
2. for each distinct x ∈ φt(Q):
3. i ← |φt(Q)|x
4. while (i > 0 and

QueryQueues[x].elemAt(i) ̸= ⊥ and
lca(QueryQueues[x].elemAt(i), v) = v):

5. decrement i
6. increment count
7. return count

Algorithm IntersectLocal(QueryQueues, v, φt)
1. count ← 0
2. for each distinct x ∈ φv

local(v) s.t. x ∈ φt(Q):
3. i ← 1
4. while i ≤ min {|φt(Q)|x, |φv

local(v)|x} and
(QueryQueues[x].elemAt(i) = ⊥ or
lca(QueryQueues[x].elemAt(i), v) ̸= v):

5. increment i
6. increment count
7. return count

Fig. 2: A dynamic algorithm for subtree similarity-search.

• Profile Values to Queues: The algorithm uses a hash-
map QueryQueues . This map takes each unique value
x ∈ φt(Q), and maps it to a fixed-size queue
QueryQueues[x] whose capacity is |φt(Q)|x. Each
such queue is initialized to contain |φt(Q)|x members,
all of which are null placeholder items, denoted ⊥. See
Figure 3 for an example. In Line 1, we assume the
existence of a function getQueryQueues that receives
as input a tree Q, and returns such a hash-map.
We assume that it is possible to perform random-
access reads over the elements of the queues in
QueryQueues , using the queue’s elemAt function. A
queue’s head (the next item to be returned when the
queue’s dequeue operation is performed) is always
assumed to be at index 1, and subsequent queued
elements reside at the indices 2, 3, . . . , |φt(Q)|x.

• Nodes to Counters: The hash-map Sizes takes a node
as key, and maps it to an integer value. This value
is used in calculating the size |φt(Tv)| for all nodes
v ∈ V(T ). To simplify the pseudocode presented here,



given a node v, if v /∈ Sizes.keys and we attempt
to access the value Sizes[v], then a value of 0 is
automatically allocated and assigned to the key v in
the map. In other words, for all v /∈ Sizes.keys , v is
implicitly mapped to a default value of 0.

Bounded Priority Queue: In Line 3, Results is a priority queue,
limited to hold at most k entries. Each entry in the queue is a
tuple ⟨δ, v⟩, where v ∈ V(T ) is a node, and δ = D(Q,Tv) is
the distance between the tree Q and the subtree Tv rooted at v,
as determined by the profile distance function D. Entries with
a lower distance value are given precedence in this priority
queue, and the function boundedAdd ensures only the best k
entries seen so far are stored.

B. Overview of the Algorithm

After initializing the necessary data structures (Lines 1–
3), DynamicSearch iterates in post-order3 over all nodes v ∈
V(T ). For each node v ∈ V(T ) we wish to obtain the value
D(Q,Tv), and add v to Results , if this value is among the k
best that we have seen so far.

As D uses a multiset-distance function to calculate distance
between trees, in order to calculate the valueD(Q,Tv) we need
to know the sizes of the intersection |φt(Q)Cφt(Tv)| and the
profile sizes |φt(Q)|, |φt(Tv)|. DynamicSearch assumes that
|φt(Q)| is already computed before the algorithm begins.

Following Equation (1), due to the fact that φt is a
composite tree profile function, for all w ∈ V(T ) it holds4

that:

|φt(Tw)| = |φv
local(w)|+

∑
u∈V(Tw)\{w}

|φv
global(u)|.

The hash-map Sizes is used to perform this calculation
for all w ∈ V(T ), as we traverse the tree T in post-
order. At the end of each iteration (Lines 14–15) we add
Sizes[w] + |φv

global(w)| to Sizes[w.parent ] and release the
memory for Sizes[w]. Thus, it holds that when we reach the
algorithm’s iteration over the parent v of w, in Line 8 we
have Sizes[v] =

∑
u∈V(Tv)\{v} |φ

v
global(u)|, and therefore the

variable vProfileSize gets the correct value of |φt(Tv)|.

The remainder of the algorithm DynamicSearch is ded-
icated to computing D(Q,Tv) by deriving the sizes of the
intersection |φt(Q) C φt(Tv)|, for each node v, as described
next.

Due to the process which takes place in Lines 11–13
(this process will be explained later), at the beginning of
each iteration over v, it holds that QueryQueues contains all
the information needed to compute the size of the multiset
intersection |φt(Q) C φt(Tv)|. To see why, consider some
x ∈ φt(Q). The queue QueryQueues[x] contains, among
other elements, nodes from the subtree rooted at v that have
x in their global profile (this is achieved by Line 13). The
contents of the queue are ordered in a fashion that enables us
to easily infer data regarding the size of the intersection. More
specifically, the queue QueryQueues[x] contains, from head

3We note that if the profile distance function that is used is compatible with
unordered trees, then we arbitrarily assign an order on sibling nodes.

4The equation holds since we are using multiset operations.

to tail, a possibly empty prefix of ⊥ elements, followed by a
suffix of nodes u ∈ V(T ) \ {v}, ordered by increasing post-
order. These nodes u all have x in their φv

global profile. Since
the nodes are sorted by post-order, we obtain that any nodes
u in the queue such that u /∈ V(Tv) must all reside in a prefix
of the non-⊥ elements in the queue. Thus, QueryQueues[x]
contains a prefix of ⊥ and nodes from outside the current
subtree, followed by a suffix of the nodes from the current
subtree that have x in their profile. In case more than |φt(Q)|x
instances of x exist in φv

global(V(Tv) \ {v}), we would only
keep the last |φt(Q)|x instances we have seen.

The procedures IntersectGlobal and IntersectLocal extract
information from the queues, to calculate the intersection size.
Note that for a node u such that u comes before v in post-order
(or u = v), it holds that u ∈ V(Tv) if and only if lca(u, v) = v,
where lca(u, v) is the lowest common ancestor of u and v. This
fact is used in both IntersectGlobal and IntersectLocal.

IntersectGlobal goes over all distinct elements x ∈ φt(Q).
Each unique element x appears in at most one iteration here,
as we only iterate over distinct elements of the multiset. Each
such element x is a key of the hash-map QueryQueues . For
each queue in QueryQueues , searching from its tail to its
head, IntersectGlobal finds where the suffix of nodes u ∈
V(Tv)\{v} starts. In Line 7 of IntersectGlobal, the sum of all
suffix sizes is exactly count = |φt(Q)Cφv

global(V(Tv) \ {v})|.

IntersectLocal goes over all distinct elements x in φv
local(v)

such that x ∈ φt(Q). For each such x, the size of the prefix
of the queue QueryQueues[x] that contains nodes u /∈ V(Tv)
(or ⊥), is exactly the number of appearances of x in φt(Q)
that are not already assigned to some node u ∈ V(Tv) \ {v}.
We add to a counter, the minimum between the size of this
prefix and |φv

local(v)|x. Thus, in Line 7 of IntersectLocal, we
return count = |(φt(Q) \ φv

global(V(Tv) \ {v})) C φv
local(v)|.

Hence, in Line 7 of DynamicSearch, we have

intersect = |φt(Q) C φv
global(V(Tv) \ {v})|+

|(φt(Q) \ φv
global(V(Tv) \ {v})) C φv

local(v)| (2)

which is precisely |φt(Q) C φt(Tv)|.

Line 9 of DynamicSearch computes the distance of Tv from
Q using the values |φt(Q)|, |φt(Tv)|, |φt(Q)Cφt(Tv)|. Finally,
Line 10 adds the new result to the priority queue of results.

In Lines 11–13, we iterate over the values x in φv
global(v)

that are common with φt(Q). Note that we will iterate several
times for the same value x if it appears several times in
φv
global(v). In Lines 12–13, we dequeue the node u at the

head of the queue for x (it is possible that u = ⊥), and
insert v to the queue’s tail, indicating that v has the value x
in its φv

global profile. This process ensures that the properties
of QueryQueues which were mentioned earlier persist in the
algorithm’s next iterations.

After iterating over all of V(T ), the main loop finishes. In
Line 16, the best results are returned.

C. A Sample Run of the Algorithm DynamicSearch

We demonstrate a sample run of the algorithm Dynamic-
Search using the query Q from Figure 3 and the database T



u2 b

u1 c

x QueryQueues[x]

(*, b; c) → ⊥
(b, c; *) → ⊥

Fig. 3: A tree Q, and a table which shows for each pq-gram
label tuple x ∈ φt

2,1(Q), the queue QueryQueues[x]. Each
queue is initialized with placeholder ⊥ elements, and is filled
up to its maximal capacity |φt

2,1(Q)|x. In this example, Q
is very simple and results in only 2 queues, both having a
capacity of 1.

a

v6

b v2

c

v1

b v5

d

v3

c

v4

v ∈ V(T ) φv
local(v) φ

v
global(v)

v1 (*, c; *)

v2
(*, b; c) (b, c; *)
(b, c; *)

v3 (*, d; *)
v4 (*, c; *)

v5

(*, b; d) (b, d; *)
(*, b; c) (b, c; *)
(b, d; *)
(b, c; *)

v6

(*, a; b) (a, b; c)
(*, a; b) (a, b; d)
(a, b; c) (a, b; c)
(a, b; d)
(a, b; c)

Fig. 4: A tree T with nodes V(T ) = {v1, . . . , v6} (numbered
by post-order). The global and local multisets of the tree nodes
appear in the table, for φt

2,1(T ). Elements that also appear in
the profile of the tree Q from Figure 3 are in bold font.

from Figure 4. We will show how subtree similarity-search
is performed for the pq-grams distance (of [14]), using our
algorithm. For this, we use the profile function φt

2,1 (pq-grams
for p = 2, q = 1), and the multiset distance function

distp,qnorm(M1,M2) =
|M1 ⊎M2| − 2|M1 C M2|
|M1 ⊎M2| − |M1 C M2|

.

Both are defined in [14]. Figures 3 and 4 provide the necessary
information regarding the contents of the pq-gram profiles
associated with the trees. We choose k = 3, and thus, find
the top-3 subtrees of T , which are most similar to Q.

In Line 1, QueryQueues is created, mapping each x ∈
φt
2,1(Q) to a queue of fixed size, and each such queue is filled

with ⊥ elements (see Figure 3). Note that |φt
2,1(Q)| = 2, and

this value is calculated before the algorithm begins.

As will be apparent, throughout the iterations of the algo-
rithm, when iterating over a node v ∈ V(T ), in Line 7 it holds
that intersect = |φt

2,1(Q) C φt
2,1(Tv)|, and in Line 8 it holds

that vProfileSize = |φt
2,1(Tv)|.

We begin iterating over nodes in V(T ) in post-order,
starting with v = v1. In Lines 5–6, both calls to IntersectLocal
and IntersectGlobal return 0 and so intersect gets a value of 0
(note that indeed, |φt

2,1(Q)Cφt
2,1(Tv1)| = 0). In Line 8 we set

vProfileSize = 1 (and indeed, it holds that |φt
2,1(Tv1)| = 1).

In Line 9, we calculate distp,qnorm(Q,Tv1) = 2+1−2·0
2+1−0 = 1

and add this to Results . In Line 11 we start iterating over
x ∈ φv

global(v1), but since φv
global(v1) = ∅, we do nothing.

We add Sizes[v1] + |φv
global(v1)| = 0 to the parent’s counter

(whose value is 0 too), Sizes[v2].

We now iterate over v = v2. As QueryQueues is still
unchanged from the previous iteration, the call to Intersect-
Global returns 0. During IntersectLocal we first consider
x = (*, b; c) ∈ φv

local(v2). The queue QueryQueues[x]
contains an entry ⊥, and so we increment count . Next, we
consider x = (b, c; *) ∈ φv

local(v2) and once again for a
similar reason increment count . Thus, IntersectLocal returns 2,
and back in DynamicSearch, intersect gets a value of 2. In
Line 8 we set vProfileSize = 2. In Line 9, we calculate
distp,qnorm(Q,Tv2) = 2+2−2·2

2+2−2 = 0 and add this to Results .
Note that the tree Tv2 is identical to Q, which explains
the distance value of 0. In Line 11 we start iterating over
x ∈ φv

global(v2). We see x = (b, c; *), dequeue an element
⊥ from QueryQueues[x], and enqueue v2 instead. We add
Sizes[v2] + |φv

global(v2)| = 1 to the parent’s counter (whose
value is 0), Sizes[v6].

In the next 2 iterations we consider nodes v3, v4, and in
each of those iterations the variable intersect gets a value of
0, so we try and add 2 more entries to Results , each with
distance 1. Since the priority queue Results is bounded to
contain only the top-3 best results, when adding the entry
for v4, Results remains unchanged. Additionally, the counter
Sizes[v5] for the parent of v3, v4, remains with a value of 0
after these iterations, and the contents of QueryQueues do not
change.

Now, we iterate over v = v5. During the call to In-
tersectGlobal, while looking at the contents of both queues
in QueryQueues we only see v2 /∈ V(Tv5) and ⊥, and
so IntersectGlobal returns 0. Next, IntersectLocal is called.
During the iteration over x = (*, b; c) ∈ φv

local(v5), we see ⊥
in QueryQueues[x] and increment count . During the iteration
over x = (b, c; *) ∈ φv

local(v5), we see v2 in QueryQueues[x],
and since lca(v2, v5) = v6, we increment count . Thus, Inter-
sectLocal returns 2, and back in DynamicSearch, intersect
gets a value of 2. In Line 8 we set vProfileSize = 4. In
Line 9, we calculate distp,qnorm(Q,Tv5) =

2+4−2·2
2+4−2 = 0.5 and

add this to Results; an entry with distance 1 (either v1 or v3) is
removed from Results to make room for the new, better entry.
In Line 11 we start iterating over x ∈ φv

global(v5). During
the iteration over x = (b, c; *) ∈ φv

global(v5), we dequeue v2
and enqueue v5. We add Sizes[v5] + |φv

global(v5)| = 2 to the
parent’s counter (whose value is 1), Sizes[v6].

Finally, we iterate over v = v6. During IntersectGlobal we
find v5 in one of the queues in QueryQueues , and return 1.
The call to IntersectLocal returns 0 since no elements exist
in φv

local(v6) that are also in φt(Q). The variable intersect
gets a value of 1, and we note that this is indeed the size of
|φt

2,1(Q) C φt
2,1(Tv6)|, as φt

2,1(Tv6) contains two instances of
(b, c; *), but φt

2,1(Q) contains only one such instance. Since
Sizes[v6] = 3, in Line 8 we set vProfileSize = 3 + 5 = 8.
In Line 9, we calculate distp,qnorm(Q,Tv6) =

2+8−2·1
2+8−1 = 0.889

and add this to Results , in place of an existing entry with a
higher distance value of 1. The rest of this iteration over v6



will not have any effect, as v6 is the last node in the tree. We
reach Line 16 and return the results. The top-3 results returned
in Results are ⟨0, v2⟩, ⟨0.5, v5⟩, ⟨0.889, v6⟩.

D. Analysis of DynamicSearch

We present a brief analysis of the correctness and com-
plexity of the algorithm DynamicSearch.

Theorem 4.1: DynamicSearch returns Topk(Q,T ).

Intuitively, the correctness of the algorithm follows from Equa-
tion 2. For each v ∈ V(T ) we have computed |φt(Q)Cφt(Tv)|,
|φt(Q)|, |φt(Tv)|, and we calculate d(φt(Q), φt(Tv)) using
these values. The priority queue ensures only the top-k best
results are saved. Precise details of the proof were omitted due
to space limitations.

We use tlca(T ) to denote the amount of time it takes to
perform lca queries over a tree T , to obtain the lowest common
ancestor of two given nodes in the tree. Using an approach
as described in [25], we have tlca(T ) = O(1), assuming
we performed additional O(|T |) work in a pre-processing
stage. However, in this paper we use Dewey identifiers [26]
to simplify the implementation, and with this approach we
have tlca(T ) = O(height(T )).

To simplify the analysis, we will assume that obtain-
ing φv

local(v) and φv
global(v) for all v ∈ V(T ) takes

O(|φv
local(V(T ))|) and O(|φv

global(V(T ))|) respectively, and
that obtaining φt(Q) takes O(|φt(Q)|). In case these runtimes
are higher (depending on the function D), the appropriate
factor should be added to the following complexity analysis.

Theorem 4.2: The algorithm DynamicSearch runs in time:

O(|φt(Q)|+ |T | log k + tlca(T )|T ||φt(Q)|+
|φv

global(V(T ))|+ tlca(T )|φv
local(V(T ))|).

To see why, observe:

• The call to getQueryQueues (Line 1) takes
O(|φt(Q)|).

• In each iteration over v, adding elements to the
bounded priority queue (Line 10) takes O(log k).
Using amortized analysis over all iterations, this con-
tributes a total of O(|T | log k).

• The iteration over φv
global(v) for a node v (Lines 11–

13) contributes O(|φv
global(v)|). Since we iterate over

all v ∈ V(T ), in total we have O(|φv
global(V(T ))|).

• In each call to IntersectGlobal (Line 5), we perform
O(tlca(T )|φt(Q)|) operations. As we make |T | such
calls, this contributes O(tlca(T )|T ||φt(Q)|).

• In each call to IntersectLocal (Line 6), we perform
O(tlca(T )|φv

local(v)|) operations, for the current node
v. Using amortized analysis, in total over all iterations,
this contributes O(tlca(T )|φv

local(V(T ))|).

Note the large factor of tlca(T )|T ||φt(Q)|, requiring
O(tlca(T )|φt(Q)|) work for each node in T . As T and Q
get larger, this is significant overhead. In the next section we
present an algorithm that avoids this overhead.

Algorithm ProfileSimSearch(Q,T, k,D)
1. QueryQueues ← getQueryQueues (Q)
2. Isects ← new HashMap
3. Sizes ← new HashMap
4. Results ← new BoundedPriorityQueue(k)
5. for each v ∈ V(T ) in post-order:
6. local ← IntersectLocal(QueryQueues, v, φt)
7. intersect ← Isects[v] + local
8. vProfileSize ← Sizes[v] + |φv

local(v)|
9. δ ← d(|φt(Q)|, vProfileSize, intersect)
10. Results.boundedAdd(⟨δ, v⟩)
11. for each x ∈ φv

global(v) s.t. x ∈ φt(Q):
12. u ←QueryQueues[x].dequeue()
13. if u ̸= ⊥:
14. w ← lca(v, u)
15. decrement Isects[w]
16. QueryQueues[x].enqueue(v)
17. increment Isects[v]
18. add Isects[v] to Isects[v.parent ]
19. add (Sizes[v] + |φv

global(v)|) to Sizes[v.parent ]
20. free the memory allocated for Isects[v]
21. free the memory allocated for Sizes[v]
22. return Results

Fig. 5: A more efficient algorithm for subtree similarity-search.

Now consider the memory requirements of our algo-
rithm. We will assume that elements x of the multisets
φv
global(v), φ

v
local(v) are generated as we iterate over them,

and that once we are finished iterating over such an element,
the memory used for the element is released. In addition, to
simplify, assume all multiset elements x have a constant size.

Theorem 4.3: The memory usage of DynamicSearch is:

O(|φt(Q)|+ height(T ) + k) .

• We use O(|φt(Q)|) memory for QueryQueues .

• We allocate and de-allocate memory to the Sizes map
throughout the algorithm. We always keep in memory
a counter for the current node v ∈ V(T ) and possibly
some of its ancestors. Whenever we finish iterating
over the node v, its counter Sizes[v] is deleted from
the memory, which implies that at any point in time,
we retain at most O(height(T )) elements in Sizes .

• Naturally, the top-k results take O(k) space.

V. THE ProfileSimSearch ALGORITHM

The algorithm DynamicSearch has a significant drawback;
it must iterate over all of φt(Q) for each node in T . As T is
assumed to be very large, this drastically harms performance.

To overcome this inefficiency, we present the algorithm
ProfileSimSearch in Figure 5, which solves the subtree
similarity-search problem for composite tree profile functions,
while achieving near linear performance. ProfileSimSearch
does not make calls to IntersectGlobal, and instead obtains
the value |φt(Q) C φv

global(V(Tv) \ {v})| for each node v,
by adding some operations to the iterations over the multiset
φv
global(v). Further details appear in the discussion below.



A. Data Structures and Conventions

In addition to the data structures used by DynamicSearch,
the algorithm ProfileSimSearch uses a hash-map Isects that
maps nodes to counters. Its behavior is similar to that of the
hash-map Sizes , i.e., attempting to access a value associated
with a key not appearing in Isects causes the value 0 to be
allocated and assigned to the key. This hash-map is used in
calculating the sizes of the multiset intersection between φt(Q)
and φv

global(V(Tv) \ {v}) for all subtrees Tv ∈ SubTrees(T ).

B. Overview of the Algorithm

The general structure of the algorithm ProfileSimSearch
is similar to that of DynamicSearch. During the algorithm’s
iteration over nodes v ∈ V(T ), the hash-map Isects is
used to calculate the size of the intersection |φt(Q) C
φv
global(V(Tv) \ {v})|, by storing pertinent information from

descendants of v. A value of 0 for Isects[v] indicates that no
values in the global vertex profiles of descendants of v are in
common with φt(Q).

While we iterate over all x ∈ φv
global(v) that are in common

with φt(Q), we dequeue the node u at the head of the queue
for x, and if u is not a placeholder (i.e., ⊥), we compute the
lowest common ancestor w of v and u (Line 14). Now, we
must update the counter for w with the necessary information
about its descendants, as we have removed u from the queue,
and thus, may lose information. Interestingly, this update takes
the form of decrementing the value in Isects for w (Line 15).
Intuitively, a decrement is performed, as we have discovered
that w has an extra copy of x in the profiles of its descendants,
more than the number of appearances of x in φt(Q). Since,
we will eventually be adding the number of appearances of x
in the profiles of the descendants of w to the counter of w, this
decrement ensures that the total count will be no larger than
the intersection size. Finally, in Lines 16–17, we insert v to
the queue of x (indicating that v has the value x in its profile),
and increment the Isects value of v, to reflect this. One can
prove that this process (in addition to the fact that we update
the value Isects[v.parent ] in Line 18) ensures that in Line 7
it holds that Isects[v] = |φt(Q) C φv

global(V(Tv) \ {v})|.
Thus, the call to IntersectGlobal that we had in Dynamic-

Search is not needed, as Isects provides the same functionality.
The remainder of the algorithm ProfileSimSearch works the
same as DynamicSearch. In Line 6, local is assigned the
value |(φt(Q) \ φv

global(V(Tv) \ {v})) C φv
local(v)|, and thus

in Line 7, we assign

intersect = |φt(Q) C φv
global(V(Tv) \ {v})|+

|(φt(Q) \ φv
global(V(Tv) \ {v})) C φv

local(v)| (3)

which is precisely |φt(Q) C φt(Tv)|, just as we had in
DynamicSearch.

C. A Sample Run of the Algorithm ProfileSimSearch

Due to the similarity between ProfileSimSearch and Dy-
namicSearch, we revisit our sample run of DynamicSearch
from Subsection IV-C and point out the important differences.
The key point here is that during the iteration over a node
v ∈ V(T ), the value of Isects[v] in Line 7 of ProfileSimSearch,
is always equal to the value which would be returned by

IntersectGlobal when running DynamicSearch. We shall now
see that this is indeed the case.

In the first iteration, v = v1, and Isects[v1] = 0. Since
φv
global(v1) = ∅, no changes are made to QueryQueues at this

iteration. Next, we iterate over v = v2, and Isects[v2] = 0. We
iterate over φv

global(v2), and when we encounter x = (b, c; *) ∈
φv
global(v2), we increase Isects[v2] by 1. We now update the

parent’s counter Isects[v6] to a value of 1. During the next
two iterations of ProfileSimSearch, the nodes v3, v4 have Isects
values of 0, and no other counters are changed. Next, we iterate
over v = v5, and Isects[v5] = 0. We iterate over φv

global(v5),
and when we encounter x = (b, c; *) ∈ φv

global(v5), we
dequeue the previously enqueued v2 from QueryQueues[x].
The lowest common ancestor w = lca(v5, v2) is v6, and so we
decrease Isects[v6] back to 0. We increase Isects[v5] by 1,
and at the end of the iteration over v5 we propagate the
Isects value up to the parent v6 of v5, so that once again
Isects[v6] = 1. Intuitively, during this iteration we handled the
fact that there are more instances of x in φt

2,1(Tv6) than there
are in φt

2,1(Q), by decreasing Isects[v6] and then increasing
it back again. This has prevented a potential double-counting
in the size of the intersection |φt

2,1(Q) C φt
2,1(Tv6)| later on.

Finally, ProfileSimSearch reaches v = v6, and Isects[v6] = 1.

D. Analysis of ProfileSimSearch

In the following complexity and memory analysis, we
continue with the assumptions stated in Subsection IV-D.

Theorem 5.1: ProfileSimSearch returns Topk(Q,T ), using
memory of size:

O(|φt(Q)|+ height(T ) + k) .

The correctness of the algorithm follows from Equation 3.
Precise details of the proof are omitted due to space limitations.

We shall now analyze memory use, which is of the same
order of magnitude as that of DynamicSearch. Note that other
than having the additional hash-map Isects , the memory usage
of ProfileSimSearch is identical to that of DynamicSearch.
Due to reasons analogous to those which we have seen when
analyzing the memory usage of Sizes , the hash-map Isects
also stores O(height(T )) elements.

While correctness and memory usage were similar to that
of DynamicSearch, the algorithm ProfileSimSearch is signifi-
cantly more efficient.

Theorem 5.2: The algorithm ProfileSimSearch runs in:

O(|φt(Q)|+ |T | log k+
tlca(T )(|φv

global(V(T ))|+ |φv
local(V(T ))|)).

The analysis is as follows:

• A factor of O(|φt(Q)| + |T | log k +
tlca(T )|φv

local(V(T ))|) is taken by all parts of
the algorithm except the loop of Lines 11–17.
This follows from a similar analysis to that of
DynamicSearch.



• Since we perform lca queries during the loop over
φv
global(v) (Lines 11–17) for all v ∈ V(T ), additional
O(tlca(T )|φv

global(V(T ))|) operations are needed.

• Notice that ProfileSimSearch does not make calls to
IntersectGlobal, and thus we do not pay the additional
O(tlca(T )|T ||φt(Q)|) that was needed in Dynamic-
Search. This has a dramatic positive effect on the
runtime of ProfileSimSearch, as |T | is usually very
large.

For many practical applications, tlca(T ) can be considered
constant. (This is certainly true if lca is computed in the
manner suggested in [25], where tlca(T ) = O(1). Even if
Dewey identifiers are used to calculate lca, we have tlca(T ) =
O(height(T )), and commonly trees are wide, but not exces-
sively tall, resulting in a very small value of height(T ).) The
value k can also be thought of as a constant, as the number
of results of interest is usually a small number with respect to
the total size of the database (e.g., the user may be interested
in hundreds of results, while the database has millions of
nodes). When taking tlca(T ) and k as constant, the algorithm
ProfileSimSearch has linear runtime.

We note that for many composite profile functions, includ-
ing pq-grams, windowed pq-grams, and binary branch distance
(and also φt

lab from Example 3.2), for a tree S it holds that
the sizes |φv

global(V(S))| and |φv
local(V(S))| are both O(|S|).

In this case, the analysis can be further simplified.

VI. IMPLEMENTATION

Both ProfileSimSearch and DynamicSearch were imple-
mented in Java, and work with trees in an XML input format.
We chose to pre-process the tree T , and generate in advance
the multisets φv

global(v), φ
v
local(v) for all v ∈ V(T ), as these

multisets remain the same, regardless of the query.

We assign each element x, appearing in at least one of the
profile multisets of V(T ), a unique identifier. Instead of storing
the actual multisets φv

global(v), φ
v
local(v), for each v, we store

the multisets of identifiers for φv
global(v) and φv

local(v). To be
precise, the file which we generate when pre-processing T
contains an entry for each node v ∈ V(T ). Node data is stored
sequentially in post-order. Each entry for a node v ∈ V(T )
contains the Dewey identifier of v, and the identifiers of all
elements of φv

global(v) and of φv
local(v).

5 Note that we use
Dewey identifiers for nodes, and hence, we have tlca(T ) =
O(height(T )). In our implementation, the assumptions from
Subsection IV-D hold, i.e., we can efficiently enumerate the
profile elements of T .

Regardless of the precise user input Q, this pre-processed
version of T will always be read by our algorithm, in a
sequential manner, thus avoiding disk seek operations. Finally,
we note that the file for T is compressed using the Snappy
compression library6, to further reduce read times.

As part of the pre-processing of T , we use the Berkeley
DB to store a hash table of profile-elements to identifiers. This

5We note that for functions such as pq-grams or φt
lab , in which it holds

that φv
global (v) ⊆ φv

local (v) for all v ∈ V(T ), in our implementation we
avoid storing the elements of φv

global (v) twice in the input file, by applying
a slightly different order of operations in each iteration of the algorithm.

6http://code.google.com/p/snappy/

TABLE I: Dataset statistics.

Name Nodes XML Size 2,3-grams BiB Labels
(millions) (MB) (MB) (MB) (MB)

XMark100 3.6 111 70 43 32
XMark200 7.2 226 142 88 66
XMark400 14.5 454 288 177 132
XMark900 28.9 910 585 358 267
XMark1800 57.8 1770 1140 718 535
DBLP 17.6 311 322 198 153
SProt 9.4 109 150 97 77

hash table is later utilized when we are given a query Q, to
find the identifiers associated with the elements in the profile of
Q. Thus, all comparisons of profile elements in the algorithm
are actually integer comparisons, instead of complex element
comparisons, thereby significantly saving time.

VII. EXPERIMENTATION

The algorithms DynamicSearch and ProfileSimSearch are
both evaluated throughout this section, and are compared with
previously studied algorithms.

All experimentation was performed on a desktop machine
running Windows 7 64-bit with an i7-2600k CPU clocked at
3.4GHz. The machine has 8GB of RAM, out of which 3GB
were dedicated to running a Java 6 VM. A standard consumer-
grade 7200 RPM hard drive was used.

For our datasets, we mostly use the XMark bench-
mark [27], which generates XML files of varying sizes. In
addition, two non-synthetic datasets7 were considered: the
DBLP dataset, containing bibliographic information, and the
SwissProt dataset, containing annotated protein sequences.

Table I lists details regarding the datasets we have used.
Numbers have been rounded for readability. The table lists for
each dataset the number of nodes it contains, the size of its
XML file in megabytes, and the sizes of our pre-processed
sequential database file containing profile elements, for the
three profile functions that we tested (as will be detailed later).
Sizes of the on-disk hash-tables mapping multiset elements to
identifiers are not included in the table.

The queries used in the experimentation were chosen
randomly from the subtrees of the datasets used. In addition,
each point appearing in our charts actually reflects the result
of running four experiments (using randomly chosen queries
of the same size), and returning the average of the runtimes.
All of the charts in Figure 6 present runtimes in seconds.

Increasing Query Size. We compare the runtime of our al-
gorithms ProfileSimSearch and DynamicSearch using the pq-
gram profile function (with p = 2, q = 3) and Dice difference
of multisets, with the algorithms TASM-postorder from [9],
[10], and StructureSearch from [21]. TASM-postorder and
StructureSearch solve the subtree similarity-search problem for
tree edit distance.8 (Recall that one of the motivations for pq-

7DBLP: http://dblp.uni-trier.de/xml, SwissProt: http://www.expasy.ch/sprot
8The algorithm StructureSearch receives an extra input parameter m which

is an upper bound on the edit distance of the results from the query. As was
shown in [21], this value does not impose a serious performance impact, so
we chose a default value of m = |Q|.
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Fig. 6: Execution times for varying query sizes, number of results and dataset sizes. All times are in seconds.

grams is that it is more efficiently computed than tree edit
distance.) For this comparison, the authors of [9], [10], [21]
kindly provided us with their source code.

Figures 6a and 6b show the results of running queries
with increasing sizes |Q|, on the datasets XMark400 and
XMark1800, respectively. We set k to be 10, i.e., we computed
the top-10 results. The performance of TASM-postorder does
not appear in Figure 6b due to its excessive runtime.

As is apparent in the figures, ProfileSimSearch is almost
unaffected by the size of the query, and thus, as the query
size increases, the runtime remains almost constant. This is
easily explained, as the size |φt

p,q(Q)| of the pq-grams profile
is linear in the size |Q| of the query, and even large queries are
very small in comparison to the size of the dataset |T |. Thus
the difference in runtimes for larger queries is negligible, for
ProfileSimSearch.

For the other algorithms considered, the performance de-
grades (sometimes quite significantly) as the query gets larger.
Note that DynamicSearch is very sensitive to the size of the
queries, due to the extra O(tlca(T )|T ||φt(Q)|) factor in its
runtime complexity. The algorithm StructureSearch heavily re-
lies on index structures, and therefore gives good performance
for small queries. However, as queries grow larger it must read
many more index entries, yielding slower performance. Note
that even for small queries where StructureSearch has a better
runtime than ProfileSimSearch, the time difference is not very
large. As for the algorithm TASM-postorder, it has non-linear

runtime complexity, which can explain its sensitivity to the
query size.

Increasing Output Size. Figure 6c shows the result of run-
ning queries of constant size (|Q| = 32), over the dataset
XMark400, with different increasing values for k, i.e., with
increasing output size. Once again, we compare ProfileSim-
Search and DynamicSearch with TASM-postorder and Struc-
tureSearch. We note that similar results for varying k values
were observed in all datasets, including XMark1800.

The runtime of ProfileSimSearch is nearly unaffected by the
parameter k. This was apparent from the theoretical runtime
complexity, and is borne out in practice. For similar reasons,
DynamicSearch is also not sensitive to changes in k (but, as
expected, it fares significantly worse than ProfileSimSearch,
due to the extra operations that it performs).

StructureSearch takes more time to run as k grows larger.
This can be attributed to the fact that the algorithm can
derive less effective tree distance bounds for large k, which
entails additional operations. TASM-postorder also appears to
be somewhat affected by changes in k.

Increasing Dataset Size. Figure 6d shows the runtime of Pro-
fileSimSearch on increasingly large datasets. As before, queries
are of size 32, and k = 10. Performance of ProfileSimSearch
was measured using three different profile functions: pq-grams



with p = 2, q = 3, binary branches (abbreviated BiB), and the
label profile φt

lab from Example 3.2. All three profile functions
result in profile multisets whose sizes are linear in the size of
the database tree. Figure 6d clearly shows that our algorithm
runs in time that is close to linear in the profile multiset size
(as it is close to linear in the size of the the dataset). Figure 6e
shows that similar runtimes are obtained in the non-synthetic
datasets, DBLP and SProt.

Comparison With Tree-to-Tree pq-gram Distance. In this ex-
periment, we compared ProfileSimSearch with the implemen-
tation of tree-to-tree pq-gram distance from [14]. Recall that a
tree-to-tree distance computation simply computes the distance
between the query and the tree(s) in the database, but does
not compute the distances for any subtrees. Thus, in our
experimentation, the algorithm from [14] returns a single
distance value.

The code used to measure pq-gram distance was provided
by the authors of [14], and has been slightly modified to fit
into our experiments, as follows: the database tree and its pq-
grams were first indexed in a MySQL 5.6 database (as per their
implementation). Then, we measured the time it takes, given a
query, to index the query and its pq-grams in the database and
calculate the distance between it and the single, entire tree of
the database.

Figure 6f shows the runtime of ProfileSimSearch (with
k = 10) and the implementation of tree-to-tree pq-gram
distance given in [14]. Experiments were run on the XMark100
and XMark400 datasets. Note that due to variance in runtimes
of [14], its measured times for XMark100 were actually higher
than the times for XMark400. Interestingly, ProfileSimSearch
seems to perform better than the algorithm from [14], despite
the fact that ProfileSimSearch solves the subtree similarity-
search problem (i.e., considers all subtrees in the database),
while [14] only calculates one value, which is the distance
between the query and the entire database tree.

VIII. CONCLUSION

In this paper we introduced a class of tree distance func-
tions, to which several previously studied functions belong.
We presented an algorithm to efficiently solve the subtree
similarity-search problem using distance functions in this class,
and experimentally showed that it performs well.

Further work on the subject will include utilizing upper
bounds on the sizes or other attributes of subtrees considered
by our algorithm, in order to avoid excess computations. Other
future work will involve using our algorithm to solve the
subtree similarity-search problem for tree edit distance, by
obtaining bounds on edit distance using a composite profile
function.
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