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Abstract—Schema matching supports data integration by
establishing correspondences between the attributes of inde-
pendently designed database schemas. In recent years, various
tools for automatic pair-wise matching of schemas have been
developed. Since the matching process is inherently uncertain,
the correspondences generated by such tools are often validated
by a human expert. In this work, we consider scenarios in
which attribute correspondences are identified in a network of
schemas and not only in a pairwise setting. Here, correspondences
between different schemas are interrelated, so that incomplete
and erroneous matching results propagate in the network and the
validation of a correspondence by an expert has ripple effects.
To analyse and reconcile such matchings in schema networks,
we present the Schema Matching Analyzer and Reconciliation
Tool (SMART). It allows for the definition of network-level
integrity constraints for the matching and, based thereon, detects
and visualizes inconsistencies of the matching. The tool also
supports the reconciliation of a matching by guiding an expert
in the validation process and by offering semi-automatic conflict-
resolution techniques.

I. INTRODUCTION

Schema matching is the process of establishing correspon-
dences between the attributes of database schemas for data
integration purposes. The outcome of the schema matching
process is a set of attribute correspondences, which are the
basis for the definition of attribute mappings, i.e. the actual
transformations applied to data instances.

Tools for schema matching support this process by taking
two schemas as input and creating correspondences between
their attributes based on heuristic methods. There is a large
body of research on heuristic matching algorithms, see [15], [3]
for surveys, and several commercial and academic matching
tools have been developed, e.g., COMA++ [1] or AMC [14].
However, given the inherent uncertainty of the matching
process, the correspondences created by schema matching
tools are often incomplete and sometimes erroneous. Hence,
the created correspondences are typically at least partially
validated by a human expert [2].

Matching in Schema Networks. For many recent applica-
tions, data integration is no longer limited to a single pair
of data sources. Most prominently, Web Tables emerged as a
paradigm to publish structured data on the Web [5]. Given
the sheer number of publicly available Web Tables, it is
important to link them by creating correspondences between
their schemas [7]. Matching in schema networks, however, is
not limited to integration of Web Tables, but also beneficial
for enterprise applications [17] and in mashup contexts [6]. In
principle, all data integration scenarios, for which the creation

of a monolithic, mediated data schema would be too costly or
even infeasible can benefit from matching in schema networks.

Integrity constraints. Our work on analysis and reconciliation
of a matching in a network of schemas is grounded on
integrity constraints. Such constraints are defined over attribute
correspondences in a network and ensure a high overall quality
of the matching. The presence of integrity constraints creates
numerous dependencies between correspondences, which com-
plicate the validation by an expert especially in large-scale
networks. However, dependencies between correspondences
also represent an opportunity to guide the expert’s work by
defining the order in which feedback is sought.

Consider enterprises that intend to exchange information
on purchase orders, but apply different schemas to capture
this information. To facilitate integration scenarios, a schema
matching network is created by establishing pairwise match-
ings between the schemas, cf., Figure 1. However, the resulting
network should obey certain integrity constraints. An example
would be the one-to-one constraint that requires each attribute
to be matched to at most one attribute in another schema.
In Figure 1, this constraint is violated by the correspon-
dences {cq, cy4}. Another example is the network-level circle
constraint: If correspondences form a circle at the schema
level, then the correspondences should form a closed circle.
In the given example, this constraint is violated, e.g., by the
correspondences {ci, ¢z, ¢5}.
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Fig. 1. A schema matching network

SMART. To realize constraint-based analysis and reconcili-
ation of schema matching networks, we present the Schema
Matching Analyzer and Reconciliation Tool (SMART).
SMART has three main features, see also Figure 2.

e Network analysis. The result of automatic tools for match-
ing is typically uncertain in the sense that the gener-
ated correspondences violate various integrity constraints.
SMART helps an expert to detect and analyze constraint
violations and assesses the correctness probability of cor-
respondences and the overall uncertainty of the network.

e Reconciliation. Reconciliation of a matching is a pay-
as-you-go process, in which the quality of a matching
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Fig. 2. Simplified architecture of SMART

network is incrementally improved by seeking expert
input. As the cost of expert effort is expensive, SMART
selects and ranks candidate correspondences for validation
based on their information gain, which is measured as the
amount of uncertainty reduction induced by expert input
for a certain correspondence.

e [nstantiation. To implement reconciliation as a pay-as-
you-go process, at any point in time, SMART allows to
instantiate a set of correspondences based on the input
of automatic tools for matching and the expert input
collected so far. SMART chooses a subset of correspon-
dences that satisfy all integrity constraints and are likely
to be correct (according to our model [12]).

The remainder of this paper is structured as follows.
Section II summarizes the main concepts from our earlier
work [12], [13], underlying SMART. Section III outlines the
demonstration of SMART, before we conclude in Section IV.

1I. IMPLEMENTATION

Below, we discuss the network analysis, reconciliation,
and instantiation techniques offered by SMART, followed by
performance considerations.

A. Network Analysis

Detecting constraint violations. To detect violations of in-
tegrity constraints over attribute correspondences, SMART
uses a model based on Answer Set Programs (ASP). That is,
the matching in the network of schemas as well as integrity
constraints are formalized as ASPs, so that constraint viola-
tions are identified by logical reasoning as implemented in
state-of-the-art ASP solvers, see [13].

Assessing the correctness of correspondences. Common
tools for automatic pair-wise matching of schemas assign con-
fidence values to candidate correspondences [15]. A confidence
value may be interpreted as a probability for the correctness of
a correspondence. Yet, confidence values are not normalized,
often unreliable, and unrelated to the application goals [3].

SMART takes a different approach to assess the correct-
ness of candidate correspondences. It relies on a probabilistic
model, assigning a correctness probability to each correspon-
dence [12]. Here, the idea is that a correspondence is more
likely to be correct, if it appears in many matching instances,
maximal sets of correspondences that contain no constraint vi-
olations and respect the user input (i.e., contain only approved
correspondences or those for which no input has been sought).
Since the computation of the actual probabilities is intractable
given the exponential number of possible matching instances,

SMART uses a sampling method based on random-walk and
simulated annealing for probability estimation [12].

Measure the network uncertainty. Our approach to mea-
suring the network uncertainty relies on the aforementioned
probabilistic model and a set of binary random variables that
model the decision whether to include a correspondence in a
matching instance. Then, we compute the overall uncertainty
of the network as the Shannon entropy over these random
variables, see [12]. Following this line, a network uncertainty
value of zero means that all probabilities are equal to one or
zero; i.e., there is no ‘uncertain’ correspondence remaining and
the matching has been fully reconciled.

B. Reconciliation

The set of candidate correspondences generated by auto-
matic tools for matching typically violates the integrity con-
straints defined for a network of schemas. SMART treats rec-
onciliation as an iterative process, such that, in each iteration,
an expert asserts the correctness of a single correspondence.
Hence, an iteration comprises (1) selecting an attribute corre-
spondence not yet validated; (2) eliciting expert input on the
selected correspondence; (3) computing the consequences of
the feedback. Reconciliation stops if the goal of reconciliation
is reached, e.g., elimination of all constraint violations.

Minimizing the number of iterations to reach the rec-
onciliation goal requires effective solutions for step (1), the
attribute selection, and step (3), the computation of feedback
consequences. SMART strives to reduce the effort needed for
reconciliation by applying effective heuristics for both steps.

Effort minimization by ordering. When seeking expert
feedback on correspondences, the order in which the corre-
spondences are selected influences the number of iterations
needed to reach the reconciliation goal. SMART ranks cor-
respondences for which feedback shall be elicited using a
decision theoretic approach [16]. That is, the potential benefit
of knowing whether a correspondence is correct is measured
as the information gain of the correspondence. Technically,
the information gain is defined in terms of the expected un-
certainty reduction in the network, computed as the difference
between the network uncertainty before and after incorporating
feedback on a particular correspondence.

Effort minimization by reasoning. When integrating the
feedback of an expert, SMART does not only update the
correctness probability for the respective correspondence, but
also exploits the integrity constraints to achieve a more ef-
fective computation of the consequences of the input. The
representation of the matching network and the integrity con-
straints as ASPs allows for concluding on the incorrectness
of certain correspondences by logical reasoning. Consider, for
instance, the schemas S and S. of the example given in
Figure 1, for which a matching tool generated two candidate
correspondences co and c4. Assuming that the one-to-one
constraint is applied, an approval of ce by an expert allows
for immediate falsification of correspondence c,.

C. Instantiation

SMART supports a pay-as-you-go reconciliation process
by offering the possibility to instantiate a valid matching, i.e.,



select one of the matching instances, at any point in time. To
assess which of the possible matching instances best approx-
imates the actual set of correspondences, SMART solves an
optimisation problem that is defined along two dimensions:
the repair distance and the likelihood of a matching instance.

o The repair distance measures the difference between the
correspondences of a matching instance and the set of
correspondences generated by an automatic matching tool
in the first place. As such, it is a means to quantify
the amount of information loss of deriving the match-
ing instance by removing correspondences to guarantee
satisfaction of the integrity constraints.

e The likelihood indicates the correctness of a matching
instance. Technically, it is the product of the probabilities
of the respective correspondences.

Using these measures, instantiation is an optimization
problem: we are interested in a matching instance with min-
imal repair distance and maximal likelihood. In the context
of schema matching, we consider the repair distance to be
more important than the likelihood, since information about
correspondences should be preserved as much as possible.
Since this optimization problem is NP-hard, SMART applies
a heuristic algorithm to approximate the solution [12].

D. Performance considerations

Finally, we turn to performance considerations. To cope
with a high number of very large schemas, SMART employs
partitioning and caching strategies.

Partitioning. To handle an overwhelming number of cor-
respondences, SMART allows for partitioning a network of
schemas into smaller parts, which can be reconciled by an
expert efficiently. The decomposition implemented in SMART
is driven by two criteria:

e Size equality: The network should be divided into parti-
tions of (nearly) equal size.

o Informativeness: Decomposition may lead to information
loss regarding constraint violations that involve corre-
spondences between attributes of schemas in different
partitions. To avoid this phenomenon, SMART aims at
preserving correlations between constraints, so that the
constraints can be harnessed per network partition.

Based on these criteria, SMART solves the decomposition
problem by tracing it back to hypergraph partitioning, see [11].

Caching. SMART also implements two view-maintenance [4]
liked techniques to cache intermediate results. The rationale
behind these techniques is that reconciliation is an incremental
process where the input of a single iteration affects only a small
part of the network.

First, we use caching in the sampling-based computation
of network uncertainty [12]. Instead of re-sampling in each
reconciliation iteration, a set of sampled matching instances is
maintained and updated upon the arrival of expert input.

Second, SMART exploits caching for the ASP reasoning to
derive consequences of expert input [11]. Instead of sending
the whole ASP-encoded network to an ASP solver in each
iteration of the reconciliation process, SMART maintains the

previous reasoning result and performs reasoning only over the
affected network region.

III. DEMONSTRATION

To demonstrate the application of SMART, we first present
its user interface before we turn to an exemplary scenario.

User interface. SMART offers a rich user interface (see
Figure 3) for schema matching networks, which consists of
multiple views, including a schema-link diagram and a matrix-
based representation.

e A schema-link diagram is an interaction graph between
schemas in the network. Each node represents a schema
and, thus, a set of attributes, while edges represents
attribute correspondences. The latter are also assigned a
confidence value that is generated by a tools for auto-
matic matching. A user can control the visualization, for
example, by sorting the attributes of schema or filtering
correspondences by their confidence values. In addition,
the layout of the diagram is computed such that similar
schemas and attributes are positioned close to each other.

o A matrix-based representation provides the user with
overview of the matching in a schema network. We
use the affinity matrix model [9] in which each col-
umn represents a schema and each row represents the
associated attributes, such that there are correspondences
between them. Existing matrix ordering techniques [10]
are leveraged to help a user to identify network clusters.

The schema-link diagram provides a natural representation
of the correspondences between schemas and is an effective
visualisation for small networks. The matrix-based represen-
tation, in turn, is best-suited to manipulate large or dense
networks and reveals the high-level network structures (e.g.
clusters) by the ordering rows and columns [8]. We combine
both representations, so that a user may use the matrix to iden-
tify clusters of schemas, which can then be explored in more
detail using the schema-link diagram. Both representations are
synchronized, i.e., data filtered in one representation is also
hidden in the other representation. SMART further provides
a wide range of interaction features for both representations,
such as moving matrix rows or columns, sorting rows or
columns by criteria, drag&drop for schemas or attributes, mod-
ifying correspondences, and zooming into network regions.

Demonstration scenario. Taking up the example from Fig-
ure 1, we demonstrate how to use SMART to analyze and
reconcile schema matching networks (a screencast of the
demonstration is publicly available').

First, SMART detects violations of the aforementioned
one-to-one and cycle constraints. That is, all correspondences
{c1,...,c5} in Figure 1 would be highlighted. Then, in-
stantiation would consider two possible matching instances,
I = {c1,co,c3} and Iy = {¢1,cq,c5}. Since, for our simple
example, both instances have equal likelihood and repair dis-
tance, SMART selects one randomly as a result. To improve the
quality of the matching by reconciliation, SMART computes
the network uncertainty and the correctness probability of
correspondences based on the constraint violations, i.e., p., =

Thttp://lsirwww.epfl.ch/schema_matching/
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Fig. 3.

1, Py = Pes = Pey = Pe; = 0.5. Based on the information gain
computed for each of the correspondences, SMART suggests
to seek expert feedback for co. Indeed, if ¢y is approved by
the expert, I; remains the only possible matching instance, so
that the network uncertainty is reduced to O.

IV. CONCLUSION

In this paper, we presented SMART, a tool for analyzing
and reconciling schema matching networks in the context of
data integration. Unlike traditional tools for schema matching,
our focus is on scenarios in which a large number of schemas
is matched. SMART supports the reconciliation of a matching
in a network of schemas with a pay-as-you-go process that
leverages the integrity constraints defined for a matching.
Based on the output of tools for automatic matching and expert
input, a valid matching can be instantiated at any point in time.
The matching quality is improved by seeking expert feedback
on correspondences. SMART analyses network level conflicts
and, based thereon, guides the expert in the conflict resolution.
As such, SMART serves as a decision-support system for
database developers, who can identify problems of existing
schemas, and data integration experts, who benefit from the
construction of a valid matching.
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