
ModelGen: Model Independent Schema Translation
 Paolo Atzeni, Paolo Cappellari Philip A. Bernstein

 Università Roma Tre Microsoft Research
 {atzeni,cappe}@dia.uniroma3.it philbe@microsoft.com

Abstract
A customizable and extensible tool is proposed to
implement ModelGen, the model management
operator that translates a schema from one model to
another. A wide family of models is handled, by
using a metamodel in which models can be succinctly
and precisely described. The approach is novel
because the tool exposes the dictionary that stores
models, schemas, and the rules used to implement
translations. In this way, the transformations can be
customized and the tool can be easily extended.

1. Introduction
Model management is a high-level approach to solving
meta data problems [3]. A major operator in model
management is ModelGen: given a source data model M1,
a target data model M2 , and a source schema S1 expressed
in M1, ModelGen generates a target schema S2 in M2. All
database designers implicitly use ModelGen when they
translate a conceptual schema expressed, for example, in
the ER model, into a corresponding relational schema.
From here on, we use model to mean data model.

Like other model management operators, ModelGen
should be generic (i.e., model-independent), so that it
works for all data models of interest. An early approach
was proposed by Atzeni and Torlone [1,2] who developed
a tool to implement it based on a notion of metamodel.

A metamodel is a set of constructs that can be used to
define models, which are instances of the metamodel. The
approach is based on Hull and King’s observation [4] that
the constructs in most models can be expressed by a small
set of generic metaconstructs. Each model is defined by
its constructs and the metaconstructs they refer to.

The translation of a schema from one model to another
is defined in terms of translations over the metaconstructs.
A supermodel is defined as a model with constructs
corresponding to all metaconstructs known to the system.
Each model is a specialization of the supermodel, so a
schema in any model is also a schema in the supermodel.
A translation is performed by eliminating constructs not
allowed in the target model, and possibly introducing new
constructs. Translations are built from elementary
transformations, each of which is essentially an
elimination step.

The solution above is effective, but has the following
limitations because the representation of the models and
transformations are hidden within the tool’s source code:

• Only the designers of the tool can extend the models.
• Correctness of the rules has to be accepted by users

as a dogma. They can check it only by using the tool.
• To customize the transformations and the target

schemas, the tool’s source code must be modified.
We present a new tool that overcomes these limitations by
exposing the dictionary and translations. This permits
rapid development and maintenance of models and trans-
lations and reasoning about the correctness of translations

2. The dictionary and translation rules
The tool is based on a relational dictionary that stores the
metadata of interest: the metamodel, models and schemas.
It has four parts: (i) the MetaSuperModel, which describes
the structure of the metaconstructs of interest, (ii) the
SuperModel, which stores the schemas to be translated;
(iii) the MetaModels, which describe the constructs of all
models of interest, each construct associated with the
supermodel metaconstruct it corresponds to, and (iv) the
Models, which stores schemas of interest.

The translation process is a composition of basic trans-
formations. For example, going from an n-ary ER model
to the relational one, we can first eliminate n-ary relation-
ships and then go from the binary ER model to the rela-
tional one. Each basic transformation (e.g., from binary
ER to relational) is expressed by a set of rules written in a
Datalog dialect with OID-invention based on Skolem
functions [5]. This technique has several advantages:
• rules are independent of the main engine that interprets

them, enabling rapid development of translations;
• the system itself can verify basic properties of sets of

transformations (e.g., some form of correctness) by
reasoning about the bodies and heads of Datalog rules;

• transformations can be easily customized. E.g., one
can add “selection conditions” that specify the schema
elements to which a transformation is applied.

Another benefit of using Skolem functions is that their
values can be stored in the dictionary and used to repre-
sent the mappings from a source to a target schema. This
is needed in more general scenarios for model manage-
ment, e.g., as reverse engineering or schema evolution [3].

The translation process is based on the supermodel:
(1) the source schema is translated into the supermodel (2)
the translation to the target schema is executed within the
supermodel; and (3) the target schema is translated into
the target model. Steps (1) and (3) are laborious but
straightforward, as each model is subsumed by the
supermodel. The only transformations we hand-coded

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

were those in (2). We have a set of rules that perform
basic translations over the available metaconstructs and
can therefore be combined to form complex translations.

3. The architecture
The tool has the architecture shown in Figure 1. The core
is composed of the dictionary, the transformation reposi-
tory and the rule applicator. The basic management of the
dictionary is performed by two generic modules: Define-
Model, to define new models based on the available
constructs, and DefineSchema, to define a schema for a
chosen model. After a model is defined, the tool automati-
cally creates the structures needed to handle its schemas.

The transformation repository contains two kinds of
artifacts (as we saw in Section 2):
• Basic transformations (e.g., the transformation that

produces a binary ER schema from an n-ary one)
• Datalog rules, which can be assembled into basic

transformations and customized by adding further con-
ditions to specify to which concepts the rule is applied.
Translations are specified by composing basic trans-

formations. The tool can verify whether the translation
process generates schemas in the target model and can de-
tect redundancies in a sequence of basic transformations.

4. The tool demonstration
The tool offers functions for three categories of users:
1. A designer defines schemas in available models and

asks ModelGen to translate them.
2. A model engineer defines new models by using the

available metaconstructs.
3. A metamodel engineer adds new metaconstructs to

the metamodel and defines translation rules for them,
thereby extending the models handled by the system.

The above activities are done without touching the tool’s
source code. Let us illustrate a possible usage scenario. A
designer defines schemas by choosing a model and then
instantiating the associated constructs. For example we
can define an ER_Entity Person and add ER_Attributes
SSN and Name to it. Schema definition is handled by

interactive interfaces and batch importers for XML
formats produced by current design tools. A report
function is available for schemas. After defining a
schema, a designer can request its translation to any other
model defined in the system.

A model engineer defines models. She defines the
constructs allowed in a model, giving them names and
adding the desired properties available in the metacon-
structs. For example, she can choose AttributeOfAbstract,
naming it ER_Attribute and inheriting all properties but
isNullable (meaning that null values on an entity’s
attributes are not allowed). At the end, she picks a name
and saves it. The system automatically creates the
corresponding dictionary structure and “copy rules” to
copy constructs to and from the supermodel.

A metamodel engineer defines new basic transforma-
tions by writing new Datalog rules and reusing existing
ones. This may also require the definition of new Skolem
functions. An important but rare task is defining new
metaconstructs, which, to be useful, require the definition
of suitable basic transformations involving them.

Acknowledgements. We thank Rachel Pottinger for
many helpful discussions on this work and the paper.

References
1. P. Atzeni, R. Torlone: Management of Multiple

Models in an Extensible Database Design Tool. EDBT
1996: 79-95.

2. P. Atzeni, R. Torlone: MDM: a Multiple-Data-Model
Tool for the Management of Heterogeneous Database
Schemes. SIGMOD 1997 (demo): 528-531.

3. P. A. Bernstein: Applying Model Management to
Classical Meta Data Problems. CIDR 2003: 209-220.

4. R. Hull, R. King: Semantic Database Modeling:
Survey, Applications, and Research Issues. ACM
Computing Surveys 19(3): 201-260 (1987).

5. R. Hull, M. Yoshikawa: ILOG: Declarative Creation
and Manipulation of Object Identifiers. VLDB 1990:
455-468.

Figure 1: a sketch of the architecture of ModelGen

Proceedings of the 21st International Conference on Data Engineering (ICDE 2005)
1084-4627/05 $20.00 © 2005 IEEE

