

An Experiment on the Matching and Reuse of XML
Schemas

Jianguo Lu1, Shengrui Wang2, Ju Wang1

1School of Computer Science, University of Windsor

jlu@cs.uwindsor.ca, ju_wang@yahoo.com
2 Department of Computer Science, University of Sherbrooke

Shengrui.wang@usherbrooke.ca

Abstract XML Schema is becoming an indispensable component in
developing web applications. With its widespread adoption and its web
accessibility, XML Schema reuse is becoming imperative. To support XML
Schema reuse, the first step is to develop mechanism to search for relevant
XML Schemas over the web. This paper describes a XML Schema matching
system that compares two XML Schemas. Our matching system can find
accurate matches and scales to large XML Schemas with hundreds of
elements. In this system, XML Schemas are modelled as labeled, unordered
and rooted trees, and a new tree matching algorithm is developed. Compared
with the tree edit-distance algorithm and other schema matching systems, it is
faster and more suitable for XML Schema matching.

Keywords: XML Schema, Schema match, Software component search

1 Introduction
XML Schema has become an indispensable component in web application
development. Schemas are used to represent all kinds of data structure in
programming, and are often mapped to classes. To some extent, we can think XML
Schemas are similar to data types or classes in traditional programming language.
What makes XML Schema different from traditional software components is that it is
widely available on the web, encoded in XML and programming language
independent, and adopted by all the major software vendors. All these features make
XML Schema reuse not only imperative, but also have the potential to succeed
beyond traditional software component reuse. We can envision that almost any data
structure that you can think of will be available on the web. Programmers need a
search tool to find the relevant schema instead of developing the schema from scratch.

Schema matching has its root in software component search and software agent
search. Both have a long history. [17] provides a good survey in component search,
and [22] is the seminal paper on software agent matching, which also inspired
numerous works on web service searching. Schema matching is also widely studied in
the area of database area [6] [14], with the aim to integrate relational and semi-
structured data. [18] surveys the works in this area.

This paper describes a schema matching system that generates element mappings
between two schemas. One design rationale of the system is that it should work
effectively and efficiently – generating good results in acceptable time, such that it is

capable of matching real life schemas with several hundreds of elements. We model
an XML Schema as an unordered, labeled and rooted tree. In general, an XML
schema corresponds to a directed graph in which recursive definitions are represented
by loops and reference definitions are represented by cross edges. The graph
representation is not adopted in our work for two reasons. First, intuitively the
directed graph representation of an XML Schema still encompasses a hierarchical
structure similar to a tree, with a few “loop” exceptions. Secondly and more
importantly, approximate graph matching [3] is too computationally costly as we have
investigated in [11]. Our recent algorithm in graph matching employed strong
heuristics to reduce search space, but still can only deal with graphs with dozens of
node [11]. Obviously, graph matching algorithms would be difficult to match XML
Schemas with hundreds of nodes.

Our new tree matching algorithm identifies the structural relations by extracting

approximate common substructures in two trees. Our observation on the properties of
XML Schemas shows that similar schemas are made up of similar elements and these
elements are connected similarly, that is, similar schemas (or similar portions of
schemas) have similar ancestor-descendent and sibling relations. Based on this, the
algorithm uses heuristics to reduce the searching space dramatically, and achieves a
trade-off between matching optimality and time complexity.

Figure 1 depicts the structure of the matching system. We compute three types of
similarities for every node pairs, i.e., name similarity, node similarity and structural
similarity. Name similarity is related to calculating the relationship between two
names. It is the main entity used for computing similarity between two nodes, other
entities include data types and cardinalities information. The structural similarity
shows the relation between two sub-trees rooted at these two nodes.

The system is tested extensively using about 600 XML Schemas in total. We
evaluated both matching accuracy and computational efficiency of our system.
Comparisons were made with the traditional edit distance tree matching algorithm [24]

 XML
Schema Name

similarity
Node

similarity

 XML
Schema

XML Java API WordNet,
string matching

The new tree
matching algorithm

Compatibility
tables

Modelling
Name similarities

Structural similarities

Structural
similarity

Result
 retrieval

Node similarity

Mappings

Schema
similarity

Figure 1: Matching process

and a popular XML Schema matching system COMA [6]. The results show that our
new tree matching algorithm outperforms these two methods, and can be used to
match larger schemas that contain hundreds of elements.

2 Modelling XML Schemas as Trees
An XML Schema is modeled as a labeled unordered rooted tree. Each element or
attribute of the schema is translated into a node. Attributes and elements that reside
inside an element are translated as children of the element node. The names of
elements and attributes, along with some optional information such as data types and
cardinalities, are the labels of the nodes.

The modelled tree does not include every detail of an XML Schema. Excluded
information falls into two categories. One is related to elements or attributes such as
default value and value range. The other is relevant to structure, such as element order
indicators. Although by XML Schema standard the order of the elements matters, it is
ignored in our tree model based on the assumption that the order does not make
differences as big as changing the labels.

Modelling XML Schema is a tedious task due to the complexity of XML Schema.
During the modelling, we need to take care of the following constructs in XML
Schema, to insure that a schema is modelled as a tree.

Reference Definition
Reference definition is a mechanism to simplify schema through the sharing of
common segments. To transform his structure into a tree, we duplicate the shared
segment under the node that refers to it. By doing this, we increased the number of
nodes. In implementation of the modelling, we create an array which contains the
distinct node labels and establish connections from each node to this array. In
subsequent processes, the node labels are handled based the array instead of the nodes
themselves.

There are two types of references in XML Schema specification: data type
reference and name reference. Data type reference is created by the clause
‘type=dataTypeName’ (where ‘dataTypeName’ is not a built-in data type), and the
referred segment is a <complexType> or <simpleType>; while name reference is
created by ‘ref=elementName’, and referred segment must be a <element>. All the
referred types or elements must be top level such that they are nested in <schema>
only. Therefore, our solution is that: build two lists called ‘referred’ and ‘referring’,
list ‘referred’ contained all the top level elements and types (both complex and
simple), and list ‘referring’ contain the elements having ‘type’ or ‘ref’ reference; then
after scanning the schema file, for every element in ‘referring’, we physically
duplicate the segment which they refer. Solving those segments which are from
outside of the schema file follows the same method as importing and inclusion.

Recursive Definition
Recursive definition happens when a leaf element refers to one of its ancestors. This
definition also breaks the tree structure, and it has to be solved differently from the
way of solving reference definition, otherwise it falls into infinite loop.

Matching recursively defined node is equivalent to matching the inner node being
referred. So we utilize a detecting procedure, which scans the path from a node up to

the root of the tree to find out whether this node refers to its ancestor or not. Once a
node which has recursive definition is found, we cut the connection and mark the
node with recursive property to distinguish it from its referred ancestor.

Namespace
Namespace is a way to avoid name ambiguity, such as two same data type names in
one schema file, by assigning them to different vocabularies. This is accomplished by
adding unique URIs and giving them aliases. The aliases serve as prefixes, such as
‘xsd:’ in the example, to associate the terms with certain vocabularies – namespaces.
In our implementation, namespace affects reference definitions in three ways: built-in
data type, user-defined data type, and element reference. To support this feature, our
program tracks every prefix and its corresponding URI, takes them and the term right
after the prefix as one unit, then put this unit into the reference solving.

Importing and Including
Importing and including are mechanisms of reusing elements and attributes defined in
other schema files. Including limits the sharing within the same namespace, and
importing can cross different namespaces. When being imported, the imported
schema file’s information is provided in the <import> tag, including the file name,
location and the imported namespace. Our program also parses and models this
schema, then together with its namespace, brings its top level elements and types into
the ‘referred’ list. If any of them are referred by the components in the original
schema file, they will be handled by the reference solving process. For including, the
included file’s information is kept in <include> tag, and the same method is applied to
solve including with the difference of namespace. The namespace for including is as
the same as the original schema file.

Extension
Extension allows new elements and attributes being added. For this situation, we first
need to solve the type reference, so we treat the base clause as the same as type
reference. After getting the base type being duplicated, we process the newly added
components, converting them to nodes and join them as siblings to the duplicated
ones.

Grouping
Grouping is similar to complex type definition, providing a way of reusing predefined
components. The most often used grouping is attribute grouping, which is specified
by <attributeGroup> tag. We use the same way as type reference to solve this
situation, i.e., add the <attributeGroup> definition and reference element to the
‘referred’ list, then duplicate the referred group.

3 Node Similarity
Since a label of a node consists of name, datatype, and cardinality information, the
node similarity is computed based on these entities. Among them the name similarity
is the most complex one.

3.1 Name Similarity

Name similarity is a score that reflects the relation between the meanings of two
names, such as tag name or attribute name, which usually comprised of multiple
words or acronyms. The steps of computing name similarity include tokenization,
computing the semantic similarities of words by WordNet, determing the relations of
tokens by a string matching algorithm if they can not be solved by WordNet, and
calculating the similarity between two token lists.

Tokenization
Quite often a tag name consists of a few words. It is necessary to split up the name
into tokens before computing the semantic similarity with another one. This operation
is called tokenization. A token could be a word, or an abbreviation. Although there are
no strict rules of combining tokens together, conventionally, we have some clues to
separate them from each other such as case switching, hyphen, under line, and number.
For instance: ‘clientName’ is tokenized into ‘client’ and name, and ‘ship2Addr’ to
‘ship’, ‘2’, and ‘Addr’.

Computing Semantic Similarity Using WordNet

Once a name is tokenized into a list of words, we use WordNet [25] to compute the
similarity between the words. WordNet builds connections between four types of POS
(Part of Speech), i.e., noun, verb, adjective, and adverb. The smallest unit in WordNet
is synset, which represents a specific meaning of a word. It includes the word, its
explanation, and the synonyms of this meaning. A specific meaning of one word
under one type of POS is called a sense. Each sense of a word is in a different synset.
For one word, one type of POS, if there are more than one sense, WordNet organizes
them in the order from the most frequently used to the least frequently used.

Based on WordNet and its API, we use synonym and hypernym relations to
capture the semantic similarities of tokens. Given a pair of words, once a path that
connects the two words is found, we determine their similarity according to two
factors: the length of the path and the order of the sense involved in this path.

Searching the connection between two words in WordNet is an expensive
operation due to the huge searching space. We impose two restrictions in order to
reduce the computational cost. The first one is that only synonym and hypernym
relations are considered, since exhausting all the relations is too costly. This
restriction is also adopted in some related works [1]. Another restriction is to limit the
length of the searching path. If a path has not been connected within a length limit, we
stop further searching and report no path found.

Where s and t denote the source and target words being compared. senseWeight
denotes a weight calculated according to the order of this sense and the count of total
senses.

We performed a comparison with seven other approaches on the set of word pairs
in [12]. In terms of correlation, ours exceeds four approaches and falls behind three of
them. Considering that the method we use is simpler and scalable, our similarity
measure is acceptable.

In our implementation, we use the following formula to calculate the semantic
similarity: pathLengthttsenseWeighstsenseWeightswordSim /)(*)(),(=

Similarity between Words outside Vocabulary
Words outside English vocabulary are often used in schemas definition, such as
abbreviations (“qty”) and acronyms (‘purchase order’ as PO). In this case WordNet is
no longer applicable, and we use edit-distance string matching algorithm. By doing
this, the measurement reflects the relations between the patterns of the two strings,
rather than the meaning of the words.

Similarity between Token Lists
After breaking names into token lists, we determine the similarity between two names
by computing the similarity of those two token lists, which is reduced to the bipartite
graph matching problem [13]. It can be described as follows: the node set of a graph
G can be partitioned into two subsets of disjoint nodes X and Y such that every edge
connects a node in X with a node in Y, and each edge has a non-negative weight. The
task is to find a subset of node-disjoint edges that has the maximum total weight.

3.2 Similarity of Built-in Data Type

In XML Schema there are 44 built-in data types, including nineteen primitive ones
and twenty-five derived ones. To reduce the number of combinations, we create seven
data type categories, i.e., binary, boolean, dataTime, float, idRef, integer, and string
that cover the 44 data types. The compatibility table is built for the seven categories.
After this, when comparing two data types, first we check which category these types
belong to, then extract the similarity measure from the category compatibility table.

3.3 Similarity of Cardinalities

XML Schema allows the specification of minimum and maximum occurrences, i.e.,
cardinality, for elements. The range of cardinality is from 0 to unbounded. It is
impossible and unnecessary to compare all the cardinalities in this range. As a result,
we apply a threshold. When cardinalities are equal to or bigger than it, we treat the
cardinality as this threshold.

4 Approximate Tree Matching
Tree matching is an extensively studied problem. The classical tree edit distance
matching algorithm [28] is not an adequate solution for 1) it is not fast enough as is
shown in our experiment explained in section 5; 2) it must preserve the tree ancestor
structure during the match, hence may miss better matches.

Take the two schemas in Figure 2 for example. In those two schemas, there are two
substructures that are very similar. One is about car information, the other one is
driver information. Intuitively we would like to match those substructures. However,
with the traditional tree edit distance algorithms, that kind of matching is not easy to
achieve because shifting two sub-trees (e.g., exchange the position of driver
information with car information in Schema 1) requires many edit operations. Based
on this observation, we generalized the concept of common substructures between
two trees to approximate common substructures (ACS), and developed an efficient
tree matching algorithm for extracting a disjoint set of the largest ACSs [25]. This
disjoint set of ACSs represents the most likely matches between substructures in the
two schemas. In addition, the algorithm provides structural similarity estimate for

each pair of substructures including, of course, the overall similarity between the two
schemas. Using our algorithm to match the above car-driver schemas, both driver and
car nodes and their components can be matched, even though car is an ancestor of
driver in schema one, and it is the other way around in schema two.

5 Experiment
Our system is compared with the traditional edit distance tree matching algorithm for
labeled unordered trees [19] that is implemented by us, and the popular schema
matching system COMA [6].

5.1 Data

The experiments are performed upon the XML Schemas we collected from various
sources. The first group comprises five purchase order schemas which are used in the
evaluation of COMA [6]. We choose the same test data to compare with COMA. The
second group includes 86 large schemas from www.xml.org. These are large schemas
that are proposed by companies and organizations to describe the concepts and
standards for particular areas. We use these large schemas to evaluate system
efficiency. The third group consists of 95 schemas that are collected from HITIS [10].
These schemas are designed to be the standards of interfaces between hospitality
related information systems, such as hotel searching, room reservation, etc. Group
four consists of 419 schemas extracted from WSDL files that describe the schemas of
the parameters of web service operations. These schemas are small in general. Group
three and four are used to test the accuracy of our matching system. Since most of
them are relatively small, they are easy to read and judge manually.

5.2 Accuracy

5.2.1 Comparison with Edit-distance Algorithm
Figure 3 compares the precision and recall between our algorithm (method 1) and edit
distance algorithm (method 2). The test cases are from data group 1, which consists of
5 purchase orders that are also used in COMA.

Figure 2: Example schemas from two businesses

Schema 1, from car rental company Schema 2, from insurance company

driver

firstName

lastName

license
make

car
model

year

color

car

make

model

year

color

driver

first

last

license

The figure shows that our algorithm outperforms the edit distance tree matching
algorithm consistently. Both algorithms adopt node removal operation and use
iterative improvement heuristic to search the approximate result. The major difference
between these two algorithms is that we deal with two nodes (one for each tree) each
time, recursively match two trees from leaves to roots, and the node removal
operation is limited to the child level of current nodes only. The edit distance tree
matching algorithm always takes two trees, tries to remove some nodes in the range of
entire trees each time, compares and keeps the state with smallest distance. Reviewing
these five purchase order schemas supports our schema properties observation again –
similar concepts described by XML are made up of similar elements, and these
elements are constructed in similar ways. Simply speaking, good mappings between
two similar schemas could be found by a few node removal operations. Our algorithm
takes advantage of this condition and limits the range of node removal. Therefore it
removes fewer nodes, but achieves better result. On the other hand, for the edit
distance tree matching algorithm, when the input size is large, the wide range of node
removal increases the searching space and decreases the chance of getting good
mappings.

5.2.2 Comparison with COMA
COMA maintains a library of different matchers (matching methods) and can flexibly
combine them to work out the result. It introduced a manual reuse strategy which can
improve the results but needs human assistance. Besides precision and recall, COMA
adopts the overall measurement that combines precision and recall.

We focus on two matcher combinations in COMA, i.e., ‘All’ – the best no-reuse
combination, and ‘All+SchemaM’ – the best reuse involved combination. Together
with the result of our matching system, the precision, recall and overall measure are
compared in Table 1.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ta
sk

1
1

&
2

Ta
sk

2
1

&
3

Ta
sk

3
1

&
4

Ta
sk

4
1

&
5

Ta
sk

5
2

&
3

Ta
sk

6
2

&
4

Ta
sk

7
2

&
5

Ta
sk

8
3

&
4

Ta
sk

9
3

&
5

Ta
sk

10
 4

 &
 5

Av
g

Precision by method 1 Recall by method 1
Precision by method 2 Recall by method 2

Figure 3: Precision and recall for our method (method 1) and

edit-distance algorithm (method 2)

From this table, we can conclude that in terms of overall accuracy, our matching
system outperforms COMA ‘All’ combination, and falls behind ‘All+SchemaM’
combination on matching the given five purchase order schemas. Considering the
‘All+Schema’ needs human assistance, our matching system works well.

5.2.3 Top-k Precision
 We use Top-k precision method to assess the schema relations reported by our
algorithm and tree edit distance algorithm. Top-k precision is defined
as kectReportCorrp kkTop /=− , where ReportCorrectk is the set of correct results in
the top-k return ones. The experiment for assessing the schema relations is performed
on data group three and four, and is designed as follows: in each group, we randomly
pick a schema; compare it with every schema in this group using both algorithms;
then we sort the returned schemas. Next, we take the union of top-k schemas from the
two lists, subsequently, based on the union set, we manually determine which
schema(s) should not be ranked in top-k, and finally compute the top-k precision for
each algorithm. In order to get better overall measurement, we compute top-3 and top-
5 precisions, repeat above process, and take averages. Figure 4 summarizes the
evaluation results which are based on 10 random schemas in group 3 and 20 schemas
in group 4.

 The result shows that 1) using either algorithm in a schema group, top-3 precision
is better than top-5 precision; 2) both algorithms get better precision on schema group
3; and 3) our algorithm gets better overall results than the edit distance algorithm.

 COMA (All) COMA (All+ SchemaM) Ours

Precision 0.95 0.93 0.88

Recall 0.78 0.89 0.87

Overall 0.73 0.82 0.75

Figure 4: Top-3 and top-5 precision

Table 1: COMA and our algorithm

Top-k Precision

0.0

0.2

0.4

0.6

0.8

1.0

Me thod 1 on
S c he ma
group 3

Me thod 1 on
S c he ma
group 4

Me thod 2 on
S c he ma
group 3

Me thod 2 on
S c he ma
group 4

Top-3 Precision
Top-5 Precision

 The reason of better top-3 and top-5 precisions for group 3 is that all the schemas
in this group are collected from one domain. Most files have similar piece of
information, a few of them are even identical.

5.3 Performance

The performance is assessed using group two that consists of 86 large schemas. This
experiment is performed on a computer with single Intel Pentium 4 3.0GHz CPU and
1G memory. The operating system is Red Hat Linux release 9. We match every two
schemas in this group are matched, so there are 3655 matching tasks in total. Due to
the high computation cost of method 2, we bypass this method for schemas that
exceed 150 nodes. Therefore, the count of matching tasks that the two algorithms
participate is different.

Figure 5 shows the execution times of the three methods. We divide the input size,
represented by the multiplication of node count of the two trees, into several intervals,
then count the number of matching tasks, and calculate the average execution times
for each interval. As we can see, for method 2, there are only six matching tasks when
input size is from 16k to 20k, and there is no task when input size is over 20k.

It illustrates the increasing trend for all of the three execution times while the input
size gets large. Besides, we can conclude that the preparing part is a heavy job, and
the new tree matching algorithm is faster than the edit distance tree matching
algorithm.

There are some tasks in preparing part, including modelling, computing node
similarity, and preparing related data structures for later matching. Clearly, the
majority cost is spent on computing node similarity, and more specifically, on
computing semantic similarities. Computing semantic similarities is a very expensive
task: given two words, the program exhausts their relations stored in WordNet, and
tries to find the highest ranked connection. Even through we restrict the relation to
synonymy and hypernym only, the searching space is still huge. However, we could
adopt some alternatives to reduce the dependence of WordNet, such as reuse pre-
calculated result and build user-specified similarity tables.

0

50

100

150

200

250

0
- 1

k

1k
 -

2k

2k
 -

4k

4k
 -

6k

6k
 -

8k
8k

 -
10

k
10

k
- 1

2k
12

k
- 1

4k
14

k
- 1

6k
16

k
- 2

0k

20
k

+

Input size (M*N)

(s
ec

on
ds

)

Avg Preparing Time Avg Matching Time 1 Avg Matching Time 2

Figure 5: Execution time

Our tree matching algorithm is faster than the edit distance tree matching algorithm.
Due to the same reason describe in previous section, our tree matching algorithm
limits node removal operation, therefore it reduces the searching space.

In conclusion, compared with the edit distance tree matching algorithm, our
algorithm generates better results in shorter time for most of the matching tasks,
especially when input size is large. Therefore it is more applicable in real life schema
matching problems.

5.4 Implementation of the Matching System

This matching system is developed using Java. SAX XML parser in Sun JAXP
package is used to parse XML schema, and WordNet API JWNL is used to access
WordNet’s dictionaries. The experiments generate huge amount of result data,
therefore, we employ Oracle database to manage the data. In addition, after creating
proper indices, we benefit from Oracle database for quick searching and retrieval
operations. There are two types of user interfaces, i.e., command line and web-based.
Command line interfaces are used to debug the system and conduct experiments,
while the Web-based one is used to show the experiment results in a user-friendly
way so that the evaluation work is easier.

6 Conclusion and Future Work
This paper presents our first step in creating an XML Schema searching system to
support schema reuse. There are already hundreds of thousands of XML Schemas on
the web, which need to be collected, classified, indexed, and searched upon. We are
developing an XML Schema repository, and providing various search mechanisms
ranging from simple keyword search to the sophisticated tree matchings as described
in this paper.

To achieve this goal, one salient feature of our system is our exhaustive approach
to each step in the matching process, coping with the engineering details in real
application scenario, with the ultimate goal for practical application. For example, we
considered the details of modelling a XML Schema to a tree, and the practical issues
in using WordNet to compute the name similarity. Most existing schema matching
systems are prototypes that omitted those engineering details.

The experiment results also show that our new tree matching algorithm can match
large trees with hundreds of nodes effectively and efficiently. In a matching task, most
executing time is spent on computing node similarities, especially the connection time
with WordNet. We are improving this by precalculating and caching the word
relationships.

We are also applying schema matching system in web service searching, since the
major components in web services are XML Schemas which defines the parameters in
the operations of a web service.

References
1. S. Banerjee, T. Pedersen. Extended Gloss Overlaps as a Measure of Semantic Relatedness.

IJCAI, 2003.
2. H. Bunke. On a relation between graph edit distance and maximum common subgraph.

Pattern Recognition Lett. 1997 18(8), 689-694.

3. H. Bunke, Recent Developments in Graph Matching, Proc. 15th Int. Conf. on Pattern
Recognition, Barcelona, 2000, Vol 2, 117 – 124.

4. P. V. Biron, A. Malhotra (ed.), W3C, April 2000, ‘XML Schema Part 2: Datatypes’,
http://www.w3.org/TR/xmlschema-2/

5. A. Budanitsky, G. Hirst. Semantic distance in WordNet: An experimental, application-
oriented evaluation of five measures. In Proceedings of the NAACL 2001 Workshop on
WordNet and Other Lexical Resources, Pittsburgh, June 2001.

6. H. Do, E. Rahm. COMA A system for flexible combination of schema matching
approaches. VLDB 2002

7. H. Do., S. Melnik, E. Rahm, Comparison of Schema Matching Evaluations, Proc. GI-
Workshop "Web and Databases", Erfurt, Oct. 2002.

8. A. Doan, P. Domingos, A. Halevy. Reconciling schemas of disparate data sources: A
machine-learning approach. In proc. SIGMOD Conference, 2001

9. A. Gupta, N. Nishimura. Finding largest subtrees and smallest supertrees. Algorithmica,
21:183-210, 1998

10. HITIS - Hospitality Industry Technology Integration Standard, http://www.hitis.org.
11. A. Hlaoui and S. Wang, "A Node-Mapping-Based Algorithm for Graph Matching”,

submitted (and revised) to J. Discrete Algorithms 2004.
12. M. Jarmasz, S. Szpakowicz. Roget’s Thesaurus and Semantic Similarity. RANLP 2003
13. H. W. KUHN. The Hungarian method for the assignment problem. Naval Research

Logistics Quarterly 2 (1955), 83–97.
14. M. L. Lee, L. H. Yang, W. Hsu, X. Yang. XClust: clustering XML schemas for effective

integration. In Proceedings of the eleventh international conference on Information and
knowledge management, Pages: 292 - 299, 2002

15. J. Madhavan, P. A. Bernstein, E. Rahm. Generic schema matching with Cupid. VLDB, 2001.
16. S. Melnik, H. Garcia-Molina, E. Rahm. Similarity flooding: a versatile graph matching

algorithm and its application to schema matching. ICDE 2002.
17. A Mili, R Mili, RT Mittermeir, A survey of software reuse libraries, Annals of Software

Engineering, 1998.
18. E. Rahm, P. A. Bernstein. A survey of approaches to automatic schema matching. VLDB J.,

10(4):334-350, 2001.
19. D. Shasha, J. Wang, K. Zhang, F. Y. Shih. Exact and approximate algorithms for unordered

tree matching. IEEE Transactions on Systems, Man, and Cybernetics. Vol 24, NO.4, April
1994.

20. D. Shasha, J. T. L. Wang, R. Giugno, Algorithmics and Applications of Tree and Graph
Searching, In Proc. PODS'02, June 3-5 2002.

21. H. Su, S. Padmanabhan, M. Lo. Identification of syntactically similar DTD Elements for
schema matching. WAIM, 2001.

22. K. Sycara, M. Klusch, S. Widoff, J. Lu, Dynamic Service Matchmaking among Agents in
Open Information Environments, Journal of ACM SIGMOD Record, 28(1):47-53, 1999.

23. H. S. Thompson, D. Beech, M. Maloney, N. Mendelsohn (ed.), W3C, April 2000, ‘XML
Schema Part 1: Structures’, http://www.w3.org/TR/xmlschema-1/.

24. J. Wang, B. A. Shapiro, D. Shasha, K. Zhang, K. M. Currey. An algorithm for finding the
largest approximately common substructures of two trees. IEEE Trans. PAMI 20, 1998,
889-895.

25. Shengrui Wang, Jianguo Lu, Ju Wang, Approximate Common Structures in XML Schema
Matching. Submitted.

26. WordNet – a lexical database for English. http://www.cogsci.princeton.edu/~wn/
27. K. Zhang, D. Shasha. Simple fast algorithms for the editing distance between trees and

related problems. SIAM Journal of Computing, 18(6):1245-1263, Dec. 1989.
28. K. Zhang, D. Shasha, J. T. L. Wang, Approximate Tree Matching in the Presence of

Variable Length Don't Cares, Journal of Algorithms, 16(1):33-66.

