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Abstract XML Schema is becoming an indispensable component in 
developing web applications. With its widespread adoption and its web 
accessibility, XML Schema reuse is becoming imperative. To support XML 
Schema reuse, the first step is to develop mechanism to search for relevant 
XML Schemas over the web. This paper describes a XML Schema matching 
system that compares two XML Schemas. Our matching system can find 
accurate matches and scales to large XML Schemas with hundreds of 
elements. In this system, XML Schemas are modelled as labeled, unordered 
and rooted trees, and a new tree matching algorithm is developed. Compared 
with the tree edit-distance algorithm and other schema matching systems, it is 
faster and more suitable for XML Schema matching. 
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1 Introduction 
XML Schema has become an indispensable component in web application 
development. Schemas are used to represent all kinds of data structure in 
programming, and are often mapped to classes. To some extent, we can think XML 
Schemas are similar to data types or classes in traditional programming language. 
What makes XML Schema different from traditional software components is that it is 
widely available on the web, encoded in XML and programming language 
independent, and adopted by all the major software vendors. All these features make 
XML Schema reuse not only imperative, but also have the potential to succeed 
beyond traditional software component reuse.  We can envision that almost any data 
structure that you can think of will be available on the web. Programmers need a 
search tool to find the relevant schema instead of developing the schema from scratch.  

Schema matching has its root in software component search and software agent 
search. Both have a long history. [ 17] provides a good survey in component search, 
and [ 22] is the seminal paper on software agent matching, which also inspired 
numerous works on web service searching. Schema matching is also widely studied in 
the area of database area [ 6] [ 14], with the aim to integrate relational and semi-
structured data.  [ 18] surveys the works in this area.  

This paper describes a schema matching system that generates element mappings 
between two schemas. One design rationale of the system is that it should work 
effectively and efficiently – generating good results in acceptable time, such that it is 



  

 

capable of matching real life schemas with several hundreds of elements.  We model 
an XML Schema as an unordered, labeled and rooted tree. In general, an XML 
schema corresponds to a directed graph in which recursive definitions are represented 
by loops and reference definitions are represented by cross edges. The graph 
representation is not adopted in our work for two reasons. First, intuitively the 
directed graph representation of an XML Schema still encompasses a hierarchical 
structure similar to a tree, with a few “loop” exceptions. Secondly and more 
importantly, approximate graph matching [ 3] is too computationally costly as we have 
investigated in [ 11]. Our recent algorithm in graph matching employed strong 
heuristics to reduce search space, but still can only deal with graphs with dozens of 
node [ 11]. Obviously, graph matching algorithms would be difficult to match XML 
Schemas with hundreds of nodes.  

 
Our new tree matching algorithm identifies the structural relations by extracting 

approximate common substructures in two trees. Our observation on the properties of 
XML Schemas shows that similar schemas are made up of similar elements and these 
elements are connected similarly, that is, similar schemas (or similar portions of 
schemas) have similar ancestor-descendent and sibling relations. Based on this, the 
algorithm uses heuristics to reduce the searching space dramatically, and achieves a 
trade-off between matching optimality and time complexity.  

Figure 1 depicts the structure of the matching system. We compute three types of 
similarities for every node pairs, i.e., name similarity, node similarity and structural 
similarity. Name similarity is related to calculating the relationship between two 
names. It is the main entity used for computing similarity between two nodes, other 
entities include data types and cardinalities information. The structural similarity 
shows the relation between two sub-trees rooted at these two nodes. 

The system is tested extensively using about 600 XML Schemas in total. We 
evaluated both matching accuracy and computational efficiency of our system. 
Comparisons were made with the traditional edit distance tree matching algorithm [ 24] 
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and a popular XML Schema matching system COMA [ 6]. The results show that our 
new tree matching algorithm outperforms these two methods, and can be used to 
match larger schemas that contain hundreds of elements.  

2 Modelling XML Schemas as Trees 
An XML Schema is modeled as a labeled unordered rooted tree. Each element or 
attribute of the schema is translated into a node. Attributes and elements that reside 
inside an element are translated as children of the element node. The names of 
elements and attributes, along with some optional information such as data types and 
cardinalities, are the labels of the nodes. 

The modelled tree does not include every detail of an XML Schema. Excluded 
information falls into two categories. One is related to elements or attributes such as 
default value and value range. The other is relevant to structure, such as element order 
indicators. Although by XML Schema standard the order of the elements matters, it is 
ignored in our tree model based on the assumption that the order does not make 
differences as big as changing the labels.  

Modelling XML Schema is a tedious task due to the complexity of XML Schema. 
During the modelling, we need to take care of the following constructs in XML 
Schema, to insure that a schema is modelled as a tree. 
 
Reference Definition  
Reference definition is a mechanism to simplify schema through the sharing of 
common segments. To transform his structure into a tree, we duplicate the shared 
segment under the node that refers to it. By doing this, we increased the number of 
nodes. In implementation of the modelling, we create an array which contains the 
distinct node labels and establish connections from each node to this array. In 
subsequent processes, the node labels are handled based the array instead of the nodes 
themselves. 

There are two types of references in XML Schema specification: data type 
reference and name reference. Data type reference is created by the clause 
‘type=dataTypeName’ (where ‘dataTypeName’ is not a built-in data type), and the 
referred segment is a <complexType> or <simpleType>; while name reference is 
created by ‘ref=elementName’, and referred segment must be a <element>. All the 
referred types or elements must be top level such that they are nested in <schema> 
only. Therefore, our solution is that: build two lists called ‘referred’ and ‘referring’, 
list ‘referred’ contained all the top level elements and types (both complex and 
simple), and list ‘referring’ contain the elements having ‘type’ or ‘ref’ reference; then 
after scanning the schema file, for every element in ‘referring’, we physically 
duplicate the segment which they refer. Solving those segments which are from 
outside of the schema file follows the same method as importing and inclusion.  

Recursive Definition  
Recursive definition happens when a leaf element refers to one of its ancestors. This 
definition also breaks the tree structure, and it has to be solved differently from the 
way of solving reference definition, otherwise it falls into infinite loop. 

Matching recursively defined node is equivalent to matching the inner node being 
referred. So we utilize a detecting procedure, which scans the path from a node up to 



  

 

the root of the tree to find out whether this node refers to its ancestor or not. Once a 
node which has recursive definition is found, we cut the connection and mark the 
node with recursive property to distinguish it from its referred ancestor.  

Namespace 
Namespace is a way to avoid name ambiguity, such as two same data type names in 
one schema file, by assigning them to different vocabularies. This is accomplished by 
adding unique URIs and giving them aliases. The aliases serve as prefixes, such as 
‘xsd:’ in the example, to associate the terms with certain vocabularies – namespaces. 
In our implementation, namespace affects reference definitions in three ways: built-in 
data type, user-defined data type, and element reference. To support this feature, our 
program tracks every prefix and its corresponding URI, takes them and the term right 
after the prefix as one unit, then put this unit into the reference solving. 

Importing and Including 
Importing and including are mechanisms of reusing elements and attributes defined in 
other schema files. Including limits the sharing within the same namespace, and 
importing can cross different namespaces. When being imported, the imported 
schema file’s information is provided in the <import> tag, including the file name, 
location and the imported namespace. Our program also parses and models this 
schema, then together with its namespace, brings its top level elements and types into 
the ‘referred’ list. If any of them are referred by the components in the original 
schema file, they will be handled by the reference solving process. For including, the 
included file’s information is kept in <include> tag, and the same method is applied to 
solve including with the difference of namespace. The namespace for including is as 
the same as the original schema file. 

Extension 
Extension allows new elements and attributes being added. For this situation, we first 
need to solve the type reference, so we treat the base clause as the same as type 
reference. After getting the base type being duplicated, we process the newly added 
components, converting them to nodes and join them as siblings to the duplicated 
ones.  

Grouping 
Grouping is similar to complex type definition, providing a way of reusing predefined 
components. The most often used grouping is attribute grouping, which is specified 
by <attributeGroup> tag. We use the same way as type reference to solve this 
situation, i.e., add the <attributeGroup> definition and reference element to the 
‘referred’ list, then duplicate the referred group.  

3 Node Similarity  
Since a label of a node consists of name, datatype, and cardinality information, the 
node similarity is computed based on these entities. Among them the name similarity 
is the most complex one.  



  

 

3.1 Name Similarity 

Name similarity is a score that reflects the relation between the meanings of two 
names, such as tag name or attribute name, which usually comprised of multiple 
words or acronyms. The steps of computing name similarity include tokenization, 
computing the semantic similarities of words by WordNet, determing the relations of 
tokens by a string matching algorithm if they can not be solved by WordNet, and 
calculating the similarity between two token lists. 

Tokenization  
Quite often a tag name consists of a few words. It is necessary to split up the name 
into tokens before computing the semantic similarity with another one. This operation 
is called tokenization. A token could be a word, or an abbreviation. Although there are 
no strict rules of combining tokens together, conventionally, we have some clues to 
separate them from each other such as case switching, hyphen, under line, and number. 
For instance: ‘clientName’ is tokenized into ‘client’ and name, and ‘ship2Addr’ to 
‘ship’, ‘2’, and ‘Addr’. 

Computing Semantic Similarity Using WordNet 

Once a name is tokenized into a list of words, we use WordNet [ 25] to compute the 
similarity between the words. WordNet builds connections between four types of POS 
(Part of Speech), i.e., noun, verb, adjective, and adverb. The smallest unit in WordNet 
is synset, which represents a specific meaning of a word. It includes the word, its 
explanation, and the synonyms of this meaning. A specific meaning of one word 
under one type of POS is called a sense. Each sense of a word is in a different synset. 
For one word, one type of POS, if there are more than one sense, WordNet organizes 
them in the order from the most frequently used to the least frequently used.  

Based on WordNet and its API, we use synonym and hypernym relations to 
capture the semantic similarities of tokens. Given a pair of words, once a path that 
connects the two words is found, we determine their similarity according to two 
factors: the length of the path and the order of the sense involved in this path.  

Searching the connection between two words in WordNet is an expensive 
operation due to the huge searching space. We impose two restrictions in order to 
reduce the computational cost. The first one is that only synonym and hypernym 
relations are considered, since exhausting all the relations is too costly. This 
restriction is also adopted in some related works [ 1]. Another restriction is to limit the 
length of the searching path. If a path has not been connected within a length limit, we 
stop further searching and report no path found. 

Where s and t denote the source and target words being compared. senseWeight 
denotes a weight calculated according to the order of this sense and the count of total 
senses. 

We performed a comparison with seven other approaches on the set of word pairs 
in [ 12]. In terms of correlation, ours exceeds four approaches and falls behind three of 
them. Considering that the method we use is simpler and scalable, our similarity 
measure is acceptable.  

In our implementation, we use the following formula to calculate the semantic 
similarity: pathLengthttsenseWeighstsenseWeightswordSim /)(*)(),( =  



  

 

Similarity between Words outside Vocabulary 
Words outside English vocabulary are often used in schemas definition, such as 
abbreviations (“qty”) and acronyms (‘purchase order’ as PO). In this case WordNet is 
no longer applicable, and we use edit-distance string matching algorithm. By doing 
this, the measurement reflects the relations between the patterns of the two strings, 
rather than the meaning of the words. 

Similarity between Token Lists  
After breaking names into token lists, we determine the similarity between two names 
by computing the similarity of those two token lists, which is reduced to the bipartite 
graph matching problem [ 13]. It can be described as follows: the node set of a graph 
G can be partitioned into two subsets of disjoint nodes X and Y such that every edge 
connects a node in X with a node in Y, and each edge has a non-negative weight. The 
task is to find a subset of node-disjoint edges that has the maximum total weight.   

3.2 Similarity of Built-in Data Type 

In XML Schema there are 44 built-in data types, including nineteen primitive ones 
and twenty-five derived ones. To reduce the number of combinations, we create seven 
data type categories, i.e., binary, boolean, dataTime, float, idRef, integer, and string 
that cover the 44 data types. The compatibility table is built for the seven categories. 
After this, when comparing two data types, first we check which category these types 
belong to, then extract the similarity measure from the category compatibility table.  

3.3 Similarity of Cardinalities 

XML Schema allows the specification of minimum and maximum occurrences, i.e., 
cardinality, for elements. The range of cardinality is from 0 to unbounded. It is 
impossible and unnecessary to compare all the cardinalities in this range. As a result, 
we apply a threshold. When cardinalities are equal to or bigger than it, we treat the 
cardinality as this threshold. 

4 Approximate Tree Matching 
Tree matching is an extensively studied problem. The classical tree edit distance 
matching algorithm [ 28] is not an adequate solution for 1) it is not fast enough as is 
shown in our experiment explained in section 5; 2) it must preserve the tree ancestor 
structure during the match, hence may miss better matches. 

Take the two schemas in Figure 2 for example. In those two schemas, there are two 
substructures that are very similar. One is about car information, the other one is 
driver information. Intuitively we would like to match those substructures. However, 
with the traditional tree edit distance algorithms, that kind of matching is not easy to 
achieve because shifting two sub-trees (e.g., exchange the position of driver 
information with car information in Schema 1) requires many edit operations. Based 
on this observation, we generalized the concept of common substructures between 
two trees to approximate common substructures (ACS), and developed an efficient 
tree matching algorithm for extracting a disjoint set of the largest ACSs [ 25]. This 
disjoint set of ACSs represents the most likely matches between substructures in the 
two schemas. In addition, the algorithm provides structural similarity estimate for 



  

 

each pair of substructures including, of course, the overall similarity between the two 
schemas. Using our algorithm to match the above car-driver schemas, both driver and 
car nodes and their components can be matched, even though car is an ancestor of 
driver in schema one, and it is the other way around in schema two.  

 

 

 

5 Experiment 
Our system is compared with the traditional edit distance tree matching algorithm for 
labeled unordered trees [ 19] that is implemented by us, and the popular schema 
matching system COMA [ 6]. 

5.1 Data 

The experiments are performed upon the XML Schemas we collected from various 
sources. The first group comprises five purchase order schemas which are used in the 
evaluation of COMA [ 6]. We choose the same test data to compare with COMA. The 
second group includes 86 large schemas from www.xml.org. These are large schemas 
that are proposed by companies and organizations to describe the concepts and 
standards for particular areas. We use these large schemas to evaluate system 
efficiency. The third group consists of 95 schemas that are collected from HITIS [ 10]. 
These schemas are designed to be the standards of interfaces between hospitality 
related information systems, such as hotel searching, room reservation, etc.  Group 
four consists of 419 schemas extracted from WSDL files that describe the schemas of 
the parameters of web service operations. These schemas are small in general. Group 
three and four are used to test the accuracy of our matching system. Since most of 
them are relatively small, they are easy to read and judge manually. 

5.2 Accuracy 

5.2.1 Comparison with Edit-distance Algorithm 
Figure 3 compares the precision and recall between our algorithm (method 1) and edit 
distance algorithm (method 2). The test cases are from data group 1, which consists of 
5 purchase orders that are also used in COMA. 

Figure 2: Example schemas from two businesses 

Schema 1, from car rental company Schema 2, from insurance company 
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The figure shows that our algorithm outperforms the edit distance tree matching 
algorithm consistently. Both algorithms adopt node removal operation and use 
iterative improvement heuristic to search the approximate result. The major difference 
between these two algorithms is that we deal with two nodes (one for each tree) each 
time, recursively match two trees from leaves to roots, and the node removal 
operation is limited to the child level of current nodes only. The edit distance tree 
matching algorithm always takes two trees, tries to remove some nodes in the range of 
entire trees each time, compares and keeps the state with smallest distance. Reviewing 
these five purchase order schemas supports our schema properties observation again – 
similar concepts described by XML are made up of similar elements, and these 
elements are constructed in similar ways. Simply speaking, good mappings between 
two similar schemas could be found by a few node removal operations. Our algorithm 
takes advantage of this condition and limits the range of node removal. Therefore it 
removes fewer nodes, but achieves better result. On the other hand, for the edit 
distance tree matching algorithm, when the input size is large, the wide range of node 
removal increases the searching space and decreases the chance of getting good 
mappings. 

5.2.2 Comparison with COMA 
COMA maintains a library of different matchers (matching methods) and can flexibly 
combine them to work out the result. It introduced a manual reuse strategy which can 
improve the results but needs human assistance. Besides precision and recall, COMA 
adopts the overall measurement that combines precision and recall.  

We focus on two matcher combinations in COMA, i.e., ‘All’ – the best no-reuse 
combination, and ‘All+SchemaM’ – the best reuse involved combination. Together 
with the result of our matching system, the precision, recall and overall measure are 
compared in Table 1. 
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Figure 3:  Precision and recall for our method (method 1) and  

edit-distance algorithm (method 2) 

 



  

 

From this table, we can conclude that in terms of overall accuracy, our matching 
system outperforms COMA ‘All’ combination, and falls behind ‘All+SchemaM’ 
combination on matching the given five purchase order schemas. Considering the 
‘All+Schema’ needs human assistance, our matching system works well.  

5.2.3 Top-k Precision 
 We use Top-k precision method to assess the schema relations reported by our 
algorithm and tree edit distance algorithm. Top-k precision is defined 
as kectReportCorrp kkTop /=− , where ReportCorrectk is the set of correct results in 
the top-k return ones. The experiment for assessing the schema relations is performed 
on data group three and four, and is designed as follows: in each group, we randomly 
pick a schema; compare it with every schema in this group using both algorithms; 
then we sort the returned schemas. Next, we take the union of top-k schemas from the 
two lists, subsequently, based on the union set, we manually determine which 
schema(s) should not be ranked in top-k, and finally compute the top-k precision for 
each algorithm. In order to get better overall measurement, we compute top-3 and top-
5 precisions, repeat above process, and take averages. Figure 4 summarizes the 
evaluation results which are based on 10 random schemas in group 3 and 20 schemas 
in group 4. 

 The result shows that 1) using either algorithm in a schema group, top-3 precision 
is better than top-5 precision; 2) both algorithms get better precision on schema group 
3; and 3) our algorithm gets better overall results than the edit distance algorithm.  

 
 

 

 
 

  COMA (All) COMA (All+ SchemaM) Ours  

Precision 0.95 0.93 0.88 

Recall 0.78 0.89 0.87 

Overall 0.73 0.82 0.75 

Figure 4:  Top-3 and top-5 precision 

Table 1: COMA and our algorithm 
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 The reason of better top-3 and top-5 precisions for group 3 is that all the schemas 
in this group are collected from one domain. Most files have similar piece of 
information, a few of them are even identical.  

5.3 Performance 

The performance is assessed using group two that consists of 86 large schemas. This 
experiment is performed on a computer with single Intel Pentium 4 3.0GHz CPU and 
1G memory. The operating system is Red Hat Linux release 9.  We match every two 
schemas in this group are matched, so there are 3655 matching tasks in total. Due to 
the high computation cost of method 2, we bypass this method for schemas that 
exceed 150 nodes. Therefore, the count of matching tasks that the two algorithms 
participate is different. 

Figure 5 shows the execution times of the three methods. We divide the input size, 
represented by the multiplication of node count of the two trees, into several intervals, 
then count the number of matching tasks, and calculate the average execution times 
for each interval. As we can see, for method 2, there are only six matching tasks when 
input size is from 16k to 20k, and there is no task when input size is over 20k.  

It illustrates the increasing trend for all of the three execution times while the input 
size gets large. Besides, we can conclude that the preparing part is a heavy job, and 
the new tree matching algorithm is faster than the edit distance tree matching 
algorithm. 

There are some tasks in preparing part, including modelling, computing node 
similarity, and preparing related data structures for later matching. Clearly, the 
majority cost is spent on computing node similarity, and more specifically, on 
computing semantic similarities. Computing semantic similarities is a very expensive 
task: given two words, the program exhausts their relations stored in WordNet, and 
tries to find the highest ranked connection. Even through we restrict the relation to 
synonymy and hypernym only, the searching space is still huge. However, we could 
adopt some alternatives to reduce the dependence of WordNet, such as reuse pre-
calculated result and build user-specified similarity tables. 
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Our tree matching algorithm is faster than the edit distance tree matching algorithm. 
Due to the same reason describe in previous section, our tree matching algorithm 
limits node removal operation, therefore it reduces the searching space. 

In conclusion, compared with the edit distance tree matching algorithm, our 
algorithm generates better results in shorter time for most of the matching tasks, 
especially when input size is large. Therefore it is more applicable in real life schema 
matching problems.   

5.4 Implementation of the Matching System 

This matching system is developed using Java. SAX XML parser in Sun JAXP 
package is used to parse XML schema, and WordNet API JWNL is used to access 
WordNet’s dictionaries. The experiments generate huge amount of result data, 
therefore, we employ Oracle database to manage the data. In addition, after creating 
proper indices, we benefit from Oracle database for quick searching and retrieval 
operations. There are two types of user interfaces, i.e., command line and web-based. 
Command line interfaces are used to debug the system and conduct experiments, 
while the Web-based one is used to show the experiment results in a user-friendly 
way so that the evaluation work is easier.  

6 Conclusion and Future Work 
This paper presents our first step in creating an XML Schema searching system to 
support schema reuse. There are already hundreds of thousands of XML Schemas on 
the web, which need to be collected, classified, indexed, and searched upon. We are 
developing an XML Schema repository, and providing various search mechanisms 
ranging from simple keyword search to the sophisticated tree matchings as described 
in this paper.  

To achieve this goal, one salient feature of our system is our exhaustive approach 
to each step in the matching process, coping with the engineering details in real 
application scenario, with the ultimate goal for practical application. For example, we 
considered the details of modelling a XML Schema to a tree, and the practical issues 
in using WordNet to compute the name similarity.  Most existing schema matching 
systems are prototypes that omitted those engineering details.   

The experiment results also show that our new tree matching algorithm can match 
large trees with hundreds of nodes effectively and efficiently. In a matching task, most 
executing time is spent on computing node similarities, especially the connection time 
with WordNet.  We are improving this by precalculating and caching the word 
relationships.  

We are also applying schema matching system in web service searching, since the 
major components in web services are XML Schemas which defines the parameters in 
the operations of a web service.  
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