
Unity: Speeding the Creation of Community Vocabularies for Information

Integration and Reuse

Ken Smith, Peter Mork, Len Seligman, Peter Leveille, Beth Yost, Maya Li, Chris Wolf

The MITRE Corporation

{kps, pmork, seligman, psl, bethyost, haoli, cwolf}@mitre.org

Abstract

Many data sharing communities create data standards

(“hub” schemata) to speed information integration by

increasing reuse of both data definitions and mappings.

Unfortunately, creation of these standards and the

mappings to the enterprise’s implemented systems is both

time consuming and expensive. This paper presents Unity,

a novel tool for speeding the development of a community

vocabulary, which includes both a standard schema and

the necessary mappings. We present Unity’s scalable

algorithms for creating vocabularies and its novel human

computer interface which gives the integrator a powerful

environment for refining the vocabulary. We then

describe Unity’s extensive reuse of data structures and

algorithms from the OpenII information integration

framework, which not only sped the construction of Unity

but also results in reuse of the artifacts produced by

Unity: vocabularies serve as the basis of information

exchanges, and also can be reused as thesauri by other

tools within the OpenII framework. Unity has been

applied to real U.S. government information integration

challenges.

Keywords: data integration, vocabularies, user interfaces

1. Introduction

Large enterprises typically have many heterogeneous

data sources, each of which may participate in multiple

data integration efforts. The use of organizational or

community data standards (―hub‖ schemata) can speed

integration by increasing reuse of both data definitions

and mappings. However, creation of such standards

remains a largely manual process performed by highly

skilled (and expensive) integration engineers; there are

few existing tools to help. In addition, standards can

suffer from irrelevance and disuse when their concepts do

not coincide well (or the correspondence is not clear) with

the concepts of existing community schemata.

This paper presents Unity, a novel tool for speeding

the development of new data exchange standards and

mappings, which ensures the new standard’s concepts are

well-connected to those of existing community schemata.

We make the following contributions:

 Unity enables the creation of a vocabulary—i.e., a

new standard schema, with mappings to existing

schemata. It accomplishes this by extending

schema matching technology: Unity performs an -

way match across existing schemata to infer the

synonym sets (synsets) which form the basis of the

vocabulary.

 Unity’s novel user interface (UI) allows an

integration engineer to perform human-in-the-loop

refinement of automatically suggested synsets.

Users can inspect and edit synsets concepts (and

the ―near misses‖) in multiple contexts and drill

down to supporting evidence, a powerful

improvement over current spreadsheet interfaces.

 Unity was implemented by reusing key software

components available in the OpenII open source

information integration framework [1]. There are

two beneficial byproducts of this implementation

strategy: 1) interoperability with other tools

implemented in the same framework (e.g.,

Harmony [2] and Affinity [3]) and 2) the reuse of

the vocabularies developed by Unity as thesauri to

improve schema matching in Harmony.

The need for a tool like Unity arose from efforts to

construct a vocabulary for communities of interest (COIs)

in the U.S. Department of Defense, as described in [4]. A

COI is a collection of parties whose information needs

overlap significantly (e.g., all parties are concerned with

meteorology), and who have an interest in sharing data.

By constructing a vocabulary, a COI can more rapidly

integrate and reuse information.

2. Vocabulary generation

2.1. Modeling preliminaries

We adopt a generic metamodel based on [5, 6] which

allows us to ignore structural peculiarities across

modeling languages. For example, we can generate a

vocabulary for an exchange effort that includes both

relational databases and XML messages.

In our metamodel a schema consists of entities (e.g.,

relations, classes, objects), properties of entities (e.g.,

columns, attributes), and relationships among entities

(e.g., containment to support XML and other hierarchical

models).

For the purposes of vocabulary generation, we further

abstract the entities, properties and relationships in a

schema into a set of concepts. Each concept consists of an

identifier and a name: . For example,

schema in Figure 1 includes six concepts (only the

concept names are shown), which are properties of a

medical test subject entity.

To facilitate schema integration, our metamodel also

includes mappings as first-class objects. A mapping is a

binary relationship between the concepts in two schemata:

 . Each mapping entry indicates a

semantic correspondence between a concept in and a

concept in . For example, in Figure 1, contains

three entries, one of which indicates a correspondence

between the concepts b_day and age.

2.2. Vocabulary definition and overview

The goal of Unity is to enable the rapid creation of a

simple, yet powerful knowledge structure called a

vocabulary. As illustrated in Figure 1, the schemata in a

community often contain common concepts, which

correspond to each other semantically, even though they

may be designated differently in each schema. The degree

to which concepts span schemata can vary widely,

ranging from concepts common to all schemata in the set

(e.g., gender in Figure 1) to concepts found in only a single

schema (e.g., species).

Given a set of participants that needs to reuse and

share information, let be the set of individual schemata

(– in Figure 1). We define a vocabulary for as

 where:

 is a new canonical schema that contains the

union of all the unique concepts in .

 is a set of mappings that define the concept-level

correspondences between the concepts in

and the concepts in .

For example, in Figure 2, contains ten concepts and

 contains three mappings: , , and .

The first mapping contains six correspondences including

(subject_id, organism_id) and (handedness, handedness).

Vocabularies enable the sharing and reuse of a group's

information because they provide a ―hub‖ for information

exchanges. Unlike externally-defined standards, which

may correspond poorly to a group’s concepts, a

vocabulary is inductively created from the schemata of the

potential sharing participants (which could include an

external standard), provides a shared language for that

group, and pre-computes the mappings necessary to

engineer any data exchange in that group. Thus, the cost,

or ―activation energy‖ of information reuse is

significantly reduced by the presence of a vocabulary. In

addition to facilitating information reuse, a vocabulary

also provides a descriptive inventory of any group’s

shared concepts and is a useful tool for improving their

alignment.

Generating a knowledge structure like a vocabulary

(e.g., an information exchange standard) normally

involves a lengthy manual process lasting from weeks to

years. Unity is a novel system, based on schema matching

and information visualization technologies, for rapidly

and semi-automatically generating a vocabulary.

As shown in Figure 3, Unity generates a vocabulary in

two stages. Unity first runs schema matching algorithms

to compute a set of binary correspondences among the

schemata in . Each line in Figure 3B represents a

mapping between a pair of source schemata, consisting of

individual concept-to-concept correspondences. Second,

Unity aggregates these individual correspondences across

Figure 1: Sample schemata with inter-schema mappings.

Figure 2: Sample vocabulary including a canonical
schema and mappings that relate existing schemata to

the canonical schema.

all schemata in to compute the set of concepts in ,

retaining the correspondences back to the concepts in as

 . Each line in Figure 3C represents an element of . As

discussed in Section III, expert users can intervene in

either step through an interactive visualization. For

example, a subject matter expert could interactively refine

the initial set of element level correspondences between

schemata, prior to generating the vocabulary.

2.3. Algorithms for generating vocabularies

Given , the first step is to compute a set of pair-wise

semantic mappings among the source concepts (i.e.,

concepts in the context of their schema-of-origin) in .

For any two source concepts and , we generate a

mapping where denotes the

similarity between concepts and . Similarity scores are

determined using conventional schema matching

techniques [7], such as: the edit distance between concept

labels, the similarity between textual concept descriptions,

the structural similarity of each concept’s schematic

context, and similarity via synonymy (based on a

thesaurus). A similarity score of +1 indicates a perfect

correspondence; a score of –1 indicates no possible

correspondence between and ; and a score of 0

indicates that we cannot discriminate between a

correspondence and a non-correspondence on the basis of

the available evidence.

By default, we generate all possible mappings between

pairs of schemata, but the user can override this default by

specifying any superset of a spanning tree. Each mapping

is generated by invoking standard schema-matching

algorithms [7] for every pair of source schemata for

which a mapping does not already exist. Let us assume

that no mappings exist and that the user has accepted the

default behavior. If each schema contains source

concepts, then the complexity of the matching operation

is | | where | | , the

number of source concepts in .

The second step is to derive the set of vocabulary

concepts, which form . We accomplish this task by

repeatedly merging source concepts into clusters (i.e.,

synsets). Clustering algorithms rely on a metric for

distance; we derive the distance between pairs of concepts

as follows:

 {

Thus, when two concepts are in perfect

correspondence, the distance between them is zero.

Smaller correspondences generate larger distances. We

set the distance to ∞ when the similarity is negative or the

concepts are in the same schema to prevent those

concepts from appearing in the same cluster.

Merging source concepts into clusters (based on a

distance matrix) can be performed using any

agglomerative clustering algorithm. Unfortunately, given

 source concepts, most clustering algorithms have a

computational complexity of .

For realistically scaled problems, this clustering step

simply takes too much time. Instead, we utilize a practical

optimization based on disjoint-set forests that reduces the

complexity of this second step to below that of the first

step. We begin with a disjoint-set forest containing one

(singleton) tree for each source concept in . Each tree

represents a cluster and we maintain a bitmap that

indicates which schemata have contributed concepts to

that cluster.

We then sort the distances in ascending order (after

eliminating all ∞ distances) and iterate over this sorted list.

We find the trees for both and ; if the intersection of

the corresponding bitmaps is empty or the distance is 0,

we merge the two trees. This requires us to update a) the

disjoint-set forest and b) the bitmap for the merged tree.

Each find or merge operation is where

is the Ackermann function (effectively constant). Each

bitmap operation is | | . Thus, given positive

correspondences, the complexity of this algorithm is

bounded by the sorting operation: ,

assuming | |. Note that in theory, could be as

large as , but in practice, usually varies linearly with

 (schema matching algorithms rarely suggest that every

concept is related to every other concept!).

Finally, for each tree in the disjoint-set forest, we

create a new vocabulary concept . Then, for every

source concept in the tree, we create a correspondence

between and . These source-vocabulary concept

correspondences are aggregated to create the mappings

in .

3. User interface design

Unity transforms vocabulary generation from a manual

process into a faster semi-automated process where

algorithms perform large amounts of the initial work,

which expert users then refine. User interaction occurs at

Figure 3: Example of vocabulary generation with five
participants. A: Initial set of participants. B: Generation
of source concept mappings using schema matching. C:

Vocabulary generation.

two points. First, a user can open an automatically

generated match between two schemata and view and edit

(e.g., accept/reject/augment) the matches, improving the

quality of the input to synset generation algorithms. The

graphical interface design of schema matchers is

discussed elsewhere [2, 8]. The second interaction point is

refining the initially generated set of synsets, which are

then used to generate the final vocabulary. The remainder

of this Section discusses how the Unity user interface (UI)

enables expert users to more rapidly, productively, and

accurately refine synsets than is currently possible.

3.1. Design criteria

Integration engineers traditionally receive candidate

synsets in a tabular spreadsheet, and must perform tasks

such as:

 Evaluate the quality of automatically generated

synsets to determine if their concepts truly belong

together (i.e., are semantically congruent).

 Split a synset into two or more synsets if the

concepts do not belong together.

 Merge two or more synsets into a single synset if

their concepts do belong together.

 Migrate an incorrectly placed concept from one

synset to another.

 Create new, or entirely delete existing, synsets.

Interviews with expert users revealed shortcomings in

the process enabled by a simple tabular interface,

establishing three criteria underlying the design of Unity’s

UI:

1) Explore synsets in multiple related contexts: A

tabular view displays synsets in a single context.

Synsets and their concepts are best evaluated,

however, when explored via multiple linked

contexts, because each context (e.g., seeing a

concept’s placement in its schema-of-origin, as

opposed to only in its synset) reveals further

semantics.

2) Edit synsets in a focused workspace: Exploration

across the entire set of synsets often reveals several

smaller foci (e.g., similar synsets that may need to

be combined). In a standard spreadsheet, the

synsets a user wants to edit may be spread from the

very top to the very bottom of the spreadsheet. It is

valuable to pull ―interesting‖ synsets out of the

larger view, and into a focused workspace for edit

operations.

3) Enable drill down into synset evidence: A tabular

synset view reveals only the schema-of-origin (i.e.,

the column heading) for a given concept. When

making edit decisions, it is useful to drill down to

see the strength of matches within a synset, and to

see the strength of matches for concepts that were

nearly included in the synset.

3.2. Interface panes

As shown in Figure 4, the Unity interface consists of

three related tabbed panes, each pane addressing one of

the above design criteria. Panes and their tabs are

interactively linked: actions taken in one can affect what

is displayed in the others.

3.2.1. Exploration pane: The left Exploration pane

enables users to explore synsets in several different

contexts. Tabs provide three views: a Table view, a Tree

view, and a Search view. Context sensitive menus enable

users to relate concepts across views. For example, a

synset concept can be highlighted in all three views at

once.

The Exploration pane of Figure 4 shows the Table

view, in which each row corresponds to a synset and each

column corresponds to a schema. The Table view is

similar to most tabular spreadsheet views, but provides

sorting and filtering enhancements. A user can click on a

column heading to sort alphabetically (as is standard) but

they can also sort by the number of schemas participating

in the synset. There are a number of filtering options—

e.g., by the number of schemas participating in the synset

(e.g., show only singletons) or by whether or not the

synsets have already been marked as complete. Enhanced

features include the ability to turn element labels on or off,

and being able to color cells based on the quality of match

to the canonical concept (green is an exact name match,

yellow is a match that was not an exact name match, red

is no match). Turning element text off and coloring on

essentially transforms the Table view into a type of heat

Figure 4: Synset inspection in the Unity user interface.
On the left is the Exploration Pane. The upper right is

the Workspace Pane, while the lower right is the Detail
Pane.

map, providing a quick summary of schema alignment

with the canonical schema across synsets.

The next tab in the exploration pane is the Tree view,

which lays out a schema as a tree. A user can select a

concept from the Table View and switch to the Tree View

to see that concept in the context of its schema-of-origin,

as illustrated in Figure 5. The Tree view is particularly

useful for understanding additional semantics about a

concept so a user can determine whether or not it truly

belongs in a synset. It is not uncommon for multiple

concepts in a schema to have the same minimally-

informative name (e.g., ID) or for definitions to be missing.

In such a situation, original schema context may be the

only way to access their actual meaning and thus

disambiguate concepts. For example, seeing the concept

Tank appear in a plumbing supplies type in its schema-of-

origin provides important semantics that a user needs in

order to decide if that concept belongs in a particular

synset. A simple search capability is available at the

bottom of both the Tree and Table view which enables

users to execute simple string searches and find specific

concepts.

3.2.2. Workspace pane: The top right area is the

Workspace pane. Users can drag a synset (i.e., row) from

the Exploration pane and drop it into the Workspace pane.

The Workspace pane in Figure 4 is populated with six

synsets. Within the Workspace pane, users can edit any

synset (dragging and dropping concepts among synsets),

annotate a synset, and create new synsets.

When a user is content that a synset is correct, they can

mark that synset as complete. Completed synsets appear

with a check mark next to them. Note that back in the

Exploration Pane, a user can hide synsets that have been

marked as complete, allowing a user to get a feel for how

many synsets are left to review.

3.2.3. Detail pane: The Detail pane appears on the

bottom right and enables a user to drill down into

evidence for the synset. The data in this pane is

automatically populated when the user selects a synset

(e.g., MeasurementDate in Figure 4) in the Workspace pane.

For each concept in the synset, the Evidence tab shows

the strength of the match with every other concept in the

synset.

The Close Matches tab shows the user concepts which

had high match scores with one or more concepts in the

synset, but did not end up in the final synset.

4. Reuse within the OpenII framework

Unity was built within OpenII, which provided

multiple opportunities for productive reuse. OpenII [1] is

an integrated framework for performing information

integration tasks and tool development. In contrast to

commercial integration tools, OpenII is open source

(http://openii.sourceforge.net/) and includes a set of

interfaces and reusable components for solving

integration problems. Including Unity, a growing set of

tools are being contributed to the OpenII framework [3, 9].

In the following we discuss how building Unity within

the OpenII framework was facilitated by reuse of OpenII

components. We then illustrate how this strategy provided:

a) interoperability with other tools developed in the same

framework and b) enables the novel reuse of knowledge

captured in vocabularies to enhance traditional schema

matching.

4.1. OpenII basics

The OpenII framework provides:

 Built-in Object Types. OpenII recognizes and

manages relevant object types for information

integration, including: schemata, mappings, and

projects.

 Persistence. Underlying an OpenII instance is a

repository for serializing objects of these types.

 Software Interface. OpenII provides various

programming interfaces (e.g., Java, web services)

so tools can manipulate, serialize, and retrieve

object instances.

 User Interface. An OpenII instance is an Eclipse

application, and thus uses the familiar Eclipse

interface for panes, tabs, etc.

Figure 5: Tree view option within the Exploration Pane,
showing synset concepts in their original schema

context

4.2. Component reuse in Unity implementation

Like all OpenII tools, Unity relies on the OpenII

repository. Its neutral metamodel enables users to import

existing community schemata written in a variety of

formats (e.g., relational, XML schemata, etc.) into a

common persistent environment as OpenII schema objects.

To create a new vocabulary, Unity instantiates a new

OpenII project object containing these community

schema objects. Unity then generates the necessary

pairwise mappings among schema objects by invoking the

existing Harmony schema matcher, which utilizes

identical OpenII object representations and interfaces.

The resulting OpenII mapping objects are added to the

project object.

If a needed mapping object already exists in the

repository, it can be reused by simply importing it into the

Unity project object, saving the cost of regenerating it.

This is valuable reuse, in that mappings may have

undergone significant expert refinement for previous

integration tasks, which should not be wasted.

Unity generates synsets from these mapping objects

via clustering, as described in Section II. Expert users can

then refine these synsets via panes in the OpenII Eclipse

UI, such as those shown in Figures 4 and 5. Unity uses the

completed synsets to generate a new OpenII schema

object consisting of a simple list of vocabulary concepts,

and a new set of OpenII mapping objects between the new

schema and the existing schemata.

Thus, the final vocabulary generated by Unity is easily

persisted in the OpenII repository as standard and

reusable OpenII objects.

4.3. Vocabulary reuse

One illustration of how Unity-generated vocabulary

objects can be reused in OpenII as thesauri. Thesauri are

important objects within the OpenII framework, because

they are employed by the Harmony schema matchers to

match concepts via synonymy. Harmony permits users to

configure a composite matcher from a suite of individual

―match voters,‖ some of which rely on thesauri to identify

possible semantic correspondences. Harmony thesauri can

be trivially constructed from Unity vocabulary objects.

This particular reuse scenario, from a Unity-generated

vocabulary to a Harmony thesaurus match voter, can

improve the quality of data exchanges in a domain over

time. Vocabulary generation involves the identification of

semantically related concepts, some of which are domain

specific and would never be found in a normal thesaurus.

However, by using a vocabulary-derived thesaurus as a

schema match voter (on schemata in a semantically

congruent domain), Harmony can recognize the

correspondence between such concepts. In this way, a

feedback loop is created where the accuracy of matches

within a domain can improve over time based on the

generation of vocabularies, as discussed in [10].

This dynamic is illustrated in the following example.

Consider ten hospitals which must align their internal

schemata to exchange digital patient records. A Unity-

generated vocabulary can be used to help generate

executable data exchanges among the hospitals. When an

eleventh hospital joins the group, additional schema

matching is triggered (i.e., the 11
th

 schema must be

matched to each of the other 10) to generate a new

vocabulary. Match voters utilizing a thesaurus based on

the Unity-generated vocabulary will generate high

confidence scores for domain-specific synonyms

discovered in the previous matching process which are

also applicable in this subsequent process.

5. Related work

Many of the tools provided by OpenII are

implementations of model management [11-13] operators.

Unity, for example, is an implementation of the merge

operator. Our implementation is based on [14], which

describes how to resolve possible representational

conflicts. We avoid these conflicts by abstracting

schemata into a set of concepts, focusing instead on

algorithmic efficiency.
Our work also leverages the rich literature on schema

matching [7]. The algorithm presented in Section II is, in

effect, an -ary one-shot integration process [15], with the

additional novelty that our integration process is based on

first generating a set of binary pairwise schema mappings.

[16] noted the need for improvements in schema

matching user interfaces. While [2] added useful filtering

and focusing options for the user, it did not fundamentally

alter the basic user interface paradigm—e.g., one schema

on the left, a second on the right, and lines between them

indicating correspondences. Our current work is the first

of which we are aware that seriously tackles visualization

of n-way matches, drill down into supporting evidence

and near misses, and a convenient workspace that

supports rapid merging, splitting, and other editing of

synsets.

6. Conclusions and future work

This paper describes Unity, a tool for semi-automatic

construction of vocabularies, which can serve as standards

for information integration projects, from a set of

community schemata. Vocabularies consist of a canonical

schema whose concepts are related to synonymous

concepts in community schemata. Unity relies on a novel

combination of -way schema matching to produce

synsets, and context-preserving UI design to refine them.

Unity was constructed through extensive reuse of

components in the open source OpenII information

integration framework. Not only did this implementation

strategy speed the development of Unity and provide

compatibility with other tools in the OpenII framework, it

enabled a novel reuse of the vocabulary artifacts produced

by Unity as a domain-specific thesaurus to enhance future

schema matching. Unity has been applied to U.S.

Government information integration problems.

Unity faces the same limitations as other schema

matching technology in terms of the kinds of matches it is

able to identify: unless there are similarities in the names

or descriptions of data elements (directly, or via some

thesaurus), we will be unable to automatically detect a

match. A second limitation is that the vocabulary Unity

currently generates consists of an unstructured list of

concepts. In the future, we plan to augment Unity to

preserve structural relationships among concepts, to the

extent possible.

References

1. Seligman, L., Mork, P., Halevy, A., Smith, K., Carey, M.J.,

Chen, K., Wolf, C., Madhavan, J., Kannan, A., Burdick, D.:

OpenII: An Open Source Information Integration Toolkit.

SIGMOD (2010)

2. Mork, P., Seligman, L.J., Rosenthal, A., Korb, J., Wolf, C.:

The Harmony Integration Workbench. Journal on Data

Semantics 11 (2008) 65–93

3. Smith, K., Bonaceto, C., Wolf, C., Yost, B., Morse, M.,

Mork, P., Burdick, D.: Exploring Schema Similarity at

Multiple Resolutions. In: Elmagarmid, A., Agrawal, D.

(eds.): Proceedings of the ACM SIGMOD International

Conference on Management of Data. ACM, Indianapolis,

IN (2010) 1179–1182

4. Smith, K., Morse, M., Mork, P., Li, M., Rosenthal, A.,

Allen, D., Seligman, L.J.: The Role of Schema Matching in

Large Enterprises. Fourth Biennial Conference on

Innovative Data Systems Research, Asilomar, CA (2009)

5. Atzeni, P., Torlone, R.: Management of Multiple Models in

an Extensible Database Design Tool. In: Apers, P.M.G.,

Bouzeghoub, M., Gardarin, G. (eds.): Advances in

Database Technology - EDBT'96, 5th International

Conference on Extending Database Technology. Springer,

Avignon, France (1996) 79–95

6. Atzeni, P., Gianforme, G., Cappellari, P.: A Universal

Metamodel and Its Dictionary. Transactions on Large-Scale

Data- and Knowledge-Centered Systems 1 (2009) 38–62

7. Rahm, E., Bernstein, P.A.: A Survey of Approaches to

Automatic Schema Matching. The VDLB Journal 10 (2001)

334–350

8. Bernstein, P.A., Melnik, S., Churchill, J.E.: Incremental

Schema Matching. In: Dayal, U., Whang, K.-Y., Lomet,

D.B., Alonso, G., Lohman, G.M., Kersten, M.L., Cha, S.K.,

Kim, Y.-K. (eds.): Proceedings of the 32nd International

Conference on Very Large Data Bases. ACM, Seoul, Korea

(2006) 1167–1170

9. Chen, K., Madhavan, J., Halevy, A.: Exploring schema

repositories with schemr. In: Çetintemel, U., Zdonik, S.B.,

Kossmann, D., Tatbul, N. (eds.): SIGMOD 2009. ACM,

Providence, RI (2009) 1095–1098

10. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.Y.:

Corpus-based Schema Matching. Proceedings of the 21st

International Conference on Data Engineering, ICDE 2005.

IEEE, Tokyo, Japan (2005) 57–68

11. Bernstein, P.A.: Applying Model Management to Classical

Meta Data Problems. First Biennial Conference on

Innovative Data Systems Research, Asilomar, CA (2003)

12. Bernstein, P.A., Melnik, S.: Model Management 2.0:

Manipulating Richer Mappings. In: Chan, C.Y., Ooi, B.C.,

Zhou, A. (eds.): Proceedings of the ACM SIGMOD

International Conference on Management of Data. ACM,

Beijing, China (2007) 1–12

13. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A

Programming Platform for Generic Model Management. In:

Halevy, A.Y., Ives, Z.G., Doan, A. (eds.): Proceedings of

the 2003 ACM SIGMOD International Conference on

Management of Data. ACM, San Diego, CA (2003) 193–

204

14. Pottinger, R.A., Bernstein, P.A.: Merging Models Based on

Given Correspondences. VLDB 2003, Proceedings of 29th

International Conference on Very Large Data Bases.

Morgan Kaufmann, Berlin, Germany (2003)

15. Batini, C., Lenzerini, M., Navathe, S.B.: A Comparative

Analysis of Methodologies for Database Schema

Integration. ACM Computing Surveys 18 (1986) 323–364

16. Bernstein, P., Melnik, S., Petropoulos, S., Quix, C.

Industrial Strength Schema Matching, SIGMOD Record,

Vol. 33, No. 4, December 2004

