
Markov Network based Ontology Matching ∗

Sivan Albagli
Dept. of Computer Science

Ben-Gurion University
albagli@cs.bgu.ac.il

Rachel Ben-Eliyahu-Zohary
JCE and Ben-Gurion University

Israel
rachel@bgu.ac.il

Solomon E. Shimony
Dept. of Computer Science

Ben-Gurion University
shimony@cs.bgu.ac.il

Abstract
iMatch is a probabilistic scheme for ontology
matching based on Markov networks, which
has several advantages over other probabilistic
schemes. First, it uses undirected networks, which
better supports the non-causal nature of the depen-
dencies. Second, it handles the high computational
complexity by doing approximate reasoning, rather
then by ad-hoc pruning. Third, the probabilities
that it uses are learned from matched data. Fi-
nally, iMatch naturally supports interactive semi-
automatic matches. Experiments using the stan-
dard benchmark tests that compare our approach
with the most promising existing systems show that
iMatch is one of the top performers.

1 Introduction
Ontology matching has emerged as a crucial step when infor-
mation sources are being integrated, such as when companies
are being merged and their corresponding knowledge bases
are to be united. As information sources grow rapidly, man-
ual ontology matching becomes tedious, time-consuming and
leads to errors and frustration. Therefore, automated ontol-
ogy matching systems have been developed. In this paper, we
present a probabilistic scheme for interactive ontology match-
ing based on Markov networks, called iMatch.

The first approach for using inference in structured prob-
ability models to improve the quality of existing ontology
mappings was introduced as OMEN in [Mitra et al., 2005].
OMEN uses a Bayesian network to represent the influences
between potential concept mappings across ontologies. Some
of our ideas are based on [Mitra et al., 2005] - the method we
present herein also contains inference over networks, albeit
with several improvements. First, iMatch uses Markov Net-
works rather than Bayesian Networks. This representation
is more natural since there is no inherent causality in ontol-
ogy matching. Second, iMatch uses approximate reasoning
to confront the formidable computation involved rather than
arbitrary pruning as done by OMEN.

∗Supported by the IMG4 consortium under the MAGNET pro-
gram of the Israel ministry of trade and industry; and the Lynn and
William Frankel center for computer science.

Third, the clique potentials used in the Markov networks
are learned from data, instead of being provided in advance
by the system designer. Finally, iMatch performs better than
OMEN, as well as numerous other methods, on standard
benchmarks.

In the empirical evaluation, we use benchmarks from
the Information Interpretation and Integration Conference
(I3CON).1 These standard Benchmarks are provided by the
initiative to forge a consensus for matching systems evalu-
ation, called the Ontology Alignment Evaluation Initiative
(OAEI), on which we compare iMatch with the state of the
art ontology matching systems such as Lily [Wang and Xu,
2008], ASMOV [Jean-Mary and Kabuka, 2008], RiMOM
[Zhang et al., 2008]. Our experiments show that iMatch is
competitive with, and in some cases better than, the best on-
tology matching systems known so far.

2 Background
2.1 Ontology Matching
We view ontology matching as the problem of matching la-
beled graphs. That is, given ontologies O and O′, (see Figure
1) plus some additional information I , find a mapping m be-
tween nodes in O and nodes in O′ that is optimal in some
respect. A difficulty in the field of ontology matching is that
a formal definition of optimality is lacking in general. There
are criteria for what makes a “good” match [Do et al., 2002],
and in some cases even formal definitions of match qualities
[Jerome Euzenat, 2007], but there is no agreed upon global
standard. Therefore, matching schemes are usually scored
based on what a human expert would do, given the same type
of input - assumed to be “ground truth”, an evaluation scheme
adopted in this paper.

The labels in the ontology convey information, as they are
usually sequences of (parts of) words in a natural language.
The additional information I is frequently some knowledge
base containing words and their meanings, how words are
typically abbreviated, and so on. In addition, in an interac-
tive setting, user inputs (such as partial matching indications:
a human user may be sure that a node labeled “address” in O
should match the node labeled “location” in O′) can also be
seen as part of I . In this paper, we focus on performing what

1http://www.atl.external.lmco.com
/projects/ontology/i3con.html

1884

Figure 1: Two ontologies, O and O′, to be matched.

is sometimes called a “second line matching”, that is, we as-
sume that a similarity measure over pairs of nodes (o, o′) is
provided. Then, we use the structure of the ontologies, in
conjunction with type information and the evidence provided
by the similarity measure (and possibly a user) to compute
the matching. The initial similarity is usually provided by a
first-line matcher.

In general, an ontology mapping m can be a general mapp-
ping between subsets of nodes in O and subsets of nodes in
O′. However, in most schemes m is constrained in various
ways. One commonly used constraint is requiring m to be
one to one. This paper for the most part assumes the one to
one constraint, but we also show how the proposed model
can be generalized to mappings that are one to many or many
to one.

For simplicity, we use a rather simple standard scheme
of ontology representation, where the nodes of the ontology
graph (see figure 1) denote entities such as classes, proper-
ties, and ranges. Arcs denote relationships R(o1, o2) between
entities, such as subClassOf (used to construct the class hier-
archy), instanceOf, etc. For example, in Figure 1 we have
subClassOf(C2, C1) in ontology O. Properties are objects
in the ontology that describe attributes of classes. Range is
an instance of Property that is used to state that the values
of a property are instances of one or more classes. Domain
is an instance of Property that is used to state that any re-
source that has a given property is an instance of one or more
classes. Figure 1 depicts an ontology O on the left-hand side,
and an ontology O′ on the right-hand side, that we might
wish to match. Given the structure of the ontologies, it seems
likely that m(C1, C

′
1). We use the following notation con-

ventions throughout this paper: all concepts from O are un-
primed, and those from O′ are primed. C denotes a class,
and P is a property. In order to denote confidence in a match,
Pr(m(C, C ′)) denotes the probabiliy that C matches C ′.

2.2 Markov Networks
Markov networks are structured probability models [Pearl,
1988], used to compactly represent distibutions over random
variables. Like their directed counterpart, Bayesian networks,
Markov network structure is a graph G = (V,E), where each
node v ∈ V stands for a random variable, and each edge
e ∈ E represents a direct statistical dependency between the
variables represented by its incident nodes (Figure 2).

However, unlike Bayesian networks, edges in Markov net-
works are undirected, and additionally do not imply a causal
influence, which is a commonly used interpretation of the se-

Figure 2: Markov network for matching O and O′

mantics of edges in Bayes networks. The distribution in a
Markov network is defined by potential functions over the
cliques of G. Let C be a clique of G. The potenial over
C is a function pC from the cross-product of the domains
of variables represented by the nodes in C to [0, 1]. The
value of pC for a specified value assignment A of the clique
variables is a probability of occurence of the event where
the variables get a value as specified by A. One example
of a potential function over the 2-clique of binary variables
{m(C1, C

′
1), m(C2, C

′
2)} appears in Table 1.

In order to allow for an unconstrained definition of the po-
tential functions, the potentials are assumed to be unnormal-
ized probabilities, and require a normalization using a global
partition function Z, an issue beyond the scope of this paper.
The distribution defined by a Markov network is:

P (V) =
1
Z

∏

C∈cliques(G)

pC(C) (1)

In this paper, probabilities in potential functions stand for
compatibility of the values of the random variables, as de-
tailed below. We will be using the probabilities to compute
the probability that a given pair of ontology nodes (o, o′)
match.

3 Probabilistic Matching Scheme
When creating a probabilistic scheme, one should first define
the semantics of the distribution based on real-world distri-
butions. Ideally, one should have a generative model for the
distribution in question, as has been done in various domains,
such as natural language understanding and plan recognition
[Charniak and Goldman, 1994]. Although we have not been
able to come up with a generative model we would want the
probability that a match (o, o′) occur as defined in the model,
to be the same as what we would expect would occur if the
same evidence were presented to a human expert.

In order to achieve this, we use standard common sense
rules, such as: “when (o, o′) match, then the (respective) par-
ents of these nodes frequently match as well”, to define the
dependencies and potential functions. The distribution model
is also used to encode constraints on the mapping, such as the
one-to-one constraint.

Our matching scheme as a whole works as follows.
1. Given the ontologies O and O′, construct a problem in-

stance specific Markov network N(O,O′).

1885

2. Using a first-line matcher, find initial match distributions
for all possible pairs (o, o′), and use them to initialize
evidence potentials.

3. Perform probabilistic reasoning in N in order to com-
pute a second-line match.

3.1 Constructing the probabilistic model
Since a-priori any element of O can match any element of
O′, we need to model this as a possible event in the proba-
bilistic model. Thus, we have one binary variable (node) in
the network for each possible (o, o′) pair. The topology of
the network is defined based on the following common-sense
rules and constraints:

1. The matching is one to one.

2. If concepts c1 ∈ O, c′1 ∈ O′ match, and there is a re-
lationship R(c1, c2) in O, and R(c′1, c

′
2) in O′, then it is

likely that c2 matches c′2.

The first rule is encoded by making cliques of the follow-
ing node-sets (required as in this case the indicated matching
events below are all directly statistically dependent). Con-
sider node v = (o, o′). This node participates in a clique
consisting of all nodes {(o, o′′)|o′′ ∈ O′}, i.e. the nodes
standing for all possible matches of o. This setup will al-
low the model to control the number of matches for o. Like-
wise, v also participates in a clique consisting of the nodes:
{(o′′, o′)|o′′ ∈ O}, i.e. the nodes standing in for all possible
matches of o′, allowing control over the number of matches
for o′. For example, part of the Markov network constructed
for the ontologies O and O′ from Figure 1 is depicted in Fig-
ure 2. The dotted arcs represent cliques of nodes where each
clique contains the same source node, such as the 2-clique
consisting of m(C1, C

′
1) and m(C1, C

′
2). The actual control

over number of matches is achieved by specifying an appro-
priate potential function over these cliques, as discussed be-
low.

The second rule (which actually results from packing 2
rules adapted from OMEN [Mitra et al., 2005]), has several
sub-cases, depending on the nature of the relation R. Two
special cases considered here are the subClassOf relation, and
the propertyOf relation. In the former case, if two classes
match, the probability of match between each pair of their
sub-classes might change (usually increase), according to the
strength of the appropriate dependency. A similar argument
holds for the case where the relationship is one between a
class and one of its properties. In both cases, the dependency
is represented by an arc between the node m(C1, C

′
1) and the

node m(C2, C
′
2). For example, in Figure 2, this type of re-

lationship between the Markov network nodes is shown by
solid arcs. The nature of the dependency (such as correlation
strength between these matches) is encoded in the potential
function over this 2-node clique, as in Table 1.

One can consider more complicated rules, such as intro-
ducing context dependency (e.g. the fact that superclasses
match increase the probability that the respective subclasses
match may depend on the type of the superclass, or on the
number of subclasses of each superclass, etc.). The iMatch
scheme can easily support such rules by defining potential

m(C1, C
′
1)

T F
m(C2, C

′
2) T 0.19 0.25

F 0.063 0.55

Table 1: Potential function for rule-derived arcs.

functions over the respective sets of nodes, but in this version
such rules have not been implemented - leaving this issue for
future work.

Defining the clique potentials
For each of the cliques types discussed above, we need to
define the respective potential functions (also called factors).
We begin by describing what these potentials denote, and how
they should be determined. Later on, we discuss how some
of the potential function values can be learned from data.

The simplest to define are clique potentials that enforce
the one-to-one constraint. Each such clique is defined over
k binary nodes, at most one of which must be true. Barring
specific evidence to the contrary, the clique potential is thus
defined as: 1 for each entry where all nodes are false, a con-
stant strictly positive value a for each entry where exactly one
node is true, and 0 elsewhere (denoting a probability of zero
for any one to many match). The value of the constant a is de-
termined by the prior probability that a randomly picked node
o matches some node in o′, divided by the number of possible
candidates. In our implementation, the potentials for these
cliques were defined by implicit functions, as all but a num-
ber linear in k of the values are zero; in order to avoid the 2k

space and time complexity for these cliques. As an indication
of the flexibility of our scheme, observe that in order to allow
multiple matches all that need be done is to change the po-
tential in this clique, to reflect the probability that a multiple
match occur.

The second type of clique potential is due to rules-based
arcs (solid arcs in Figure 2). This is a function over 2 bi-
nary variables, requiring a table with 4 entries. As indicated
above, a match between concepts increases the probability
that related concepts also match, and thus intuitively should
have main diagonal terms higher than off-diagonal terms. We
could cook up reasonable numbers, and that is what we did in
a preliminary version. We show empirically that results are
not too sensitive to the exact numbers. However, it is a better
idea to estimate these numbers from training data, and even
a crude learning scheme performs well. We have tried sev-
eral learning schemes, but elected to use a simple maximum
likelihood parameter estimation. For the rule-derived clique
potentials, we simply calculated the likelihood of the data, by
counting the number of instances for each one of the observa-
tions, resulting in potentials reported in Table 1. In retrospect,
these numbers do make sense, even though they did not con-
form with our original intuitions. This is due to the fact that
the “no match” entries are far more frequent in the data, as
most candidate matches are false.

The third type of clique potentials is used to indicate ev-
idence. Two types of evidence are used: indication of prior
beliefs about matching (provided by a first-line matcher), and
evidence supplied by user input during interaction. These can

1886

be added as single-node potentials, as indicated by the prob-
abilities in Figure 2. However, in the actual implementation
this was done by adding a dummy node and potentials over
the resulting 2-clique, which is a standard scheme for intro-
ducing evidence [Pearl, 1988]. We support evidence of the
form: Pr(m(o, o′)) = x, where x is the probability of the
match (o, o′) according to the first-line matcher or the user.
Observe that adding several sources of evidence (whether mu-
tually independent or dependent) for the same node can also
be supported in this manner.

3.2 Reasoning in the probabilistic model
Given a probabilistic model, there are several types of proba-
bilistic reasoning that are typically performed, the most com-
mon being computation of posterior marginals (also called
belief updating), and finding the most probable assignment
(also called most probable explanation (MPE), or belief revi-
sion) [Pearl, 1988]. Both of these tasks are intractable, being
NP-hard in the general case. And yet there are a host of al-
gorithms that handle large networks, that have a reasonable
runtime and deliver good approximations in practice. Of par-
ticular interest are sampling-based schemes [Pearl, 1988] and
loopy belief propagation [Kschischang et al., 2001], on which
our experimental results are based. A match is reported for
any (Markov) network node that has a posterior probability
of being true greater than a given “decision threshold”, which
could either be user-defined (as in Section 4) or based on a
decision-theoretic scheme, e.g. based on penalty for making
a false match vs. bonus for a correct match. Note, however,
that our scheme is not committed to these specific algorithms.

iMatch supports user interaction quite naturally, as follows.
User input is simply added as evidence in the Markov net-
work, after which belief updating is perfromed. There is no
need to change any of the algorithms in the system in order to
do so. The evidence provided by the user can be encoded eas-
ily in the clique potentials. Currently, we use the (2× 2 iden-
tity) potential matrix, thus assuming that the user is always
correct, but changing it to one that has non-zero off-diagonal
entries allows for handling user errors.

4 Empirical Evaluation
In order to evaluate our approach, we used the benchmark
tests from the OAEI ontology matching campaign 20082. We
followed the standard evaluation criteria from the OAEI cam-
paign, calculating the precision, recall and f-measure over
each test. The version computed here is the harmonic mean
of precision and recall.

4.1 Comparison to existing systems
For each test, we computed the prior probability of each
matching event using edit distance based similarity as the
“first-line matcher” [Wagner and Fischer, 1974]. we then
performed belief updating in the network using loopy belief
propagation. In experiments 1 and 2, the results were eval-
uated against a reference alignment of each test. Finally we
compared the f-measure with other systems on each test. Ex-
periment (1): The Conference test suite from the 2008 OAEI

2http://oaei.ontologymatching.org/2008/

Figure 3: Results for the Conference test ontologies.

ontology matching campaign was used. The OAEI Confer-
ence track contains realistic ontologies, which have been de-
veloped within the OntoFarm project. Reference alignments
have been made over five ontologies (cmt, confOf, ekaw,
iasted, sigkdd). Some statistics on each of these is shortly
described in Table 2. Figure 3 is a comparison of the match-
ing quality of our algorithm and the other 3 systems, com-
puted with two thresholds over the posterior match probabil-
ity: 0.5 and 0.7 (thresholds picked to fit theresholds reported
for the competing systems). As is evident from the figure,
results of iMatch depend on the decision threshhold, but not
too sharply. iMatch out-performed the competition here on a
range of thresholds.

Name Number of Classes Number of Properties
Ekaw 77 33

Sigkdd 49 28
Iasted 140 41
Cmt 36 59

ConfOf 38 36

Table 2: The conference ontologies.

Experiment (2): Here we used the benchmark test samples
suite from the 2008 OAEI ontology matching campaign. The
benchmarks test case includes 51 ontologies in OWL, The
different gross categories are summarized in Table 3. Figure
4 compares the outcome quality of our algorithm to 14 othe
systems. One of the schemes, EDNA, is the edit distance
scheme alone, also the first-line matcher input to iMatch. As
is evident from the figure, iMatch is one of the top perform-
ers in most of the categories, and the best in some of them.
A notable exception is the set of ontologies requiring lin-
guistic techniques, in which iMatch, as well as many other
systems, did badly, as iMatch knows nothing about language
techniques (and systems that did well there do). One way to
improve iMatch here would be to use evidence from linguis-
tic matchers - the probabilistic scheme is sufficiently general
that it should be possible to use this type of evidence as well,
in future research.

Tests Description
101-104 O, O′ have equal or totally different names
201-210 O, O′ have same structure, different linguistic level
221-247 O, O′ have same linguistic level, different structure
248-266 O, O′ differ in structure and linguistic level
301-304 O′ are real world cases

Table 3: The benchmark test samples suite.

1887

Figure 4: Results for the benchmarks test ontologies.

4.2 Auxiliary experiments
Better understanding of tradeoffs and parameters in iMatch
would greatly facilitate future enhancements. Several aux-
iliary experimental results are of special interest, described
very briefly below due to lack of space. First, we wish to
evaluate the sensitivity of the results to the clique potentials
learned from data, as one could not expect to get the exact
right numbers for an unknown ontology. (In our case, we
learned the numbers using matching results from 2 pairs of
ontologies, and applied them throughout all the other experi-
ments.)

In one experiment we tweaked each of the parameters of
Table 1 in iMatch (the (T,T), (T,F), (F,T), (F,F) entries) by 0.1
to 0.3 in various ways. For comparison, the parameters result-
ing from hindsight - i.e. the frequency of occurences of the
correct matching, are also tested. Indeed the best F-measure
occurs for the unachivable correct potentials, as shown in fig-
ure 5, but for the actual learned parameters the result was a
change in the F-measure by approximately 0.06 in most cases
for the “Hotel” data set (I3CON). For most other data sets, the
effect was even smaller.

Figure 5: Sensitivity to clique potentials.

Finally, although some of the benchmark ontologies are
from real applications, many realistic ontologies are orders
of magnitude larger, resulting in unacceptable runtimes for
iMatch. This is an issue left for future research. Neverthe-
less, we did a preliminary evaluation in this direction on the
quality of results versus the computation time, which is easily
traded off in loopy belief propagation if the run is stopped be-
fore convergence. It turns out that even though convergence
was achieved in most cases after 7-10 cycles of propagation,
most of the benefit by far occured on the first propagation for

most of the datasets. This may be sufficient for many appli-
cations, especially when we have a human in the loop.

5 Related work
Several researchers have explored using Bayesean Networks
for ontology matching [Mitra et al., 2005; Doan et al., 2002].
The Bayesian Net of OMEN [Mitra et al., 2005] is con-
structed on-the-fly using a set of meta-rules that represent
how much each ontology mapping affects other related map-
pings, based on the ontology structure and the semantics of
ontology relations. iMatch follows the same general scheme,
except for the differences discussed above. Moreover, iMatch
preforms better than OMEN on most of the I3Con bench-
marks (not shown due to lack of space).

Another scheme sets up matching equations [Udrea and
Getoor, 2007] taking into account various features, includ-
ing neighboring matches, followed by finding a fixed point of
the system, used to determine the match. In some sense, this
scheme is similar to iMatch, since using loopy belief prop-
agation also finds a fixed point to a set of equations. How-
ever, in iMatch we have an explicit probabilistic semantics,
the fixed point being an artefact of the approximation algo-
rithm we happen to use, rather than a defining point of the
scheme.

The GLUE system [Doan et al., 2002] employs machine
learning algorithms that use a Bayes classifier for ontology
matching. This approach, however, does not consider rela-
tions between concepts, as iMatch does.

Many ontology mappers, as presented in Hovy [Hovy,
1998], PROMPT [Noy and Musen, 2000] and ONION [Mi-
tra et al., 2001], use rule-based methods. Examples of
methods that look for similarities in the graph structure in-
clude Anchor-Prompt [Noy and Musen, 2002] and Similar-
ity Flooding [Melnik et al., 2002]. Other systems for ontol-
ogy matching are referred to in Section 4. The three top-
ranked systems from the OAEI campaign 2008, i.e. RiMOM
[Zhang et al., 2008], LILY [Wang and Xu, 2008] and AS-
MOV [Jean-Mary and Kabuka, 2008], differ from iMatch as
they use graphical probabilistic models combined with other
tools. RiMOM is a general ontology mapping system based
on Bayesian decision theory. It utilizes normalization and
NLP techniques and uses risk minimization to search for opti-
mal mappings from the results of multiple strategies. LILY is
a generic ontology mapping system based on the extraction of
semantic subgraphs. It exploits both linguistic and structural
information in semantic subgraphs to generate initial align-
ments. Then a similarity propagation strategy is applied to
produce more alignments if necessary. ASMOV is an auto-
mated ontology mapping tool that iteratively calculates the
similarity between concepts in ontologies by analyzing four
features, i.e., textual description, external structure, internal
structure, and individual similarity. It then combines the mea-
sures of these four features using a weighted sum. Note that
in the conference tests (see Figure 3), we preform better than
the above three top-ranked systems.

Many of the methods above produce alignments with some
degree of certainty and thus can be integrated into iMatch by
providing prior probabilities.

1888

6 Conclusion
iMatch is a novel probabilistic scheme for ontology matching,
where a Markov network is constructed on the fly according
to the two input ontologies; evidence from first-line matchers
is introduced, and probabilistic reasoning is used to produce
matchings. Our current implementation uses loopy belief
propagation [Kschischang et al., 2001] to meet the inherent
computational complexity, although any other belief updating
algorithm could be used. Evidence from other sources like
human experts, or other matchers, can be easily integrated
into the loop, and hence our system is inherently interactive.

Experiments show that our system is competitive with (and
frequently better than) many of the top matchers in the field.
We are currently working on improving the scalability of
iMatch, which is facilitated by the anytime behavior of the
reasoning algorithms, and on integrating other sources of
evidence in order to enhance the alignments produced by
iMatch.

References
[Charniak and Goldman, 1994] Eugene Charniak and

Robert P. Goldman. A Bayesian model of plan recogni-
tion. Artificial Intelligence, 1994.

[Do et al., 2002] Hong Hai Do, Sergey Melnik, and Erhard
Rahm. Comparison of schema matching evaluations. In
Web, Web-Services, and Database Systems, pages 221–
237, 2002.

[Doan et al., 2002] AnHai Doan, Jayant Madhavan, Pedro
Domingos, and Alon Y. Halevy. Learning to map between
ontologies on the semantic web. In WWW, pages 662–673,
2002.

[Hovy, 1998] E. Hovy. Combining and standardizing
largescale, practical ontologies for machine translation and
other uses. page 535542, 1998.

[Jean-Mary and Kabuka, 2008] Yves R. Jean-Mary and
Mansur R. Kabuka. Asmov results for oaei 2008. In
Ontology Alignment Evaluation Initiative, 2008.

[Jerome Euzenat, 2007] Pavel Shvaiko Jerome Euzenat. On-
tology Matching. Springer Verlag, Berlin Heidelberg,
2007.

[Kschischang et al., 2001] Frank R. Kschischang, Bren-
dan J. Frey, and Hans-Andrea Loeliger. Factor graphs and
the sum-product algorithm. IEEE Transactions on Infor-
mation Theory, 47(2):498–519, 2001.

[Melnik et al., 2002] Sergey Melnik, Hector Garcia-Molina,
and Erhard Rahm. Similarity flooding: A versatile graph
matching algorithm and its application to schema match-
ing. In ICDE, pages 117–128, 2002.

[Mitra et al., 2001] Prasenjit Mitra, Gio Wiederhold, and
Stefan Decker. A scalable framework for the interoper-
ation of information sources. In SWWS, pages 317–329,
2001.

[Mitra et al., 2005] Prasenjit Mitra, Natasha F. Noy, and
Anuj R. Jaiswal. Omen: A probabilistic ontology mapping
tool. In International Semantic Web Conference, pages
537–547, 2005.

[Noy and Musen, 2000] Natalya Fridman Noy and Mark A.
Musen. Prompt: Algorithm and tool for automated on-
tology merging and alignment. In AAAI/IAAI, pages 450–
455, 2000.

[Noy and Musen, 2002] Natalya F. Noy and Mark A. Musen.
Anchor-prompt:using non-local context for semantic
matching. In IJCAI, 2002.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, CA, 1988.

[Udrea and Getoor, 2007] Octavian Udrea and Lise Getoor.
Combining statistical and logical inference for ontology
alignment. In IJCAI, 2007.

[Wagner and Fischer, 1974] Robert A. Wagner and
Michael J. Fischer. The string-to-string correction
problem. J. ACM, 21(1):168–173, 1974.

[Wang and Xu, 2008] Peng Wang and Baowen Xu. Lily: On-
tology alignment results for oaei 2008. In Ontology Align-
ment Evaluation Initiative, 2008.

[Zhang et al., 2008] Xiao Zhang, Qian Zhong, Juanzi Li, Jie
Tang, Guotong Xie, and Hanyu Li. Rimom results for oaei
2008. In Ontology Alignment Evaluation Initiative, 2008.

1889

