
Efficient Searching Top-k Semantic Similar Words

Zhenglu Yang and Masaru Kitsuregawa

Institute of Industrial Science

The University of Tokyo, Japan

{yangzl, kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract

Measuring the semantic meaning between words is
an important issue because it is the basis for many
applications, such as word sense disambiguation,
document summarization, and so forth. Although it
has been explored for several decades, most of the
studies focus on improving the effectiveness of the
problem, i.e., precision and recall. In this paper, we
propose to address the efficiency issue, that given
a collection of words, how to efficiently discover
the top-k most semantic similar words to the query.
This issue is very important for real applications yet
the existing state-of-the-art strategies cannot satisfy
users with reasonable performance. Efficient strate-
gies on searching top-k semantic similar words are
proposed. We provide an extensive comparative
experimental evaluation demonstrating the advan-
tages of the introduced strategies over the state-of-
the-art approaches.

1 Introduction

Searching semantic similar words is an important issue be-
cause it involves many applications, such as query sugges-
tion, word disambiguation, machine translation, and so forth.
From a given collection of words, such queries ask for those
words that are most (i.e., top-k) semantically similar to a
given one.

Intuitively, the problem can be solved by firstly measur-
ing the semantic similarity score between the query and each
word in the collection using the state-of-the-art techniques
[Resnik, 1995; Turney, 2001; Li et al., 2003; Budanitsky and
Hirst, 2006; Bollegala et al., 2007; Tsatsaronis et al., 2010],
and then sorting them with regard to the score, and finally ex-
tracting those top-k ones. However, the scale of the problem
has dramatically increased and prevented existing strategies
from conducting on large volume of data (i.e., the Web). Note
that almost all the previous work focus on improving the ef-
fectiveness of the problem (i.e., precision and recall) yet this
paper is the first study in the literature on addressing the ef-
ficiency issue, which is rather challenging especially when
conducting on large datasets. Another issue is that most of
the previous works are rooted in a threshold-based framework

and the similarity threshold is difficult to predefine by com-
mon users because many answers may be returned if the value
is too small and there may be no answers if the value is too
large. Therefore, searching for the top-k most similar words
is an interesting problem, as will be tackled in this paper.

The issue of finding similar words can be traced back to
the 1940s [Shannon, 1948] in the theory field where n-gram
was first introduced. Two words are considered similar to
each other if they have enough common subsequences (i.e.,
n-grams). While there are quite a few works on studying and
extending n-gram based strategies [Ukkonen, 1992] and they
have been successfully applied in some applications such as
spell checking, this line of work only takes into account the
syntax of words and ignore the semantic meaning.

To remedy this problem, extensive studies have been ex-
plored and they can be classified into three main groups:
(1) knowledge-based1 strategies [Rada et al., 1989; Resnik,
1995]; (2) corpus-based strategies [Turney, 2001]; and (3) hy-
brid methods [Bollegala et al., 2007].

Due to the large datasets we may have, there are two main
issues existing in the top-k semantic similar word extraction:
(1) progressiveness [Hellerstein et al., 1999]. The first re-
sults should be output to the user almost instantly, and the
algorithm should produce more and more results the longer
the execution time (i.e., first the top-1, then the top-2, and
finally the top-k answer); and (2) inefficiency on similarity
measuring. Evaluating the similarities of all candidate pairs
is time consuming. This issue becomes even worse if more
features are taken into account. In this work we aim to ad-
dress these two challenges.

Materializing all the similarities of word pairs in the pre-
processing may (partially) tackle the mentioned issues [Pan-
tel et al., 2009]. However, the difficulty is that the data (e.g.,
the Web) is frequently updated. Re-computing and storing
all the similarities is space and time consuming. Moreover,
it is possible that new similarity metric will be introduced.
Therefore, computing the similarities on-the-fly seems to be
a practical solution. Furthermore, it is impossible to materi-
alize the string similarity beforehand. The reason is that we
cannot predict a user’s query, that it may be never seen before
(i.e., misspelled word).

It should be noted that there exists some other optimization

1It is also called dictionary-based or lexicon-based.

2373

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

strategies (e.g., caching, parallel computing). However, all of
these methods require specific techniques (e.g., appropriate
caching algorithm) and thus, the extension to these strategies
is out of the scope of this paper.

The contributions of this paper are as follows:

• We propose to tackle the efficiency issue of searching
top-k semantic similar words, which is different from
most previous works that concern on the effectiveness
aspect. The comprehensive similarity employed in this
paper is composed of three representative kinds of mea-
sures. More similarities can be taken into account for
the framework, as will be discussed in this paper.

• We propose efficient strategies to extract the top-k re-
sults. For each similarity measure, we introduce a corre-
sponding best first search method to minimize the num-
ber of candidates to be evaluated. A rank aggregation
approach is presented to optimally obtain the top-k re-
sults when assembling the features.

• We conduct comprehensive experiments on two real
datasets, and evaluate the query efficiency of the pro-
posed strategies in terms of several aspects. The results
show that the proposed strategies exhibit a superior per-
formance compared with the state-of-the-art approaches
(i.e., more than two orders of magnitude improvement).

2 Problem Statement and Analysis

We consider the top-k semantic similar word query on a given
collection of words W . Formally, for a query word Q, finding
a set of k words R in W most similar to Q, that is, ∀r ∈ R
and ∀s ∈ (W −R) will yield sim(Q, r) ≥ sim(Q, s).

To measure the similarity sim(Q,P) between two words
Q and P , we apply the state-of-the-art strategy by assembling
multiple similarity metric features together [Li et al., 2003;
Bollegala et al., 2007]. Because we focus on tackling the
efficiency issue in this paper, for simplicity we select three
representative features from the main categories in word sim-
ilarity measuring literature.

• Knowledge-based Similarity: Word dictionaries, e.g.,
WordNet [Miller, 1995], have been acted as the knowl-
edge base for text processing. The words are linked
manually with labels and organized in a taxonomy man-
ner (i.e., tree). An intuitive idea on measuring similar-
ity is that words are similar to each other if the short-
est path between them is small [Rada et al., 1989].
This edge counting strategy has been extended later by
taking into account the depth [Wu and Palmer, 1994;
Leacock and Chodorow, 1998], semantic density [Jiang
and Conrath, 1997], and information content [Resnik,
1995] of the words in the knowledge base. In this pa-
per, we consider a representative metric, Leacock &
Chodorow [Leacock and Chodorow, 1998], defined as:

Simlch(w1, w2) = −ln
length(w1, w2)

2 ∗D
(1)

where length is the length of the shortest path between
two concepts (that the two words w1 and w2 belong to)
using node-counting, and D is the maximum depth of
the taxonomy.

• Corpus-based Similarity: Corpus-based measures of
word semantic similarity try to recognize the degree of
similarity between words using large corpora. The in-
tuitive idea is that two words are similar to each other
if they co-occur frequently in the large corpus. There
are several kinds of strategies: PMI-IR (Pointwise Mu-
tual Information-Information Retrieval) [Turney, 2001]
uses web search engine (i.e., AltaVista) to gather the ex-
istence information from the Web; LSA (Latent Seman-
tic Analysis) ([Deerwester et al., 1990]) applies Singu-
lar Value Decomposition (SVD) to analyze the statisti-
cal information between words and then further obtain
their semantic relationship. Some other strategies in-
clude log-likelihood, chi-square, MI (Mutual Informa-
tion), and so forth. In this paper, we choose PMI-IR
as one of the representative similarity measures between
two words, w1 and w2, defined as:

Simpmi−ir(w1, w2) = log2
pagecount(w1 ∩ w2) ∗WebSize

pagecount(w1) ∗ pagecount(w2)
(2)

where pagecount(wi) is the number of documents re-
trieved when wi is submitted to the search engine (i.e.,
Google).

• String similarity: String similarity measures the differ-
ence of syntax between words. An intuitive idea is that
two words are similar to each other if they have enough
common subsequences (i.e., n-gram [Shannon, 1948]).
We focus on a representative string similarity measure,
i.e., edit distance, denoted as Simed(w1, w2).

2.1 A General Framework

A general framework of searching top-k similar words is
illustrated in Fig. 1, with a concrete example presented to
ground our discussion. The query word and each candidate
in the collection are sent to the three modules (i.e. knowledge
bases, web search engine, and string similarity evaluator), re-
spectively, to obtain the corresponding similarity score. Then,
the scores from different modules are normalized, assembled,
and ranked, resulting in the final ranked lists [Li et al., 2003;
Bollegala et al., 2007].

To normalize the scores, we have S̃imlch(Q,P) =
Simlch(Q,P)
ln(2∗Dmax)

, where Dmax
2 denotes the maximum value of

D for all the taxonomies of the collection. The PMI-IR
similarity is normalized as S̃impmi−ir =

Simpmi−ir

log2
WebSize

pagecountmin

,

where pagecountmin(P)3 denotes the minimum value of
pagecount for words in the collection. WebSize is set to
1012 according to the report of Google4. The edit distance is

normalized as S̃imed(Q,P) = 1− Simed(Q,P)
Lmax

, where Lmax
5

is the maximum word length in the collection.
The assembling strategy follows the state-of-the-art ap-

proaches on measuring semantic similarity [Li et al., 2003;

2For this concrete example, by querying WordNet Dmax=20.
3We have pagecountmin(P)=5.09 ∗ 108 by querying Google.
4http://googleblog.blogspot.com/2008/07/we-knew-web-was-

big.html
5For this example, the value of Lmax is 7.

2374

(a) word collection

cap

 male

further

home

mail

mother

kid

leader

1

2

3

4

5

6

7

8

stringid

Query word:

th he er

2 2 2

8 8 5

8

father

1.5404

1.7227

1.5404

2.0794

2.9957

1.5404

2.3026

 3.3322

1

2

3

4

5

6

7

8

similarityid

7.5655

5.1570

5.5801

8.8332

9.1600

5.9196

1

2

3

4

5

6

7

8

similarityid

5

2

5

6

4

5

4

 2

1

2

3

4

5

6

7

8

similarityid

(1) knowledge bases

(2) corpus bases

(3) string similarity base

(b) features used to measure similarity (c) raw similarity score of each feature

(e) result

n-gram inverted list

0.4176

0.4670

0.4176

0.5637

0.8121

0.4176

0.6242

 0.9033

1

2

3

4

5

6

7

8

similarityid

0.6915

0.4714

0.5101

0.8074

0.8373

0.5411

0.7537

 0.8772

1

2

3

4

5

6

7

8

similarityid

0.2857

0.7143

0.2857

0.1429

0.4286

0.2857

0.4286

 0.7143

1

2

3

4

5

6

7

8

similarityid

(d) normalized similarity score

ln(2D)=3.6889

log2WebSize/

Pagecountmin

=10.9400

1-ed/L

0.4406

0.5770

0.5008

0.5182

0.7455

0.4282

0.6369

 0.8551

6

4

1

2

5

3

7

8

similarityTop-k list

8.2456

9.5968

cat

wn:Word wn:WordSense

wn:hasSense

wn:lexicalForm

wn:SynSet

wn:Noun

rdf:type

Relations to other word

sense, e.g., antonym
Relations to other synsets

e.g., hypernym, hyponym

dog

wn:Word wn:WordSense

wn:hasSense

wn:lexicalForm

wn:SynSet

wn:Noun

rdf:type

wn:word

wn:word

wn:inSynSet

wn:inSynSet

Figure 1: A general framework for searching top-k semantic strings

Bollegala et al., 2007]:

S̃im(Q,P) =

n∑
i=1

wiS̃imi(Q,P) (3)

where S̃imi represents a specific feature of similarity mea-
sure, wi denotes the corresponding weight of the feature, and
n is the total number of features taken into account.

Due to lack of large labeled data, the existing state-of-
the-art assembling techniques on semantic similarity mea-
sure commonly set the weight values arbitrarily [Li et al.,
2003]. We apply the same strategy by emphasizing the ef-
fect of semantic similarity (i.e., wlch=wpmi−ir=2wed) and∑n

i=1 wi=1. While obtaining optimal values of these weights
is certainly an interesting issue, it is out of the scope of this
paper. We argue that this work is orthogonal to the existing
effectiveness-oriented studies in a complementary manner.

For the example as illustrated in Fig. 1, all the eight can-
didates need to be evaluated with the query father and the
top-3 semantic similar words are mother, leader, and male.

3 Proposed Approaches

We first introduce best first search strategies for different sim-
ilarity measures in Section 3.1-3.3, and then present a rank
aggregation algorithm to assemble the features in Section 3.4.

3.1 Knowledge based Feature

WordNet is employed as the knowledge base in this paper.
The traditional strategy is to measure the similarity of each
candidate word and the query, by traversing the topology of
WordNet. However, it is inefficient because every candidate
needs to be tested. Fig. 2 illustrates the example aforemen-
tioned, where every pair of red word (query) and blue word
(candidate) is evaluated.

We propose a best first search strategy to efficiently ob-
tain the top-k similar words. We first tackle the issue when
the query and the candidate exist in the same taxonomy (e.g.,

ROOT

be

lie

cap

make

father,mother

move

transfer

mail

travel

return

home

ROOT

leader

father

male

 boy

juvenile

kid

 person,human

 organism

(a) One example taxonomy

 of noun words (partly)
(b) One example taxonomy

 of verb words (partly)

support

further

Figure 2: Top-k word searching on WordNet

Fig. 2 (a)). According to the definition of Simlch
6 (i.e., Eq.

1), we know that the ranking of a candidate only depends on
its shortest path to the query. We can simply start from the
node of the query, then expand to its neighbors in a recursive
manner to find similar words.

The query word could be polysemous and we next address
the issue when the query and the candidates exist in more
than one taxonomy (i.e., Fig. 2 (a) and (b)). In this case, the
ranking of a candidate not only depends on the shortest path
in a taxonomy but also the maximum depth of the taxonomy.
Derived from Eq. 1, we have the following lemma:

Lemma 1 (ordering in WordNet) Let Q be the query. Let
P and S be two candidates which exist in the same taxonomy
of Q, i.e., TP and TS , respectively. The shortest path between
P (or S) and Q is LP (or LS) in TP (or TS). The maximum
depth of TP (or TS) is DP (or DS). Compared with S, P is
more similar to Q if we have DP

LP
> DS

LS
.

This lemma tells us that the similarity ordering between
candidates in WordNet is dependent on the integration of
the shortest path and the maximum depth of the taxonomy.
Therefore, a best first search strategy can be constructed and
the self-explanatory pseudo code for searching top-k similar
words is shown in Algorithm 1.

We illustrate the main process of the algorithm (i.e., or-
der of nodes accessed) in Fig. 3 by using the aforemen-
tioned example. The sequentially accessed nodes should

6Normalization does not affect the ranking here.

2375

————————————————————————————————–

Algorithm 1: Top-k Similar Word Searching on WordNet

————————————————————————————————–

Input: Query Q, word collection WC, WordNet WN , k

Output: Top-k similar words in WC

// preprocessing

n=number of taxonomies in WN ;1

D[1,n]=a list of maximal depth of taxonomies in WN ;2

I=an index that associates nodes in WN to words in WC;3

// query processing

m=number of polysemous meaning of Q;4

T [1,m]=a list of taxonomy ID that Q belongs to;5

L[1,m]=a list of lengths (hops from Q), initialized as 1;6

N [1,m]=a list of visited nodes in taxonomies, initialized as the nodes that Q7

belongs to;

while not k words are output do8

τmax=0; IDmax=0;9

for i=1 to m do // look for node to expand10

τi=
D[T [i]]

L[i]
;11

if τi > τmax then τmax=τi; IDmax=i;12

forall p ∈ NIDmax do // expand nodes13

NN=neighbor nodes of p that are unvisited;14

foreach node e ∈ NN do15

if e ∈ WC based on I then output e; k=k-1;16

N [IDmax]=N [IDmax] ∪NN ;17

L[IDmax]++;18

End19

————————————————————————————————–
order of nodes accessed

father
(a)

father,mother
(b)

leader make
(a) (b)

......

top-1: mother top-2: leader

output output

Figure 3: Progressive searching top-k similar words

be: (1) father in the noun taxonomy (i.e., D
L

=20)7; (2)

father,mother in the verb taxonomy (i.e., D
L

=14); (3)

leader in the noun taxonomy (i.e., D
L

=10); and so forth. As
we can see, the top-k results are output in a progressive man-
ner (i.e., mother, leader, etc).

3.2 Corpus based Feature

To obtain the top-k similar words based on large corpus (i.e.,
the Web), the traditional strategy is to submit the query and
each candidate to the search engine and compute their simi-
larity (i.e., PMI-IR [Turney, 2001]). Although this technique
can benefit a lot from the power of search engine, evaluating
every candidate pair words may cause large computation cost
(i.e., network delay time used to transfer words to search en-
gine and return answer, computation time at server, and pars-
ing time on the answer stream). This issue becomes worse
when testing on huge word collection.

In this paper, we propose to evaluate as few candidates as
possible. We achieve this by constructing a simple index in
the preprocessing, according to the following lemma.

Lemma 2 (upper bound of word pagecount) Let Q be the
query word and P be the top-k candidate similar word so
far. Q and P have the PMI-IR similarity score as τtop−k. We
denote the set R of the remaining untested words. If ∀r ∈
R, pagecount(r) > WebSize

2τtop−k , then the top-k similar words
w.r.t. PMI-IR score have been found.

7The maximum depths of the two taxonomies are 20 for noun
and 14 for verb by querying WordNet in the preprocessing.

Proof [Sketch of Proof] (Proof by Contradiction) Assume
there is one candidate word r which has pagecount(r) >
WebSize
2τtop−k in R and it is ranked in the top-k list. Then we have

τtop−k ≤ log2
pagecount(Q ∩ r) ∗WebSize

pagecount(Q) ∗ pagecount(r)

≤ log2
pagecount(Q) ∗WebSize

pagecount(Q) ∗ pagecount(r)
, hence

pagecount(r) ≤
WebSize

2τtop−k

which contradicts the assumption. �

This lemma tells us that we can sort all the candidates in
ascending order of their pagecount in the preprocessing, and
measure the similarity while querying one by one. If we find
that the pagecount of the current candidate word is greater
than WebSize

2τtop−k , we can terminate the process and thus, avoid to
evaluate the remaining candidates. The pseudo code is shown
in Algorithm 2. To progressively extract the top-k similar
words, we partition the whole process into k iterations. In
each iteration only the best one word is output (lines [9-11]).
Therefore, in each iteration we set the threshold as the top-1
score of the visited words (line [7,15]).

————————————————————————————————–

Algorithm 2: Top-k Similar Word Searching on Corpus

————————————————————————————————–

Input: Query Q, word collection WC , k

Output: Top-k similar words in WC

// preprocessing

n=number of words in WC;1

H[1,n]=a list of pagecount in ascending order by querying Google;2

τtop−1=0; m=1;3

// query processing

pagecount(Q)=pagecount of Q;4

while not k words are output do5

if |q| > 0 then // q: max queue stores visited words6

τtop−1=the score value τ of q.top;7

foreach i=m to n do8

if H[i] > WebSize

2
τtop−1

then9

pop and output q.top;10

m=i; break;11

P=the word corresponding to H[i];12

τ=log2
pagecount(Q∩P)·WebSize

pagecount(Q)·pagecount(P)
;13

push P into q with value τ ;14

τtop−1=the score value τ of q.top;15

End16

————————————————————————————————–

3.3 String Similarity Feature

There are not many studies on exploring how to efficiently
search top-k similar words with respect to string similarity
[Yang et al., 2010]. In this paper, we apply the existing effi-
cient strategies. Specifically, they are (1) count filtering; (2)
length filtering; and (3) divide-merge-skip.

3.4 Assembling Similarity Features

Given the progressively extracted words in each feature, i.e.,
the result obtained from the above sections8, we introduce an
efficient approach to hasten the process of searching top-k
similar words, based on the traditional rank aggregation algo-
rithm [Fagin et al., 2001].

8The transformation from the raw score to its normalized value
is achieved by the approach presented in Section 2.1.

2376

Lemma 3 (threshold filtering) Let S̃im
top−k

i be the nor-
malized similarity score of the top-k word in feature i. Let

t be the threshold where t=
∑

wi · S̃im
top−k

i . A word P
is in the top-k list if the following condition holds:

∑
wi ·

S̃imi(P,Q) ≥ t.

One interesting observation is that if we have a candidate

word P whose total similarity score
∑

wi · S̃imi(P,Q) ≥ t,

there is at least for one feature that S̃imi(P,Q) ≥ S̃im
top−k

i .
This intuition introduces a possible way to progressively out-
put the top-k results. To illustrate the process, we use the
aforementioned example to explain, as shown in Fig. 4.

 list of Simlch list of Simpmi-ir list of Simed

ID score

8 0.9033

ID score

8 0.8772

ID score

2 0.7143

threshold score

0.8551

ID total score

8 0.8551

2 0.5182

 max_queue threshod list

 (a) 1st iteration

 output mother

ID score

8 0.9033

5 0.8121

ID score

8 0.8772

5 0.8373

ID score

2 0.7143

8 0.7143

threshold score

0.8551

0.8026

ID total score

5 0.7455

2 0.5182

 (b) 2nd iteration

ID score

8 0.9033

5 0.8121

7 0.6242

ID score

8 0.8772

5 0.8373

4 0.8074

ID score

2 0.7143

8 0.7143

5 0.4286

threshold score

0.8551

0.8026

0.6584

ID total score

5 0.7455

7 0.6369

4 0.5770

2 0.5182

 (c) 3rd iteration

 output
leader

() () () () ()

 list of Simlch list of Simpmi-ir list of Simed max_queue threshod list() () () () ()

 list of Simlch list of Simpmi-ir list of Simed max_queue threshod list() () () () ()

(ID=8)

(ID=5)

Figure 4: Integrated process for progressive searching

In the first iteration, we obtain the top-1 words with their
scores in all the features, as shown in Fig. 4 (a) (I-III). Next

we can calculate the threshold t=
∑

wi · S̃im
top−1

i =0.8551,
where the weights are set as described in Section 2.1. More-
over, we compute the comprehensive score of the accessed
words (i.e., whose IDs are 8 and 2)9 and put them into a max-
imum queue, as shown in Fig. 4 (a) (V). Because the score
of word mother (i.e., whose ID is 8) is not smaller than the
threshold, mother can be output immediately as the top-1 re-
sult (Lemma 3). We can see that for this example, the perfor-
mance of obtaining the top-1 result is very efficiently because
we avoid to evaluate many candidates. The remaining pro-
cesses are executed in a similar way, as illustrated in Fig. 4.

4 Performance Analysis

We performed the experiments using a Intel(R) Core(TM) 2
Dual CPU PC (3GHz) with a 2G memory, running Redhat
linux. The Naive algorithm was implemented based on the
general top-k framework (Section 2.1). The BFS-WSM (Best
First Search for Word Semantics Measure) algorithm was de-
signed using the proposed strategies in this paper. We con-
ducted experiments on two real life datasets: (1) Dict. It
was downloaded from the Web site of GNU Aspell project10.
It included 51K words; and (2) Word. It was downloaded
from the Web site of WordNet in US11, which includes 149K
words. We randomly selected 10K words from this data as
our word collection.

9Here we need to randomly access the value in each feature, by
measuring it using traditional techniques.

10http://www.aspell.net/
11http://wordnet.princeton.edu/

4.1 Progressiveness

1

2

3

4

1 3 5 10 20

Naive
BFS-WSM (no opt. on corpus)
BFS-WSM (no opt. on WordNet)
BFS-WSM

top-k queries (#=100)

q
u

e
ry

in
g

 t
im

e
 (

s
e

c
 i
n

 l
o

g
)

(a) Dict dataset

1

1.7

2.4

3.1

1 3 5 10 20

top-k queries (#=100)

q
u
e
ry

in
g
 t
im

e
 (

se
c

in
 lo

g
)

Naive
BFS-WSM (no opt. on corpus)
BFS-WSM (no opt. on WordNet)
BFS-WSM

(b) Word dataset

Figure 5: Progressiveness of query performance
The progressiveness performance of the proposed algo-

rithm was evaluated by varying k. We randomly selected 100
queries from the datasets and reported the average value. To
test the effect of the proposed strategies, we disable each one
of them while keeping others unchanged12.

The result is shown in Fig. 5. We can see that Naive out-
puts all the top-k results at the same time, and much slower
than BSF -WSM (i.e., more than two orders of magnitude
slower for top-1 query on Dict data, as illustrated in Fig. 5
(a)). In contrast, our algorithm can extract the top-k (i.e.,
1) answer efficiently, and progressively extract more results
the longer the execution time. For the effect of different op-
timization strategies, optimization on corpus-based similar-
ity measuring seems to dominate the whole query processing
(i.e., red line in the figure). This is not surprising because the
cost of requesting word pagecount to search engine is high.
Moreover, we can see that the proposed two optimizations
(i.e., measuring on WordNet and corpus similarities) account
for most of the performance improvement.

4.2 Number of Candidate Words Accessed

We evaluate the number of candidates tested in algorithms
when varying k. As illustrated in Fig. 6, we can see that
BSF -WSM accesses much smaller sets of words compared
with Naive. This is the intrinsic reason why our algorithm
performed better on query processing (as shown in Fig. 5).

1

2

3

4

5

1 3 5 10 20
1

2

3

4

5

1 3 5 10 20

nu
m

. o
f c

an
d.

 te
st

ed
 (

in
 lo

g)

nu
m

. o
f c

an
d.

 te
st

ed
 (

in
 lo

g)

Naive

BFS-WSM

Naive

BFS-WSM

k

measuring corpus-based similarity
 k

measuring WordNet-based similarity

(a) #candidates vs k on Dict dataset

1

1.7

2.4

3.1

3.8

4.5

1 3 5 10 20
1

1.7

2.4

3.1

3.8

4.5

1 3 5 10 20k

nu
m

. o
f c

an
d.

 te
st

ed
 (

in
 lo

g)

measuring corpus-based similarity

nu
m

. o
f c

an
ds

 te
st

ed
 (

in
 lo

g)

 k

measuring WordNet-based similarity

Naive

BFS-WSM

Naive

BFS-WSM

(b) #candidates vs k on on Word dataset

Figure 6: Number of words tested for different algorithms

12We focus on the effect of optimizing WordNet and corpus based
measure, because the cost of measuring string similarity is much
smaller and can be neglected compared with others.

2377

 0
 5

 10
 15

 20
 25

 30
 35

 40
 3

 4

 5
 6

 7

 8

 1.5

 2

 2.5

 3

 3.5

 0
 5

 10
 15

 20
 25

 30
 35

 40
 3

 4

 5
 6

 7

 8

 1.5

 2

 2.5

 3

 3.5

integrated depth of query
hits

 count of query (lo
g)

Naive

BFS-WSM

q
u

e
ry

in
g

 t
im

e
 (

s
e

c
.
in

 l
o

g
)

 10
 20

 30
 40

 50
 60

 70

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

integrated depth of query
hits

 count of query (lo
g)

Naive

BFS-WSM

q
u

e
ry

in
g

 t
im

e
 (

s
e

c
 i
n

 l
o

g
)

(a) Dict dataset (b) Word dataset

Figure 7: Effect of pagecount and integrated depths of queries on performance (k=10)

4.3 Effect of Pagecount and Depths

While conducting experiments, we mentioned that different
queries may have distinct performance from each other. A
“popular” word, i.e., that with large value of pagecount and
more meanings, has a high probability to be tested with more
candidates. We also found that the depths of a word in the
synsets of WordNet are critical to the performance because
of the definition of the Simlch and the computation of the
shortest path. Specifically, we define the integrated depth
of a word as the sum of all the depths of the word in the cor-
responding synsets of WordNet. Fig. 7 illustrates the perfor-
mance of each randomly selected query. We can see that for
Naive, the performance fluctuation is not obvious. The rea-
son is that the cost of obtaining pagecount is constant and it
dominants the performance. In contrast,BFS-WSM largely
reduces the number of candidates for acquiring pagecount.
Therefore, the performance of queries may be very different
from each other by taking into account the effect of optimiza-
tion on WordNet similarity. Moreover, the result illustrates
that many queries with high pagecount and large value of
integrated depth spend more time on extracting the result,
which is in accordance with the intuition mentioned above.

5 Discussion

Other similarity measures can be taken into account in a sim-
ilar way to the proposed strategies. For example, for the in-
formation content based measures (e.g., [Resnik, 1995]), we
can build an index similar to the n-gram list. Each word in
the information content can be seen as a unigram and the
corresponding list contains all the words whose information
contents have the same gram. Then the candidate whose fre-
quency is the highest in the lists of the query’s grams is firstly
evaluated, and so forth. For the other path-based measures
(e.g., [Wu and Palmer, 1994]), we can optimally choose the
nearest candidates to the query based on the specific measure.

6 Conclusion

We have studied the top-k similar word searching issue. This
is the first work on tackling the efficiency issue that is very
important for searching on large data. Several efficient strate-
gies are proposed following the best first search manner. Our
strategies are experimentally demonstrated to be efficient on
answering the top-k semantic similar word queries.

References
[Bollegala et al., 2007] D. Bollegala, Y. Matsuo, and M. Ishizuka.

Measuring semantic similarity between words using web search
engines. In WWW, 2007.

[Budanitsky and Hirst, 2006] A. Budanitsky and G. Hirst. Evalu-
ating wordnet-based measures of lexical semantic relatedness.
Comput. Linguist., 2006.

[Deerwester et al., 1990] S. Deerwester, S. T. Dumais, G. W. Fur-
nas, T. K. Landauer, and R. Harshman. Indexing by latent se-
mantic analysis. JASIST, 1990.

[Fagin et al., 2001] R. Fagin, A. Lotem, and M. Naor. Optimal ag-
gregation algorithms for middleware. In PODS, 2001.

[Hellerstein et al., 1999] J. M. Hellerstein, R. Avnur, A. Chou, C.
Hidber, C. Olston, V. Raman, T. Roth, and P. J. Haas. Interactive
data analysis: The control project. Computer, 1999.

[Jiang and Conrath, 1997] J. Jiang and D. Conrath. Semantic sim-
ilarity based on corpus statistics and lexical taxonomy. In RO-
CLING, 1997.

[Leacock and Chodorow, 1998] C. Leacock and M. Chodorow.
Combining local context and WordNet similarity for word sense
identification. In C. Fellbaum (Ed.), MIT Press, 1998.

[Li et al., 2003] Y. Li, Z. A. Bandar, and D. McLean. An approach
for measuring semantic similarity between words using multi-
ple information sources. IEEE Trans. on Knowl. and Data Eng.,
2003.

[Miller, 1995] G. A. Miller. Wordnet: a lexical database for english.
Commun. ACM, 1995.

[Pantel et al., 2009] P. Pantel, E. Crestan, A. Borkovsky, A. M.
Popescu, and V. Vyas. Web-scale distributional similarity and
entity set expansion. In EMNLP, 2009.

[Rada et al., 1989] R. Rada, H. Mili, E. Bicknell, and M. Blettner.
Development and application of a metric on semantic nets. IEEE
Trans. Sys., Man, and Cyber., 1989.

[Resnik, 1995] P. Resnik. Using information content to evaluate
semantic similarity in a taxonomy. In IJCAI, 1995.

[Shannon, 1948] C. E. Shannon. A mathematical theory of com-
munication. Bell System Technical Journal, 1948.

[Tsatsaronis et al., 2010] G. Tsatsaronis, I. Varlamis, and M. Vazir-
giannis. Text relatedness based on a word thesaurus. J. Artif. Int.
Res., 2010.

[Turney, 2001] P. D. Turney. Mining the web for synonyms: Pmi-ir
versus lsa on toefl. In ECML, 2001.

[Ukkonen, 1992] E. Ukkonen. Approximate string-matching with
q-grams and maximal matches. Theor. Comp. Sci., 1992.

[Wu and Palmer, 1994] Z. Wu and M. Palmer. Verbs semantics and
lexical selection. In ACL, 1994.

[Yang et al., 2010] Z. Yang, J. Yu, and M. Kitsuregawa. Fast algo-
rithms for top-k approximate string matching. In AAAI, 2010.

2378

