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Abstract—Most recent schema matching systems combine 
multiple components, each of which employs a particular 
matching technique with several knobs. The multi-
component nature has brought a tuning problem, that is to 
determine which components to execute and how to adjust 
the knobs (e.g., thresholds, weights, etc.) of these 
components for domain users. In this paper, we present an 
approach to automatically tune schema matching systems 
using genetic algorithms. We match a given schema S 
against generated matching scenarios, for which the ground 
truth matches are known, and find a configuration that 
effectively improves the performance of matching S against 
real schemas. To search the huge space of configuration 
candidates efficiently, we adopt genetic algorithms (GAs) 
during the tuning process. To promote the performance of 
our approach, we implement parallel genetic algorithms on 
graphic processing units (GPUs) based on NVIDIA’s 
Compute Unified Device Architecture (CUDA). 
Experiments over four real-world domains with two main 
matching systems demonstrate that our approach provides 
more qualified matches over different domains.  
 
Index Terms—schema matching, tuning, genetic algorithms, 
GPU, CUDA 
 

I.  INTRODUCTION 

Schema matching is the task of finding semantic 
correspondences, i.e. matches, between disparate 
metadata structures. It is a key problem in numerous 
applications, such as e-commerce, data warehousing, 
web-oriented data integration, schema evolution and 
migration, and peer-to-peer data management [1]. 

Traditionally, schema matching is performed manually, 
and it is a labor-intensive, time-consuming, and error-
prone process. Thus researchers have developed various 
matching techniques and prototypes, i.e. matchers, which 
exploit element names, data types, descriptions, schema 
structures, and other types of information to find matches 
between schemas (see Ref. [1]—[3] for recent surveys). 
None of these matchers outperforms all the others on all 
existing benchmarks (like XBenchMatch [4]). Therefore, 
many matching systems (e.g., Ref. [5]—[9]) combine 

multiple matchers, called matching components, to 
achieve better matching results. The multi-component 
nature makes matching systems extensible and 
customizable, however, as pointed out in Ref. [10], it also 
brings a tuning problem that is to determine which 
components to execute and how to adjust the knobs (e.g., 
thresholds, weights, etc.) of these components, for given 
matching situation. 

In this paper, we consider the tuning problem as an 
optimization problem. We describe an approach to 
automatically tune schema matching systems using 
genetic algorithms. Given a schema S and a matching 
system ࣧ, we first generate a synthetic workload ࣱ 
which consists of a set of matching scenarios involving S, 
then apply ࣧ to scenarios in ࣱ and learn the best 
configuration using genetic algorithms. We implement 
parallel genetic algorithms on consumer-level GPU based 
on NVIDIA’s Compute Unified Device Architecture 
(CUDA) and promote the performance of genetic 
algorithms. 

The main interesting features of our approach are: 
 Learning a configuration which effectively 

improves the performance of a matching system 
with genetic algorithms. We allow users to make 
a trade-off between precision and recall while 
evaluating the performance of a configuration 
candidate. 

 Providing a matching scenario generator which 
produces various matching scenarios for the input 
schema. It handles both relational and XML 
schemas, and it can be used as a training set 
generator for other learning-based matchers. 

 Implement parallel genetic algorithms using 
consumer-level GPU based on CUDA, and 
optimize the performance of genetic algorithms 
with low exact cost. 

 Experiments over four real-world domains with 
two main matching systems demonstrate that our 
approach provides more qualified matches over 
different domains. 

The rest of the paper is organized as follows. Section 2 
briefly surveys related work. Section 3 focuses on the 
drawbacks of existing solutions and the motivation of our 
work. Section 4 contains an overview of our approach. 
Section 5 describes the implementation on GPU. The 
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results of experiments that show the performance of our 
approach are presented in section 6. Finally, section 7 
gives a conclusion. 

II.  RELATED WORK 

Schema matching has received increasing attention 
since 1990s. Various matching techniques and prototypes 
have been developed. These techniques exploit 
information such as element names, data types, structures, 
number of sub-elements, integrity constraints, and 
instance data to find semantic correspondences between 
schemas (see Ref. [1]—[3] for recent surveys). Beyond 
the schema and instance data information, several types 
of external evidence have been exploited, like past 
matches [5, 6] and usage information [11] — [13]. 

Obviously, an effective matching solution should 
employ many of the techniques, each on the type of 
information that it can exploit. Some recent works (e.g., 
Ref. [5], [7]—[9]) have described a system architecture 
that employs multiple matchers, each of which exploits 
well a certain type of information mentioned above. Such 
multi-component matching systems are extensible and 
customizable for a particular application domain [14, 15]. 
However, there is another serious problem for domain 
users: given a particular matching task, how to choose 
the most suitable components to execute, and how to set 
the multiple knobs (e.g., thresholds, weights, coefficients, 
etc.). This problem is called the schema matching systems 
tuning problem. 

Lately, several researchers present their solutions to 
solve the tuning problem of multi-component matching 
systems. In Ref. [16], F. Duchateau et al. present a 
factory which generates matchers according to user 
requirements. The factory learns how to apply the 
similarity measures and classifiers to achieve high 
matching quality based on matched schemas and expert 
matches provided by users. The factory could build a 
specified matcher for a given matching situation. In Ref. 
[17], A. Marie et al. propose an approach to combining 
matchers into to ensembles. They use the boosting 
algorithm which is a machine learning technique to select 
matchers that participate in an ensemble. The combined 
matchers could achieve better result than random schema 
matchers. F. Duchateau et al. describe a method which 
chooses a set of matchers to execute using decision tree 
algorithm [18]. The training process is also based on 
expert correspondences provided by domain users. Y. Lee 
et al. present the eTuner framework which mainly 
concerns relational schema matching problems [10]. 
eTuner generates a synthetic workload by perturbing 
input schemas randomly, and then finds the best 
configuration using staged greedy search method. In Ref. 
[19], E. Peukert et al. optimize the schema matching 
process using rewrite technique, which is often used in 
database query optimization. They represent the matching 
process as a directed graph model, and choose the 
components with lower cost using filter-based rewrite 
rules. 

Some of the existing solutions focus on quickly 
developing robust matchers for a particular matching 

situation (e.g., Ref. [16, 17]). And others attempt to 
customize existing matchers for a given matching 
situation (e.g., Ref. [10], [18, 19]). Our work can be seen 
as a part of customization techniques. We are aiming at 
automating the customization using learning techniques, 
and reducing the high total cost of schema matching 
process. 

III.  MOTIVATION 

As previously mentioned, increasing matching systems 
employ multiple matchers to produce better matching 
results. However, without tuning, a matching system 
tends to produce inferior performance, because it cannot 
exploit domain characteristics. While necessary essential, 
tuning is difficult for domain users, due to the wide 
variety of matching techniques employed and the large 
number of knobs involved. 

Although some researchers have proposed their 
solutions to the tuning problem, there are still two major 
drawbacks. First, some solutions require domain users to 
provide a knowledge base consists of matched schemas 
and expert correspondences (e.g., Ref. [16-18]). This 
requirement makes the solutions involve much manual 
effort. E-Tuner could generate synthetic workload 
automatically, but it only considers matching systems that 
handle relational representations. In fact, most multi-
component matching systems could also handle other 
types of data representations, such as XML schemas, 
ontology, web forms, etc. Second, the configuration 
found by existing solutions sometimes is actually local 
optima rather than the global optimum of the tuning 
problem. To find out the best configuration, a better 
search strategy should be applied.  

To solve previously mentioned drawbacks, our 
approach aims at designing a workload generator for both 
relational and XML schemas and searching the 
configuration space with genetic algorithms.  

As pointed in Ref. [10], the challenge of workload 
generator is to develop perturbing rules for particular data 
representation. We represent input schemas with general 
data model and define a set of perturbing rules for both 
relational and XML schemas. On the other hand, genetic 
algorithms (GAs) have been demonstrated efficient 
search methods for solving wide-range of real-world 
problems, since introduced in 1960s. Although cannot be 
proofed in mathematics, GAs are still considered as 
powerful tools for optimization problems [20]. A recent 
study has shown that GAs has certain stability and it 
could improve the reliability by reiteratively computation 
and estimate the effects of improvements [21]. GAs 
might take a long time to find good solutions for some 
difficult problems. A promising approach to overcome 
this problem is to parallelize GAs [22]. Recently, several 
researchers have implemented parallel genetic algorithms 
(or parallel evolutionary algorithms) on graphics 
processing units (GPUs), and have demonstrated GPUs 
have a potential for acceleration of GAs (see Ref. [23] —
[26] for more details).   
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IV. OVERVIEW 

Fig. 1 shows the architecture of our approach. There 
are two main modules: a workload generator which 
produces a synthetic workload ࣱ for the input schema S 
and a GA-based tuner which searches for the most 
suitable configuration of matching system ࣧ. 

The rest of this section describes the workload 
generator and GA-based tuner in detail. 

A.  Workload Generator 
Given a schema S and the workload size n, the 

generator returns a set of matching scenarios as the 
synthetic workload ࣱ. The data model used internal by 
the generator is the nested relational model which is 
sufficiently general for both relational and XML schemas. 

Definition 1: A matching scenario is a triple ( ), ,S T Ω , 
where S  is a source schema, T  is a target schema, and Ω 
is a set of semantic correspondences between S and T . 

1) Create schema pairs ( ) ( ) ( )1 2, , , , , , nS T S T S TK : 
the workload generator creates matching scenarios by 
composing basic scenarios in different ways and 
perturbing element names and data types of S randomly. 
We define four basic matching scenarios: Copying, 
Merging, Vertical Partition, and Nesting according to the 
basic mapping scenarios described in Ref. [27] and real-
world schema matching specifications. The generator has 
implemented a set of common name transformation rules. 
Examples include replacing a name with a common 
abbreviation or a synonym obtained from WordNet 
database1, and dropping prefixes or suffixes. The 
generator has also specified transformation rules between 
different data types. Fig. 2 presents examples of basic 
matching scenarios and perturbations. 

The workload generator allows a user to tune the 
generated matching scenarios through a set of 
composition parameters. The composition parameters 
consist of 4 repetition parameters ࣬ (one for each basic 

scenario mentioned above), 2 construction parameters ࣝ 
(specify the number of sub-elements of an element and 

the depth of generated schemas), along with 2 standard 
deviation parameters ࣞ. Every parameter in ࣝ is in fact 
the mean value of a Gaussian distribution whose standard 
deviation is the value of the corresponding parameter in 
ࣞ. 

2) Create semantic correspondences 1 2, , , nΩ Ω ΩK : 
The workload generator retraces the generation history to 
create Ω, which is a set of correct semantic 
correspondences between S and Ti. Briefly, if element t of 
Ti is created from elements 1 2, , ks s sK of S, then we 

create{ }1 2, , , ks t s t s t= = =K  as Ωi. 

The generator could exploit auxiliary information ࣣ, 
such as global schemas, expert matches, and dictionaries, 
to build a better workload, which improves the GA-based 
tuning performance. Fig. 3 gives a pseudo code 
description of the workload generator. 

B.  GA-based Tuner 
As previously described, our objective is to find out a 

configuration of matching system ࣧ, which optimizes 
the performance over a synthetic workload ࣱ, from a 
potentially huge space. To address this problem, we 
propose a tuning approach using the genetic algorithms. 
Genetic algorithms are a family of computational models 
inspired by evolution. These algorithms encode a 
potential solution to a specific problem on a simple 
chromosome-like data structure and apply recombination 
operators (e.g. crossover operator and mutation operator) 
to these structures so as to preserve critical information. 
Genetic algorithms are often viewed as function 
optimizers and could always locate good solutions in 
reasonable amounts of time [20]. Fig. 4 shows the 
prototype of GA-based tuner. 

1) Initialize the population: Most GA practitioners 
use bit-string representations to represent potential 
solutions. We could represent a potential configuration as 
a chromosome with multiple genes, each of which 
reflects a knob of the configuration. When initializing, 
the population is generated randomly. 

 

1: Cognitive Science Laboratory, Princeton University. WordNet: A
Lexical Database for the English Language,
http://wordnet.princeton.edu 

 
Figure 1.  Architectural overview: This figure shows the main modules of our approach. 
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Figure 2.  Examples of basic matching scenarios.  (a) A copying scenario with perturbations on element names and data types. (b) A merging 
scenario using a column “Type” to identify records from different tables in source schema. (c) A vertical partition scenario which divides a table 
in source schema into two in the target. (d) A nesting scenario which creates a nested structure from a foreign key definition element in source 

schema. 
 

 
 

Figure 3.  A pseudo code description of the workload generator. 
 

 
 

Figure 4.  A pseudo code description of GA-based tuner. 
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2) Evaluate potential solutions: The fitness value 
of each individual in the population could be determined 
by the quality of its corresponding matching result. We 
allow domain users to specify the influence of Precision 
and Recall in the fitness evaluation. 

Definition 2: The fitness function is 
 

( ) ( )1
Precision RecallF Measure

Precision Recall
α

α α
×

− =
− × + ×

       (1) 

 
α is a preference between Precision and Recall, 
and 0 1α≤ ≤ . In particular, ( )F Measure Precisionα− → , 
when 1α → , and ( )F Measure Recallα− → , when 0α → . 

3) Repeat generating process until termination: 
Our tuner first selects the best-fit individuals and breeds 
new individuals through crossover and mutation 
operations, then evaluates the fitness of new individuals, 
and replaces least-fit population with new individuals. 
This generating process is repeated until a terminate 
condition (like time or generations limit, fitness threshold 
achieved, etc.) has been reached. 

V.  IMPLEMENTATION OF PARALLEL GENETIC 
ALGORITHMS ON GPU 

Parallel genetic algorithms (PGAs) have been 
considered a promising approach to make GAs faster. 
However, PGAs are usually applied on parallel, 
distributed, and networked computers which are not easy 
to access for many users. Recently, GPUs have become 
powerful tools for general purpose computing. Since 
GPUs have already been installed on most ordinary 
personal computers, the exact cost for using GPUs is 
quite low. Therefore, we implement PGAs on consumer-
level GPU to promote the performance of tuning process. 

The rest of this section presents the architecture of 
CUDA and our implementation of PGAs on GPU. 

A.  Architecture of CUDA 
CUDA (Computer Unified Device Architecture) is a 

general purpose parallel computing architecture which 
can be performed on any NVIDIA graphics card from 
GeForce 8 generation on both Linux and Windows 
platform.  CUDA comes with a software environment 
that allows developers to use C as a high-level 
programming language. Therefore, programmers could 
develop parallelism programs on GPUs with relative ease 
[28]. 

CUDA is a platform for massively parallel high-
performance computing on NVIDIA’s powerful GPUs. 
At its cores are three key abstractions – a hierarchy of 
thread groups, shared memories, and barrier 
synchronization – that are simply exposed to the 
programmer as a minimal set of language extensions. 
These abstractions provide fine-grained data parallelism 
and thread parallelism, nested within coarse-grained data 
parallelism and task parallelism. CUDA lets programmer 
partition the problem into coarse sub-problems that can 
be solved independently in parallel by blocks of threads, 
and each sub-problem into finer pieces that can be solved 
cooperatively in parallel by all threads within the block. 

Fig. 5 shows the architecture of CUDA. Thread is 
basic unit to manipulate data in CUDA. The thread index 
is a 3-dimesion vector, so that threads can be identified 
using a one-dimensional, two-dimensional, or three-
dimensional thread index, forming a one-dimensional, 
two-dimensional, or three-dimensional thread block. All 
the threads have access to the concurrently block’s shared 
memory. Those multi-dimensional blocks are organized 
into one-dimensional or two-dimensional grids, each 
block can be identified by one-dimensional or two-
dimensional index, and all grids share one global memory. 

CUDA requires all the active processors to execute the 
same instruction at the same time but on different data, 
also called SIMD for Single Instruction Multiple Data. As 
mentioned above, GAs need to evaluate different 
individuals in the population using an identical fitness 

 

Block0 Block1

Block3 Block4

Global Memory

Grid0

Block0 Block1

Block2 Block3

Grid1

Block2

Block5

Block4 Block5

 
 

Figure 5.  The architecture of CUDA. 



 Tuning Schema Matching Systems using Parallel Genetic Algorithms on GPU 53 

Copyright © 2010 MECS                                                                           I.J.Modern Education and Computer Science, 2010, 1, 48-56 

function and are suitable to be parallelized on the 
architecture of CUDA. 

B.  Implementation of PGAs on GPU 
There are several types of PGAs: global single-

population master-slave PGAs, single-population fine-
grained PGAs, multiple-population coarse-grained PGAs, 
and hierarchical PGAs [22, 26]. In a master-slave PGA 
there is a single population, but the evaluation of fitness 
and/or genetic operators are distributed among several 
processors. Fine-grained PGAs are suited for massively 
parallel computers and consist of one population, which 
has a spatial structure. The interactions between 
individuals are limited: an individual could only compete 
and mate with its neighbors. However, the neighborhoods 
overlap permits some interactions among all individuals. 
Multiple-population PGAs assume that several 
subpopulations (demes) evolve in parallel and demes are 
relatively isolated. These demes exchange individuals 
occasionally, and the exchange is also called migration. 
Hierarchical PGAs combine multiple-population PGAs 
with master-slave PGAs or fine-grained PGAs, and have 
better performance than any of them alone. 

According to the architecture of CUDA, we implement 
the multiple-population PGAs in a particular way. 
Initialization: An initial population is generated on CPU 
and transferred to the global memory of GPU. 

1) Partition: The initial population is partitioned 
into several subpopulations. Each subpopulation is 
distributed to the shared memory of a thread block. 

2) Evolution: Each thread block runs the evolution 
independently. The implementations of genetic operators, 
such as selection, crossover, and mutation have been 
described in Ref. [24]—[26]. 

3) Migration: The model of migration is single-
direction migration. Each thread block transfers its best 
individuals to its next block. Since every thread block 
could be identified using thread block index, it is easy to 
achieve such migration. Fig. 6 shows the migration model 
of multiple-population PGAs.  

4) Update & Termination: The global memory is 
updated with new individuals. The process would stop if 
the terminate condition has been reached. 

VI.  EXPERIMENTS 

We have evaluated our approach over two common 
matching systems, COMA++ [5] and SimFlood [29] with 
similarity metrics from SimMetrics2, applied to four real-
world XML schema matching tasks. Publicans, Person, 
and University are available in XBenchMatch 
benchmark [4].  SMS is provided by YAM as a test case 
[16]. Detailed features of each task are shown in Fig. 7. 

To compare with our approach, we examine other two 
tuning methods: (1) Applying the off-the-shelf matching 
systems without any tuning. (2) Manual tuning, by 
tweaking a few knobs, examining the output of a 
matching system, and then adjusting the knobs again. 

Our experiments are performed using an Intel Core2 
Duo T5250 CPU 1024M RAM and an NVIDIA GeForce 
8400M GS GPU. To compare with the implementation of 

PGAs on GPU, we also implement the tuning process on 
CPU with the help of JGAP3, a genetic algorithms and 
genetic programming component provided as a java 
framework.  

To simplify the tuning process, we only consider a few 
influential knobs of each matching system. This selection 
is done by applying the attribute selection of Weka4 
before running our approach.  

We test each method 30 times to limit the impact of 
randomness. Each time, we generate a synthetic workload 
with 15--30 scenarios for each matching task. For our 
approach, we set the preference between precision and 
recall to 0.5, and the threshold of fitness value to 0.95. 
We set different values to the population size. Concerning 
about time consuming, we set the maximized number of 
generation to 5.  

Fig. 7 shows the matching performance of COMA++ 
and SimFlood. It demonstrates that our method could 
effectively improve the performance of schema matching 
systems. However, the performance of a tuned system is 
relevant to the matching algorithms of the system. For 
example, the average F-Measure (0.5) value of tuned 
SimFlood over matching task Publicans is 0.3226 (less 
than half of the average F-Measure (0.5) value of tuned 
COMA++, 0.8205), because we do not use any dictionary 
in this task, and the matching algorithm is mainly driven 
by the initial textual match. 

Fig. 8 shows the effects of population size on the run 
time when we apply our approach on COMA++ system 
for the SMS task. We divide the initial population into 2, 
4, and 8 subpopulations (thread blocks). Each 
subpopulation consist 10 individuals (threads). The 
maximum number of threads per block of our device is 
512, and is fair enough for larger subpopulations. The 
experiment shows that our approach runs faster on GPU 
especially when larger population involved. However, the 
run time of tuning process still strongly depends on the 
matching algorithms and the size of synthetic workload. 

 

Grid

Block(1,0) Block(1,1) Block(1,2)

Block(0,0) Block(0,1) Block(0,2)

 
Figure 6.  The migration model in our implementation of multiple-

population PGAs. 
 

 

2: String Similarity Metrics for Information Integration,
http://www.dcs.shef.ac.uk/～sam/stringmetrics.html 

3: JGAP: Java Genetic Algorithms Package,
http://jgap.sourceforge.net 

4: Weka: Java Programs for Machine Learning,
http://www.cs.waikato.ac.nz/～ml/weka 
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TABLE I.  SUMMARY OF FOUR XML MATCHING TASKS 
 

 
 
 

 
(a) 

 

 
(b) 

 
Figure 7. Matching performance of (a) COMA++ and (b) SimFlood 

 
 

 
 

Figure 8. The effects of population size on the run time while tuning COMA++ system for the SMS task. 
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VII. CONCLUSIONS 

In this paper, we have presented an approach to 
automatically tune schema matching systems using 
genetic algorithms. To promote the performance of our 
approach, we implement parallel genetic algorithms on GPU 
based on CUDA. The main contributions of our work are: 
(1) providing a matching scenario generator for learning-
based matchers, and (2) providing better performance by 
tuning matching systems for particular matching situation. 
Experiments over four real-world domains with two main 
matching systems demonstrate that our approach provides 
more qualified matches over different domains. 
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