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Abstract

Schema matching is the problem of finding correspondences (mapping rules, e.g. logical formulae) between heteroge-
neous schemas e.g. in the data exchange domain, or for distributed IR in federated digital libraries. This paper introduces
a probabilistic framework, called sPLMap, for automatically learning schema mapping rules, based on given instances of
both schemas. Different techniques, mostly from the IR and machine learning fields, are combined for finding suitable
mapping candidates. Our approach gives a probabilistic interpretation of the prediction weights of the candidates, selects
the rule set with highest matching probability, and outputs probabilistic rules which are capable to deal with the intrinsic
uncertainty of the mapping process. Our approach with different variants has been evaluated on several test sets.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Distributed information systems tend to be highly heterogeneous, integrate different computer platforms,
data storage formats, document models and schemas which structure the documents. The latter aspect
requires to transform data structured under one schema into data structured under a different schema. This
old but emerging problem is particularly interesting from an information retrieval perspective for two reasons:
First, the intrinsic uncertainty of finding mappings between different schemas has to be taken into account.
Second, typically techniques from the information retrieval and machine learning areas are employed. The
problem of automatically finding mappings between schemas is called schema matching (Rahm & Bernstein,
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2001), and is currently under investigation in the context of information integration (Lenzerini, 2002) and data
exchange (Fagin, Kolaitis, Miller, & Popa, 2003) (see Section 5 for a detailed description).

One important application is information retrieval in federated digital libraries or peer-to-peer networks
(see MIND and PEPPER projectsl). Heterogeneity of schemas is one of the key problems in these environ-
ments, thus automatic schema matching is a major issue. Often it is infeasible to materialize the sources in
the global schema, e.g. because the libraries are maintained by a third party like the ACM DL or CiteSeer,
or because it is too expensive to acquire and convert all documents in advance. Thus, a retrieval run typically
involves five steps:

(1) selecting relevant information sources;

(2) rewriting the user query w.r.t. the local schemas, using the mapping rules;

(3) retrieving documents from the local sources using the rewritten query;

(4) transforming documents into the global schema (using the same mapping rules in the other direction);
and

(5) filtering documents in cases where the query transformation is incomplete, and thus non-matching doc-
uments are returned.

The schema matching framework sPLMap (probabilistic, logic-based mapping between schemas) presented
in this paper combines ideas from data integration and data exchange, from information retrieval and machine
learning. The global (target) schema (which can be presented to a user) is fixed and defined independently from
other schemas. Mapping rules, such as (informally)

0.98 standard.-booktitle « BIBDB_journal (1)

describe correspondences between attributes of these schemas, and are specified using high-level declarative
(e.g. logical) formalisms. For instance, in the above example, the target schema is called standard, while
the source schema is BIBDB. The mapping above expresses that the journal attribute of the BIBDB schema
can be mapped into the booktitle attribute of the standard schema with probability 0.98.

From well-known approaches like LSD (Doan, Domingos, & Halevy, 2001), sPLMap borrows the idea of
combining several specialized components (called “classifiers”) for finding the best mapping, e.g. based on
attribute names or comparing properties of the underlying data instances. The major improvements over
LSD are the support for data types (e.g. text, names, different date formats) in the matching process, the usage
of probability theory for estimating the degree of correctness of a set of learned rules, and the computation of
probabilistic rules for capturing the inherent uncertainty of the matching process. Thus, it provides a sound
theoretical justification for its (optimum) selection, and a measure for the quality of a learned schema
mapping.

A preliminary variant of sPLMap has been described in Nottelmann and Straccia (2005), together with
some first evaluation results. This paper contains several extensions: We show how the learned mapping rules
can be employed for query transformation; we introduce additional classifiers, we investigate the effect of
learning the weights for classifiers individually, and we present a larger evaluation on four different test beds.

Worth mentioning is also that the same principles of this work have been used in ontology and Web direc-
tory alignment (Nottelmann & Straccia, 2006; Straccia & Troncy, 2005), where the objective was to find cor-
respondences between the categories of the source ontology/Web directory and the target ontology/Web
directory. For instance, an excerpt of two ‘““university course’ ontologies is given in Fig. 1. It also reports
the mappings between the categories of the two ontologies, which have been found automatically.

The paper is structured as follows: The next section introduces a formal framework for schema mapping.
Section 3 presents a theoretically founded approach for learning these schema mappings, where the predic-
tions of different classifiers are combined. This approach is evaluated on a large test bed in Section 4. Section
5 discusses related work in the context of sSPLMap. The last section summarizes this paper and gives an out-
look over future works.

! http://www.mind-project.org, http://www.pepper-project.org/.
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Fig. 1. The excerpt of two ontologies and category matchings.

2. Schema mapping

This section introduces a formal, logic-based framework for schema mapping, where the mapping process is
fully automatic. It is inspired by the data exchange problem (Fagin et al., 2003) and extends it to a framework
capable of coping with the intrinsic uncertainty of the mapping process. sPLMap employs probabilistic Data-
log (introduced in Section 2.1) for specifying mapping rules. These are of the form (see Section 2.3 for
details):

O‘j,iTj(dv U) «— S,‘(d, U).
Informally, the above rule dictates that the attribute S; of the source schema is mapped into the attribute 7; of
the target schema with probability o; ;. More specifically, it says that for all documents & and value x of attri-

bute S;, x is also the value of attribute 7; with probability «;;. For instance, assume that the source schema
BIBDB has attributes

<document id>, <doctype>, <author>, <title>, <journal>
<volume>, <number>, <pages>, <year>

and the target schema standard has attributes

<document id>, <author>, <year>, <type>, <title>
<booktitle>, <misc>, <pages>

then a rule such as (the formal counterpart of the mapping (1))
0.98 standard.-booktitle(d,v) « BIBDB_journal(d,v) (2)

encodes the fact that likely the journal attribute in the source schema corresponds to the book title attribute in
the target schema. Hence, a query about specific book titles in the standard schema is then translated into a
query about journals in the BIBDB schema. We refer the reader to Fuhr (2000) for a detailed description on
how query answering is performed in probabilistic Datalog. The focus in this paper is on how to learn these
rules automatically.

2.1. Probabilistic datalog

In the following, we briefly describe Probabilistic Datalog (pDatalog for short) (Fuhr, 2000). pDatalog is an
extension to Datalog, a variant of predicate logic based on function-free Horn clauses. Negation is allowed,
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but its use is limited to achieve a correct and complete model. However, in order to simplify the presentation
we will not deal with negation in this paper.

In pDatalog every fact or rule has a probabilistic weight 0 <« < 1 attached, prefixed to the fact or rule:

oA <—Bl,...,Bn.

Here, A denotes an atom (in the rule head), and By, ..., B, (n = 0) are atoms (the sub goals of the rule body).
A weight o = 1 can be omitted. In that case the rule is called deterministic. For ease, a fact o4« is represented
as oA.

Each fact and rule can only appear once in the program, to avoid inconsistencies. The intended meaning of
a rule ar is that “the probability that any instantiation of rule r is true is «”’. The following example pDatalog
program expresses the fact that in 80% of all cases, a year stored in document metadata is the publication year
of that document:

0.8 pubyear(d,y) < year(d,y).
The facts
year(dl,2002),
0.5 year(da2,2003)
(the weight might be derived e.g. during an automatic information extraction process, which is inherently
uncertain) imply
Pr(pubyear(dl,2002)) = 0.8,
Pr(pubyear(d2,2003)) =0.8-0.5=04.
Another example is where we have the rules:

author(d,n) < contact_author(d,n),

author(d,n) < co_author(d,n)
dictating that an author of a document is either the contact author or a co-author. Hence, if we have the facts
stating that we are unsure about whether N is the contact author (with probability 70%) or the co-author (with
probability 60%) of document d1, i.e. the facts

0.7 author(dl,N),

0.6 co_author(dl,N),
then we may infer that N is an author with probability 0.88 = 0.7 + 0.6 — 0.7 - 0.6, under the independence
assumption (as there are two alternatives to infer the same information).

For the ease of presentation, in the following we consider a succinct representation of the probabilistic pro-
gram above. It may help the reader to follow the definition of the semantics of probabilistic Datalog. So, let us
consider the rules (representing “a if either b or ¢, and a,b,c stand for author, contact_author and
co_author, respectively)

a <« b,
a<—c
and the probabilistic facts (“D is true with probability 70%, while c is true with probability 60%")
0.7D,
0.6¢.

Formally, an interpretation structure in pDatalog is a tuple .4 = (#", i), where #" is a set of possible worlds
and p is a probability distribution over #". The possible worlds are defined as follows. Given a pDatalog
program P, with H(P) we indicate the ground instantiation of P.*> In our case, we have H(P) = P, as P does

2 The set of all rules that can be obtained by replacing in P the variables with constants appearing in P, i.e. the Herbrand universe.
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not have any variables. Then, the deterministic part of P is the set Pp of instantiated rules in H(P) having
weight o = 1. In our example, Pp contains two rules

Py ={(a —b),(a — o)},

The indeterministic part of P is the set P;of instantiated rules determined by P; = {r: ar € H(P), < 1}. In our
example,

Py ={b,c}.

The set of deterministic programs of P, denoted D(P) is defined as D(P) = {Pp U Y: Y C P;}. In our example,
D(P) = {P\,P3,P3,P.},

where the programs Py,..., P, are

Py =PpUf = Pp,
Py = PpU{b},
Py =PpU{c},
Py=PpU{b,c}.

Note that any P’ € D(P) is a classical logic program. Finally, a possible world w € #" is the minimal model
(Lloyd, 1987) of a deterministic program in D(P) and is represented as the set of ground atoms that are true in
the minimal model (also called Herbrand model). In our example, for each of the four programs P; € D(P) we
have a minimal model w;: the models wy,...,w, are

wy = @7

wy = {a, b},
wy = {a, c},
wy = {a,b, c}.

wy is a model of P; as no fact is known in P;. w, is a model of P, as it satisfies the fact b € Py and, thus, a has
to hold as well (due to the rule a < b). The cases of w3 and w4 are similar. Hence, the set of worlds for P is
W = {Wl, Wo, W3, W4}.

Now, an interpretation is a tuple I = (.#,w) such that w € #". The notion of truth w.r.t. an interpretation
and a possible world can be defined recursively:

(F,w) E Aiff 4 €ew,

(#F,w) E A< By,...,B,iff (F,w) E By,...,B, = (J,w) E 4,
(J,w) E ariff u({w' e w (IS, W) E r})=a.

In our example, consider the interpretation 7 = (£, w,), with & = (#", 1), W = {wy, wp, w3, w4} and the dis-
tribution u

u(wy) = 0.08,
p(wz) = 0.32,
u(ws) = 0.22,
u(ws) = 0.38.

Then, it can be verified that
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(#,m2) = b,
(F,m) F a,
(F,m) E a«—D,
(F,w) E a«—c,
(#,w2) | 0.7,
(J,w) E 0.6¢c,

Note that (#,w,) E 0.7b, as the set of worlds satisfying b is {wp, w4} and u({w,w4}) =0.32+0.38 =0.7.
Similarly, (#,w;) E 0.92a, as the set of worlds satisfying a is {ws, w3, ws} and u({wo,ws, ws}) =
0.32+0.22+0.38 =0.92.

An interpretation (.#,w) is a model of a pDatalog program P, denoted (.#,w) £ P, iff it entails every fact
and rule in P:

(F,w) E Piff (#,w) E ar forall or € H(P).

In our example, the interpretation just defined above is a model of P. Below, we report a list of models /; of our
example program P. We report just the probability distribution u. The bottom row illustrates the probability o
that the fact a is true, i.e o = u(wy,) + u(ws) + p(wy).

w)lh L Kk

170.0 0.12 0.08 ...
)0.4 0.28 0.32 ...
q) 0.30.180.22 ...
) 0.30.42 038 ...

o 1.0 0.88 0.92 ...

It can be verified that for any model 7; of P, we have that 0.88 < o < 1.0. That is, in any model of P, the atom a
is true at least with probability 0.88.

Finally, given a ground fact 4, and a pDatalog program P, we say that P entails a4, denoted P F oA iff in
all models I of P, A is true with probability at least «. For instance, in our example, we have that

P E 0.7 b,
P E06c,
P 088 a.

Given a set of facts F, with say that P entails F, denoted P k F, iff P F a4 for all x4 € F. For ease, we will also
represent an interpretation [ as a set of ground facts {a4 : [ F aA4}. In particular, an interpretation may be seen
as a pDatalog program.

In the remainder, given an n-ary atom A for predicate 4 and an interpretation / = (.#,w), with 4’ (an
instantiation of A w.r.t. the interpretation I) we indicate the set of ground facts ad(cy,...,c,), where the
ground atom A4(cy,...,c,) is contained in the world w, and u({w € ¥ : (#,w) | Alci,...,c)}) =,
ie. I = ad(cy,...,c,). Essentially, 4" is the set of all instantiations of 4 under I with relative probabilities,
i.e. under I, A(cy,...,c,) holds with probability .

2.2. Data types and schemas

We first assume a finite set D of elementary data types. The domain dom(d) for a data type d € D defines the
set of possible values for d. Examples for data types are Text (for English text), Name (person names, e.g.
“John Doe”), Year (four digit year numbers, e.g. “2004”"), DateIS08601 for the ISO 8601 format of dates
(e.g. “2004-12-31”) or DateEnglish (e.g. “Dec 12, 2004™). A fixed data type DOCID € D is used for docu-
ment identifiers.
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For sPLMap, we consider a simple yet effective structure for schemas as a linear list of multi-valued schema
attributes. Each attribute can be modelled as a binary relation, which stores pairs of a document id and a value
for that attribute. It is not our purpose here to address the case where schemas are defined using more expres-
sive languages like XML. Examples of our schema model are BibTeX or Dublin Core.?

Formally, a schema R =(R;, ..., R,) consists of a non-empty finite tuple of binary relation symbols (corre-
sponding to attributes of a document). Each relation symbol R; has a data type dx, € D. A schema (or a single
schema attribute) can be instantiated with tuples forming the content of documents. An instance of schema
attribute R; is then a set of probabilistic ground facts:

Rj. C {aR;(d,v) : 2 € [0,1],d € DOCID, v € dom(dp,)}.

For instance, the BIBDB schema is made out by the attributes documentid, author, year, type, title,
booktitle, misc and pages, each of which is of type String. An actual document is of the form

<?xml version="1.0" encoding="IS0-8859-1" ?>
<document id="BIBDB.r0/1">
<doctype>article</doctype>
<author>Imielinski, T.</author>
<title>Incomplete deductive databases</title>
<journal>Annals of Mathematics and Artificial Intelligence</journal>
<volume>3</volume>

<number>2-4</number>

<pages>259—-294</pages>

<year>1991</year>

</document>

and will be encoded as the pDatalog program made out by the following facts (o = 1, always)

doctype (BIBDB.r0/1, "article")

author(BIBDB.rO/1, "Imielinski, T.")

title (BIBDB.r0/1, "Incomplete deductive databases")

journal (BIBDB.rO/1, "Annals o Mathematics and Artificial Intelligence")
volume (BIBDB.r0/1, "3")

number (BIBDB.r0/1, "2-4")

pages (BIBDB.r0/1, "259-294")

year (BIBDB.rO/1, "1991")

In our approach, an instance of the source schema is obtained directly from a set of source documents. There-
fore, e.g. author (BIBDB.rO/1, "Imielinski, T.") may belong to the instance of the attribute author,
author’.

For simplicity, we use R; for both the schema attribute R; and its instances Rj, and similarly R for the
schema and the corresponding schema instance.

The following example schema will be used in the remainder of this section for illustrative purpose:

A = (creator, date),dcreator = Name, daate = Date,

B = (author,editor,created), dautnor = deaitor = Name, doreateq = Date.

In this case, schema A has two attributes, creator storing the creator of a document, and date storing the
publication date. On the other hand, schema B has a finer granularity, as it keeps the author and the editor in
separate attributes. Obviously, the attribute created corresponds to attribute date in schema A.

3 http://dublincore.org/.
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2.3. Schema mappings

Let us assume a source schema S = (S|, ..., S,), a target schema T =(T7,..., T,), where S and T are disjoint,
and a set X of mapping rules that specify how and what source data should appear in the target schema. In this
paper, probabilistic Datalog rules of the form

Oij,' Tj(d, U) — S,’(d, U)

are employed, such as (2), denoting that content from a source schema attribute S; has to be copied to a target
attribute 7; with a probability of «; ;.

The schema matching problem is then stated as follows: Given instances of source schema S and target
schema T, find an appropriate set 2~ of mapping rules. More precisely, find the X which maximizes the prob-
ability that a target instance T and the result of applying the mapping rules 2 onto the source instance S are
“similar”’. We will see later on how we compute the similarity. The tuple .# = (T, S, 2) is called a mapping.
The ultimate goal of sPLMap is to automatically determine the relationships between attributes of the two
schemas.

For a set X; of mapping rules with common relation 7 in the rule heads, the result of applying these rules
onto the source instance S yields an instance over the target attribute 7}, the mapping result. This instance is
denoted by 7,. T = (T}, ... , T;) denotes the schema instance derived by applying X onto T. Typically, the set
2 of mapping rules on which 7; and T depend is clear from the context and left out; in some exceptional cases,
we explicitly mention it as 7;* and T*, respectively.

Note that a source attribute may be mapped into several target attributes and a target attribute may be the
target of many source attributes, i.e. we may have complex mappings. For example,

2 = {O(l,lTl(d, U) — Sl(d, U),O(lﬁle(d,U) — Sz(d, U),Otzlez(dﬂ)) — S1<d, U)}

is a legal set of mapping rules. However, sPLMap does not require that a mapping exists for every target
attribute.
Reasonable rules for the example schemas T = A and S = B, where the attribute creator subsumes both

author and editor, are:

creator(d,v) < author(d,v),

creator(d,v) < editor(d,v),

date(d,v) < created(d,v).
Now, we restrict the example to the mapping 2 = {creator « author}. Then, the following source in-
stances author and editor define the resulting target instance with:

author = {author(dl,"John Doe")},

editor = {editor(dR,"Jane Meyer")},

creator = {creator(dl,"John Doe"), creator(d2, "Jane Meyer")}.
For the other direction, i.e. T=B and S = A, possible rules are:

0.7 author(d,v) < creator(d,v),
0.3 editor(d,v) < creator(d,v),
created(d,v) < date(d,v).

In other words, creators are authors with a probability of 70%, and editors with a probability of 30%.
Possible instances are then:

creator = {creator(dl,"John Doe")},

author = {0.7 author(dl,"John Doe")},
editor = {0.3 editor(dl,"John Doe")},



560 H. Nottelmann, U. Straccia | Information Processing and Management 43 (2007) 552-576
2.4. Queries and query transformation

A query ¢ is a set Q of pDatalog rules with common head which define a unary predicate ¢ with
q' c{og(d): «€[0,1], d € DOCID}. The literals of these rules refer to the relation symbols defined in R.
The set g(R) of answers for query ¢ with respect to R contains exactly all the document ids which satisfy
the query:

q(R) := {0g(d)|R'UQ E ag(d)}.
Given a schema mapping .# and a source schema instance S, the set g(.#,S) of certain answers to a query ¢
(over T) with respect to .# and S is exactly the set of answers for that query w.r.t. the mapping result T:
q(4,S) = q(T).

A query ¢’ w.r.t. the source schema S is a perfect reformulation of a query ¢ w.r.t. the target schema T if the
answers are the same (modulo different relations):

~

g (d) € ¢'(S) <> aq(d) € q(T)

for a given source instance S, a set X of mapping rules, and the mapping result T. However, in this paper, we
are interested in correct (i.e. sound) reformulations:

og'(d) € ¢'(S) = ag(d) € g(T).

The facts in g(S) then are certain answers, but ¢’ does not necessary return all certain answers. This subset-
property allows for handling cases in which no exact query transformation is possible.

A given schema mapping .# = (T,S, X) can also be used for transforming a query for the target schema T
into a query for S. For this, the query has to be unfolded, i.e. all sub goals in the query rule bodies which refer
to a relation in T have to be replaced by the bodies of the mapping rules.

The following example illustrates the definitions above. Consider the situation T = A and S = B, the map-
ping rules X from above, and the query

q(d) < creator(d,"John Doe").

Essentially, we are looking for documents created by John Doe. Using the mapping rules, the query over the
target schema T can be reformulated into two queries over the source schema S:

ql(d) < author(d,"John Doe"),
ql(d) < editor(d,"John Doe").

Here, answers to the rewritten query g1 are identifiers of documents whose author or editor is John Doe. Note
that alternative queries may be:

q2(d) < author(d,"John Doe"),
q3(d) < editor(d,"John Doe"),
q4(d) « .

~

With the instances from above, we have g(T) = {q(d1)}. Then, g1 and g2 are perfect reformulations, g3 is a
correct reformulation (as q3(S) = @), while g4 is not a correct reformulation:

g4(d2) € q4(S), q(d2) ¢ 4(T).
For the other direction, the query
a(d) < author(d,v)
can be unfolded into the perfect reformulation

0.7¢'(d) «+ creator(d,v).
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3. Learning schema mappings

This paper only deals with learning schema mappings, i.e. finding associations between attributes. We
assume that a set of data types D is already given. Learning schema mapping consists of four steps:

(1) For each single possible mapping Tj(d,v) «+— S{d,v), we estimate the quality, arriving at a probability
Pr(S;|T)) (the order of this conditional probability is explained below).

(2) We form each possible set X, and estimate its quality based on the quality measures for its constituent
mapping rules.

(3) Among all possible sets X, we select the “best”” schema mapping according to our quality measure.

(4) Finally, we compute probabilities o;; = Pr(T}|S;) for each mapping rule in the best X.

We are going to illustrate these steps in detail.
3.1. Estimating the quality of a mapping

Consider a target schema T =(T7,...,T,) and a source schema S =(S,..., S,) together with two instances.
As above, for simplicity we use 7; and S; for both the schema attribute and its instances, respectively, and T
and S, for the schemas and their instances, respectively.

The goal of schema matching is to find the best set 2~ of mapping rules. In sSPLMap, we assess the quality of
mapping for deterministic rules only. The rules from the best mapping are augmented with probabilistic
weights (for the document and query transformation processes) in a later step.

Thus, all rules in any set X of mappings are deterministic in this section. For simplicity, we assume determin-
istic target and source instances; in other words, all ground facts considered here are deterministic.* Then, an
interpretation R! can alternatively be described as a set of tuples which correspond to the instance’s ground facts:

Rl = {t:R(t) € RI}.
Essentially, we may see R as the set of all values 7 of attribute R;. This setting will ease the description of the
quality estimation step.
In the remainder of this paper, X;; denotes the set containing the single (deterministic) rule

T{(d,v) < S{d,v). The X;; form the building blocks of larger sets of mapping rules: A set 2; c U ;2;; contains
rules with common target attribute 7}, while X denotes a set of mapping rules with different target attributes:

2= A{T(d,v) — Si(d,v)},

z=JZu

ik
r=Jz.
J
When all instances are deterministic as in this section, the mapping result can easily be computed as
7 =17 =Un> =Us (3)
ik ik

In our example setting with

T, =creator,

T, =date,
Sy = author,
S, =editor,

Sy = created,

4 Extension to uncertain instances is straightforward, but requires a more complex formalism to be described.
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we have to consider single sets

»)

Jols

with j=1,2and i =1,2,3,

e.g.
212 ={creator(d,v) — editor(d,v)}.

Then for all j, we have to consider all subsets X; of X;; U 2;, U X, 5. For instance, we may consider the can-
didate rule sets:

2, ={creator(d,v) <« editor(d,v)},
2, ={date(d,v) «— editor(d,v), date(d,v) — created(d,v)}.

(where X, is obviously wrong).

The goal is to find the “best” set of mapping rules ¥ which maximizes the probability Pr(Z,T,S) that the
tuples in T and in the mapping result T are ‘similar’, that is, given a random tuple in T, to estimate the prob-
ability that it is a tuple in T and vice-versa.

As mentioned above, X can be partitioned into 7 sets X,...,2;, and the rules in these sets operate indepen-
dently on different target attributes:

Pr(Z,T,S) HPrZTS (4)

Now, Pr(2;,T,S) is estimated as the probability that a tuple in 7"7 3 is also in T}, and vice-versa. That is,
Pr(2;,T,S) can be computed as

. o PHT) 7l
Pr(Z;,T,8) = Pr(T)|T;) - Pr(T,|T;) = Pr(T,|T))* - — =L = Pr(T,|T))* - =L (5)
Pr(T;) ;|
For s source attributes and a fixed j, there are also s possible sets X, ;,...,2;,, and 2° — 1 non-empty combi-

nations (unions) of them, forming all possible non-trivial sets X. For computat10nal simplification, we assume
that S;, and S;, are disjoint for /; # i,. In other words, each smgle rule 7;(d,v) < S;,(d,v) with 2;; C X, can be
c0n51dered in 1solat10n and we have 7 T =T T, U T; T %,

Thus, instead of T , we consider T Ziig = S (as shown in (3)) and combine the probabilities by summing
them up (due to the d1SJ01ntness assumptlon)

PTIT) = PrUSIIT) = S P IT) (6)

Thus, in order to compute Pr(2;, T,S), the main task is to compute the ((s - ) probabilities Pr(S;|7}), which we
will address in the next section.
In our example with X = X; U X,, we have to compute:

= T, T
PHET,S) = P(ELT,S) - P25, T,S) = BT T 1L (T 2 (2
T ||
t
= Pr(editor|creator)’ -w~ (Pr(editor|date) 4+ Pr(created|date))’
|creator|
|date|
date|

> We recall that T\, is obtained from the instance of the source schema by applying the mapping rules. See (3).
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3.2. Estimating the probability of a rule

Computing the quality of a mapping is equivalent to estimating the probability Pr(S,|7}). Similar to LSD
(Doan et al., 2001), the probability Pr(S;|T}) is estimated by combining different classifiers CL,,..., CL,. Each
classifier CL; outputs a conditional probability Pr(S;|T;, CLy), the classifier’s approximation of Pr(S;|T;). The
final probability Pr(S,|T;) is computed by combining the classifier predictions Pr(S;| T}, CL;) in a weighted sum,
which results from the Total Probability Theorem:

Pr(Si|T;) = Y Pr(Si|T;, CLy) - Pr(CLy). (7)
=1
The probabilities Pr(CLy) are described below.
The classifier predictions are computed in several steps:

(1) First, a classifier CL, computes a weight w(S;, T}, CL), an initial approximation of Pr(S;|T).
(2) This weight w(S;, T}, CLy) is then normalized and transformed into the probability Pr(S;|T; CLy) =
Sw(S;, T;, CLy)) in two sub-steps:
(a) First, an arbitrary normalization function can be used, e.g. linear or logistic functions.
(b) Asecond, simple normalization step ensures that the final value for Pr(S;|7};, CL;) and for Pr(T}
S, CLy) 1s in [0, 1].

Step 1, computing the weights w(S;, T, CLy), is explained in Sections 3.3 and 3.4.
The normalization process is necessary as we combine the classifier estimates, which are heterogeneous in
scale. In step 2a, we employ different normalization functions:

f;‘d(x) =X,
X

foun(x) = 2ow(Sy, T, CLy)
flin(x) =¢Co + €1

_exp(by + by - x)
ﬁvg(x) - 1 +exp(b() +bl _x) .

The functions f;4 fs.m and the logistic function f;,, return values in [0, 1]. For the linear function, results below
zero have to be mapped onto zero, and results above one have to be mapped onto one. The function fi,,, en-
sures that the sum of the weights over all source attributes equals 1. Its biggest advantage is that it does not
need parameters, which have to be learned. In contrast, the parameters of the linear and logistic function are
learned by regression in a system-training phase. This phase is only required once, and their results can be used
for learning arbitrarily many schema mappings. Of course, normalization functions can be combined. In some
cases it might be useful to bring the classifier weights into the same range (using f;,,,), and the to apply another
normalization function with parameters (e.g. the logistic function).
For the final probability Pr(S,|T;,CLy), we have the constraint

0 < Pr(si|T;, cr) < TRUSLILD ('S"' ,1>. (8)
7| |7,

Thus, the normalized value (which is in [0, 1]) is multiplied with min(|S,|/|T}|, 1) in a second normalization step
(step 2b).

Finally, the probability Pr(CL;) describes the probability that we rely on the judgment of classifier CLy,
which can for example be expressed by the confidence we have in that classifier. We can simply use
Pr(CL;) =1L for 1 <k < n, ie. the predictions are averaged. As an alternative, Pr(CLy) is considered as the

n

probability that CL, is the best classifier. With the mean error

E(Si,t,CLy) = (Pr(SiH{t}, CLi) — Pr(Sil{1}))’,
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the probability can be computed as

S S it € T, CLy = argminE(S;, ¢, CLy ) }|
PF(CLk) = ! ! TJ .
s+ 21751

3.3. Schema-based classifiers

The following classifiers consider the schemas only, without knowledge about instances (the latter are
described in Section 3.4).

3.3.1. Same attribute names
This binary classifier CLy returns a weight of 1 if and only if the two attributes have the same name, and 0
otherwise:

1, Si:T/‘,

S;,T;,CLy) = .
w 5 CLy) {O, otherwise.

3.3.2. Same attribute name stems
This binary classifier CLg uses the stemming technique well known from information retrieval and natural-
language processing. Here, a word is mapped onto its “stem” to provide problems with derivation forms.
For CLg, stemming is applied onto attribute names. The classifier returns a weight of 1 if and only if the
names of the two attributes have the same stem (using e.g. a Porter stemmer), and 0 otherwise:
1, S, T, have same stem,

Sia T'7 CLs) = .
w( 5 CLs) { 0, otherwise.

3.3.3. Same data type
This binary classifier CLp returns a weight of 1 if and only if the two attributes use the same data type, and
0 otherwise.
1, dS» - dT,,
w(S;, T;,CLp) = P
( 7 CLo) { 0, otherwise.
E.g., we have w(editor,date,CLp)=0 as editor and date have different data types, and w(cre-
ated,date,CLp) =1 as both have the same data type Date.

3.4. Content-based classifiers

These classifiers are based on attribute values, and thus require instances of both schemas. However, these
instances do not need to describe the same objects. Below, we describe the classifiers used in this paper.

Some of these classifiers require term weights inside strings. We consider strings as bags of words, and then
can use normalized term frequencies as conditional probabilities that an arbitrary word in the text v equals a
specified word w:

tf (w,v)
Zw’evtf(wg U) ’
Here, tf{w,v) denotes the number of times the word w appears in the string v, which is normalized by the sum
of the frequencies of all words in v.

Pr(wlv) =

3.4.1. Correct literals

This classifier CL; (suitable in particular for numbers, URLs and other factual data) measures the fraction
of the tuples in 7; where the data value (the second argument, without the document id) also occurs in any
tuple in S;:
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|{T (dl, U]) j(dl, U]) S Tj, HSi(dz, Uz) € Si.Ul = 172}|

|7,
This directly corresponds to the conditional probability Pr(S;|T;), but is unable to cope with partial or impre-
cise information.

W(S,', CLL)

3.4.2. kNN classifier

A popular classifier for text and factual data is kNN (Sebastiani, 2002). For CL, vy, each attribute S; acts as
a category, and training sets are formed from the instances of S; by labelling each document/value pair with
the schema attribute S;:

Train = U{(Si,d’, V) Si(d' V) €S}
=1
For instance, given a set of documents in the BIBDB source schema, then e.g. the journal attribute acts as a
category and the set of journal names is the training set for the classifier.

For every instance T{(d,v) € T}, e.g. for each value of the booktitle attribute in the standard target
schema, the k-nearest neighbours 7OP, have to be found by ranking the values (S;,d’,v') € Train according
to their similarity RSV(v,v’). The prediction weights are then computed by summing up the similarity values
for all (d',v") which are built from S;, and by averaging these weights w(d, v, S;) over all T{d,v) € T

1

W(S,‘, T CLkNN) |T ‘

N(dv U, Si)7
i(d)eT;
w(d,v,S;) = Z RSV (v,v'),
(S1, d'v " )eTOPy ,Si=S
RSV (v,") Z Pr(w|v) - Pr(w|t).

wevnv’

3.4.3. Naive Bayes text classifier

The classifier CLp uses a naive Bayes text classifier (Sebastiani, 2002) for text content. Again, each attribute
acts as a category, and attribute values are considered as bags of words (with normalized word frequencies as
probability estimations, see above). For each T(d,v) € T}, the probability Pr(S;/v) that the value v should be
mapped onto S; is computed. In a second step, these probabilities are combined by

w(Si, T;,CLg) = Y Pr(Si|v) - Pr(v).
T,(dv)eT;

With Pr(S;) we denote the probability that a randomly chosen value in .S, is a value in S, and
Pr(w|S) = Pr(w|v(S;)) is defined as for kNN, where v(S;) = Uy, (4,5, 1s the combination of all words in all
values for all objects in S;. If we assume mdependence of the words in a value, then we obtain:

PrSIe) = Prols) ) =

(w]S;).

wev

Together, the final formula is

w(S;, T;, CLg) = = Tl
Ti(dv)eT; wev

In the case that a word does not appear in the content for any object in S;, i.e. Pr(w|S;) = 0, we assume a small
value to avoid a product of zero.

3.4.4. KL-distance

The classifier CLg; uses KL-distance to measure the distance between the distributions of numerical, cat-
egorical and textual data. In general, KL-distance measures how good one distribution p approximates
another distribution ¢, and is defined as
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KL(pllg) = 3" pl) E—

xeX

For non-textual data, we only consider the attribute values, i.e. we consider the projections S} = {v|3d :
Si(d,v) € S;} and T, = {v[3d : T;(d,v) € T,}. For textual data, the text is split into terms, and attribute-wide
statistics are used for estimating the probabilities Pr(X = Z) and Pr(Y = z), where z is a term.

The KL-distance distance KL(Sj||T}) € [0, 00 is converted into a prediction by:

1
W(S[, Tj, CLKL) == HT(S,”T,)
ey

3.5. Estimating the weight of a rule

The learned schema mapping is a set of deterministic rules, i.e. no probabilistic weights are attached. The
final rules weights Pr(T}|S;) for these rules have to be computed in a post-processing step. Two different
approaches are described in this section.

3.5.1. Rule (ST) — transforming the probability Pr(S;T;)
The probability Pr(S;/7T;) has already been estimated while computing the quality of a schema mapping.
This probability can be easily transformed in the rule weight:

7]

Pr(T;|S:) = Pr(Si|T) - 5

Pr(SilT;) -

As the final normalization step in Section 3.2 ensures that Pr(S;7;) < min(|S;|/|T}|,1) (see Eq. (8)), the result-
ing value Pr(T}|S)) is always in [0,1].

3.5.2. Rule(TS) — Estimating the probability Pr(T;|S;) directly

The probability Pr(7}|S;) can be learned just as the probability Pr(S,|T)) (see Section 3.2) by using a set of
classifiers. The same ideas, the same classifiers and the same normalization functions can be used as described
above, swapping S; and 7.

3.6. Additional constraints

Additional constraints can be applied on the learned rules for improved precision. These constraints are
used after the sets of rules are learned for all target classes: we remove learned rules, which violate one of these
constraints:

(1) We can assume that there is at most one rule for the target class (the one with the highest weight). This
will reduce the number of rules produced, and hopefully increase the percentage of correct rules.

(2) We can drop all rules where the weight o;; is lower than a threshold s. We consider ¢ = 0.1.

(3) We can rank the rules according to their weights (in decreasing order), and use the n top-ranked rules
(e.g. about the actual number of rules).

4. Experiments

This chapter describes some experiments for evaluating the presented learning approach. It also intro-
duces the usual effectiveness measurements for evaluating the learned schema mappings (precision, recall
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Table 1
Example of BIBDB and standard schema entry, respectively
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<?xml version="1.0" encoding="1S0-8859-1" ?>
<document id="BIBDB.r0/1">
<doctype>article</doctype>
<author>Imielinski, T.</author>
<title>Incomplete deductive databases</title>
<journal>Annals of Mathematics and Artificial Intelligence</journal>
<volume>3</volume>

<number>2-4</number>

<pages>259-294</pages>

<year>1991</year>

</document>

<?xml version="1.0" encoding="I1S0-8859-1" ?>

<document id="BIBDB.r0/9">
<author>Andersen, T.L. and Ecklund, E.F. and Maier, D.</author>
<year>1988</year>

<type>article</type>

<title>The Proteus Bibliography: Representation and Interactive Display in Databases</title>

<booktitle>ACM SIGMOD Record</booktitle>
<misc>Volume: 15</misc>

<misc>Number: 3</misc>
<pages>46-55</pages>

</document>

and F-measure). Furthermore, we address the issue of evaluating each classifier individually, to determine
their impact on effectiveness. To the best of our knowledge, this has not yet been addressed in previous work.

4.1. Evaluation setup

This section describes the test set (source and target instances) and the classifiers used for the experiments.
Experiments were performed on four test beds, whose data contain mainly textual data (see Tables 1-3 for

example entries)

e BIBDB contains over 3000 BibTeX entries about information retrieval and related areas. The entries are

available both in BibTeX (source schema) and in a manually created standard schema, derived from Bib-
TeX via simple rules. Both schemas share a large amount of common attribute names. The target contains
26 attributes, the source contains 11 attributes and there are 11 correct mapping rules to be discovered.
There are 9 target attributes for which there is at least one mapping.

NGA is a sampled collection of 864 entries from the National Gallery of Arts, Washington, DC. The data
is available both in a source schema (manually constructed from the Web site) and in the same stan-
dard schema also used for BIBDB. The target contains 26 attributes, the source contains 16 attributes
and there are 16 correct rules to be discovered. There are 9 target attributes for which there is at least
one mapping.

WebArt is a sampled collection of 265 entries from the Web Gallery of Art. The entries are available both
in a source schema (manually constructed from the Web site) and in same standard schema also used for
BIBDB and NGA. The target contains 26 attributes, the source contains 11 attributes and there are 11 cor-
rect rules to be discovered. There are 10 target attributes for which there is at least one mapping.

LOC is an Open Archive collection of the Library of Congress with about 1,700 entries, available in MARC
21 (source schema) and in Dublin Core (target schema). MARC 21 has a higher granularity as Dublin
Core, a lot of Dublin Core attribute values are the concatenation of several MARC 21 attributes. Both
schemas use a completely different name scheme, thus they do not have attribute names in common.
The target contains 10 attributes (Dublin Core), the source contains 31 attributes and there are 43 correct
rules to be discovered. There are 8 target attributes for which there is at least one mapping.
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Table 2
Example of NGA and standard scheme entry, respectively

<?xml version="1.0" encoding="180-8859-1"?>

<document id="NGA//cgi-bin/pinfo?0bject=14121+0+none">
<image-url>http://www.nga.gov/image/a00003,/a0000352. jpg</image-url>
<image-width>610</image-width>

<image-height>324</image-height>

<artist>Marie Alain</artist>

<form>watercolor, graphite, and gouache on paperboard, 37.6 x 50.9 cm (14 13/16x20 1/16 in.)</form>
<accession-number>1943.8.1907</accession-number>

<info>These brocaded silk shoes exemplify the beautiful and elaborate accessories that were

part of the fashionable eighteenth-century wardrobe. Since they were not suitable for walking
out-of-doors, clogs or pattens — separate wooden or leather soles — were strapped on over

the shoes when necessary.</info>

<bibliography>Christensen, Erwin O0.,The Index of American Design, New York: 1950, p. 177, no. 348.</
bibliography>

</document>

<?xml version="1.0" encoding="1S0-8859-1" ?>

<document id="NGA//cgi-bin/pinfo?0bject=60868+0+none">
<image-url>http://www.nga.gov/image/a00022/a00022al.jpg</image-url>
<image-width>275</image-width>

<image-height>390</image-height>

<author>Antonio Balestra</author>

<title>Venus Appearing to Aeneas</title>

<yearperiod>in or before 1725</yearperiod>

<type>pen and brown ink with brown wash over black chalk on laid paper, 23.3x16.2 cm (9 1/8%X6 3/8 in.)</
type>

<misc>Accession-number: 1982.17.2</misc>

<misc>Bibliography: The Glory of Venice. Exh. cat. Royal Academy of Arts, London; National Gallery of Art,
Washington; Museo del Settecento Veneziano - Ca’Rezzonico, Venice; Gallerie dell’ Accademia, Venice,
1994-1995: no. 14.</misc>

<misc>Provenance: J. McGowan (Lugt 1496) (sale, 1804); William Esdaile. Private collection (sale, Chris-
tie’s, London, 8 December 1981, no. 64); (David Tunick, New York); NGA purchase in 1982.</misc>
</document>

The collections BIBDB, NGA and WebArt are created by the MIND project,® while LOC has been har-
vested within the Cyclades project.’

Each of the collections BIBDB, NGA, WebArt and LOC is split randomly into four sub-collections of
approximately the same size. The first sub-collection is always used for learning the parameters of the normal-
ization functions (same documents in both schemas). The second sub-collection is used as source instance for
learning the rules, and the third sub-collection is used as the target instance. Finally, the fourth sub-collection
is employed for evaluating the learned rules (for both instances, i.e. we evaluate on parallel corpora).

For the BIBDB, NGA and WebArt collections, each of the classifiers introduced in Sections 3.3 and 3.4 are
used alone. In addition, the combination of the schema-based classifiers CLy, CLgand CLj, is used, as well as
the combination of the content-oriented classifiers CL;y, CLg5, CL; and CLg;, and the combination of all
classifiers. In contrast, the schema-oriented classifiers do not help for the LOC collection (no attribute names
in common, and always same data type Text). Thus, only the content-oriented classifiers (and their combi-
nation) are used for this collection.

4.2. Measures

We evaluate if the learning approach computes the correct rules (neglecting the corresponding rule
weights). Similar to the area of Information Retrieval, precision defines how many learned rules are correct,

6 http://www.mind-project.org.
7 http://www.ercim.org/cyclades/.
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Table 3
Example of MARC and DC entry, respectively
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<?xml version="1.0" encoding="150-8859-1"?>

<oai_marc>

<varfield id="100">

<subfield label="a">Hondius, Jodocus,</subfield> </varfield>
<varfield id="100">

<subfield label="d">1563-1612.</subfield>

</varfield>

<varfield id="245">

<subfield label="a">America noviter delineata /</subfield>
</varfield>

<varfield id="245">

<subfield label="c">auct. Jodoco Hondio ; H. Picart fecit.</subfield>
</varfield>

<varfield id="260">

<subfield label="a">[Paris :</subfield>

</varfield>

<varfield id="260">

<subfield label="b">Jean Boisseau,</subfield>
</varfield>

<varfield id="260">

<subfield label="c">1640%?]</subfield>

</varfield>

<varfield id="300">

<subfield label="a">1 map ;</subfield>

</varfield>

<varfield id="500">

<subfield label="a">Relief shown pictorially.</subfield>
</varfield>

<varfield id="500">

<subfield label="a">Includes insets of north and south polar regions.</subfield>
</varfield>

<varfield id="650">

<subfield label="a">Maps, Early.</subfield>

</varfield>

<varfield id="700">

<subfield label="a">Picart, H.</subfield>

</varfield>

<varfield id="700">

<subfield label="a">Boisseau, Jean,</subfield>
</varfield>

<varfield id="700">

<subfield label="d">1587-1662 or 4.</subfield>
</varfield>

<varfield id="700">

<subfield label="d">f1l. 1637-1658.</subfield>
</varfield>

<varfield id="700">

<subfield label="q">(Hugues),</subfield>

</varfield>

<varfield id="856">

<subfield label="u">http://hdl.loc.gov/loc.gmd/g3290.np000144</subfield>
</varfield>

</oai_marc>

<?xml version="1.0" encoding="I50-8859-1"%>

<dc>

<coverage>Charleston (S.C.)</coverage>

<coverage>New York (N.Y.)</coverage>
<coverage>United States—South Carolina—Charleston.</coverage>

(continued on next page)
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Table 3 (continued)

<coverage>United States—New York (State)—New York.</coverage>

<date>1762-1776</date>

<description>Charleston view is panorama of waterfront and quays with principal buildings lettered for
identification (no index present).</description>

<description>Relief shown by hachures on New York City map.</description>

<description>New York City map removed from London Magazine, Sept. 1776; Charleston view removed from
London Magazine, 1762.</description>

<description>Imperfect: Charleston view ink-stained at upper left. DLC</description>

<description>LC Maps of North America, 1750-1789, 1111</description>

<description>New York City map includes index to points of interest.</description>

<description>New York City map shows streets, wharves, ferries, principal buildings, and built-up area.</
description>

<identifier>http://hdl.loc.gov/loc.gmd/ar3804n.ar111100</identifier>

<language>eng</language>

<publisher>[London :]</publisher>

<title>Plan of the city of New York ; An exact prospect of Charlestown : the metropolis of the province of
South Carolina.</title>

<type>image</type>

<type>map</type>

<type>cartographic</type>

</dc>

and recall defines how many correct rules are learned. Finally, the F-measure denotes the harmonic mean of
precision and recall. In the following, R; denotes the set of rules (without weights) returned by the learning
algorithm, and R, the set of rules (again without weights), which are the actual ones. Then:

RN Ry

R,NR 2
precision = = M F

, recall = , =
R | R4 o+ e

precision recall

Finally, we also used a variant of traditional precision (called “‘restricted precision’) where we drop all rules
for target classes for which there are no relationships at all. This measure shows how good our approach is
when we only consider the target classes for which we can be successful.

4.3. Results
In the experiments presented in this section (Tables 4-8), the learning steps are as follows:

(1) Find the best schema mapping
(a) Estimate the probabilities Pr(S;|T;) for all source attributes S, € S and all target attributes 7; € T,
using all classifiers.
(b) For every target relation 7; and for every non-empty subset X; of schema mapping rules having 7; as
head, estimate the probability Pr(X;T,S).
(c) Select the rule set X, which maximizes the probability Pr(2;T,S).
(2) Estimate the weights Pr(7}|S;) for the learned rules by converting Pr(S;|T)) or learn them directly.
(3) Compute the precision and recall as described above.

4.3.1. Quality of the classifiers with Pr(CL;) = 1/n

For the BIBDB collection, precision of 1.0 is obtained by CLy and CLg for this rather simple collection,
followed by CL; (0.875) and the combination of all classifiers (0.7155). Recall is maximized by the
CLy+ CLg+ CLp(0.9318) and CLp, (slightly worse). The best content-oriented classifier is CLg; (whose pre-
cision is worst), Naive Bayes performs worst. The ranking for the F-measure is comparable to the precision;
and restricted precision performs about the same as traditional precision.
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Table 4
ST-Rule (ST), no constraints — BIBDB

fid fmm flin Ofmm flog Of,sum
(a) Precision
CLy 1.0000 1.0000 1.0000 1.0000
CLg 1.0000 1.0000 1.0000 1.0000
CLp 0.2632 0.2632 0.2632 0.2632
CLinN 0.5455 0.5455 0.5455 0.5000
CLp 0.5000 0.5000 0.5000 0.5000
CL; 0.8750 0.8750 0.8750 0.8571
CLk; 0.2353 0.2353 0.2353 0.2286
All schema 0.2973 0.4348 0.4348 0.4348
All content 0.3462 0.4211 0.4211 0.4444
All 0.4074 0.8182 0.8182 0.8182
(b) Recall
CLy 0.6364 0.6364 0.6364 0.6364
CLg 0.6364 0.6364 0.6364 0.6364
CLp 0.9091 0.9091 0.9091 0.9091
CLinN 0.5455 0.5455 0.5455 0.3636
CLp 0.4545 0.4545 0.4545 0.3636
CL; 0.6364 0.6364 0.6364 0.5455
CLg; 0.7273 0.7273 0.7273 0.7273
All schema 1.0000 0.9091 0.9091 0.9091
All content 0.8182 0.7273 0.7273 0.7273
All 1.0000 0.8182 0.8182 0.8182
(c) F-measure
CLy 0.7778 0.7778 0.7778 0.7778
CLg 0.7778 0.7778 0.7778 0.7778
CLp 0.4082 0.4082 0.4082 0.4082
CLinn 0.5455 0.5455 0.5455 0.4211
CLp 0.4762 0.4762 0.4762 0.4211
CL; 0.7368 0.7368 0.7368 0.6667
CLk; 0.3556 0.3556 0.3556 0.3478
All schema 0.4583 0.5882 0.5882 0.5882
All content 0.4865 0.5333 0.5333 0.5517
All 0.5789 0.8182 0.8182 0.8182

Optimum precision of 1.0 is obtained for NGA by CL, and CLg (as both schemas share a large amount of
attribute names), but also by Naive Bayes and CL;. Recall is maximized by the combination of the content-
oriented classifiers and KL-distance alone (both 0.4375), the name-based classifiers perform (not surprisingly)
worst with only 0.0625. The combination of all classifiers obtain the best F-measure (0.4799 on average),
directly followed by the combination of all content-oriented classifiers and kNN (5% worse).

For WebArt, precision of 1.0 can be obtained by the same classifiers as for NGA. The combination of clas-
sifiers, the combination of all content-oriented classifiers and CL; all lead to a recall level of 0.5455, followed
by KL-distance (17% worse). F-measure, again is optimized by CL; and the combination of all classifiers.

For LOC, we only considered content-oriented classifiers, as the schemas are completely different in nature,
do not share any common name, and do not use different data types. The DC attributes (in the target
instances) often contain the concatenation of several MARC attributes. Precision is maximized by CL; (if
values are the same, then there is a match) with 0.7250, followed by kNN (25% worse). For recall, again CLg
yields the best quality (0.2927, showing the difficulty of this collection), and CLp is the worst classifier. KNN
and CL; also maximize the F-measure, while KL-distance performs poor.

Average precision (over all collections, classifiers etc.) is 0.6024, average restricted precision is slightly
higher with 0.6134. This means that there are almost only rules for target attribute which actually participate
in any mapping. The only exception is the LOC collection, where average precision is 0.4295 and average
restricted precision is 0.5186.
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Table 5
ST-Rule (ST), no constraints — NGA

f[ds fsum flin Ofmm flog Ofxum
(a) Precision
CLy 1.0000 1.0000 1.0000 1.0000
CLg 1.0000 1.0000 1.0000 1.0000
CLp 0.2400 0.2400 0.2400 0.2400
CLinN 0.8333 0.8333 0.8333 0.8333
CLp 1.0000 1.0000 1.0000 1.0000
CL, 1.0000 1.0000 1.0000 1.0000
CLkr 0.1795 0.1795 0.1795 0.1842
All schema 0.2400 0.3000 0.3000 0.3000
All content 0.1795 0.7000 0.7000 0.8750
All 0.1842 0.7000 0.7000 0.8750
(b) Recall
CLy 0.0625 0.0625 0.0625 0.0625
CLg 0.0625 0.0625 0.0625 0.0625
CLp 0.3750 0.3750 0.3750 0.3750
CLinN 0.3125 0.3125 0.3125 0.3125
CLp 0.2500 0.2500 0.2500 0.2500
CL, 0.2500 0.2500 0.2500 0.2500
CLkr 0.4375 0.4375 0.4375 0.4375
All schema 0.3750 0.3750 0.3750 0.3750
All content 0.4375 0.4375 0.4375 0.4375
All 0.4375 0.4375 0.4375 0.4375
(c) F-measure
CLy 0.1176 0.1176 0.1176 0.1176
CLg 0.1176 0.1176 0.1176 0.1176
CLp 0.2927 0.2927 0.2927 0.2927
CLinN 0.4545 0.4545 0.4545 0.4545
CLp 0.4000 0.4000 0.4000 0.4000
CL, 0.4000 0.4000 0.4000 0.4000
CLky 0.2545 0.2545 0.2545 0.2593
All schema 0.2927 0.3333 0.3333 0.3333
All content 0.2545 0.5385 0.5385 0.5833
All 0.2593 0.5385 0.5385 0.5833

4.3.2. Quality of the normalization functions with Pr(CL;) = 1/n

The tables show the importance of using the best normalization function, as the results differ dramatically
in some cases: E.g., for BIBDB and the combination of all classifiers precision for the identity function is
0.4074, while is it about twice as high for the other normalization functions.

There is no consistent best normalization function. Considering precision, fj, © fy,m» performs best on aver-
age, and the identity function is the worst one. Recall is maximized by the identity function and f,g © fom.
Finally, fi,e © fum and fg,, yield the highest F-measure.

4.3.3. Runs with learned Pr(CL;)

In the experimental runs presented so far, the average of the classifier predictions has been computed. We
also conducted experiments where the combination weights Pr(CL;) are learned as described in Section 3.2,
Eq. (9). Of course learned probabilities only play a role when at least two classifiers are combined.

The differences to the case with averaged predictions are very small (smaller than 5% in all cases). Precision,
recall and F-measure are higher for the run with learned probabilities.

4.3.4. Runs with constraints
Table 8 shows the results for the different constraints. Experiments have been conducted without any con-
straint, will all constraints described in Section 3.6, and with all three constraints combined.



H. Nottelmann, U. Straccia | Information Processing and Management 43 (2007) 552-576

Table 6
ST-Rule (ST), no constraints — WebArt

fid fsum flin Ofsum flog Ofsum
(a) Precision
CLy 1.0000 1.0000 1.0000 1.0000
CLg 1.0000 1.0000 1.0000 1.0000
CLp 0.2381 0.2381 0.2381 0.2381
CLinN 1.0000 1.0000 1.0000 1.0000
CLp 1.0000 1.0000 1.0000 1.0000
CL; 1.0000 1.0000 1.0000 1.0000
CLk; 0.2941 0.2941 0.2941 0.2381
All schema 0.2941 0.3846 0.3846 0.3846
All content 0.3333 1.0000 1.0000 1.0000
All 0.4615 1.0000 1.0000 1.0000
(b) Recall
CLy 0.2727 0.2727 0.2727 0.2727
CLg 0.2727 0.2727 0.2727 0.2727
CLp 0.4545 0.4545 0.4545 0.4545
CLinN 0.4545 0.4545 0.4545 0.4545
CLp 0.4545 0.4545 0.4545 0.4545
CL; 0.5455 0.5455 0.5455 0.5455
CLk; 0.4545 0.4545 0.4545 0.4545
All schema 0.4545 0.4545 0.4545 0.4545
All content 0.5455 0.5455 0.5455 0.5455
All 0.5455 0.5455 0.5455 0.5455
(c) F-measure
CLy 0.4286 0.4286 0.4286 0.4286
CLg 0.4286 0.4286 0.4286 0.4286
CLp 0.3125 0.3125 0.3125 0.3125
CLinn 0.6250 0.6250 0.6250 0.6250
CLp 0.6250 0.6250 0.6250 0.6250
CL, 0.7059 0.7059 0.7059 0.7059
CLg; 0.3571 0.3571 0.3571 0.3125
All schema 0.3571 0.4167 0.4167 0.4167
All content 0.4138 0.7059 0.7059 0.7059
All 0.5000 0.7059 0.7059 0.7059
Table 7
ST-Rule (ST), no constraints — LOC

fitl f.wm f/in Of.wm flog Ofsum
(a) Precision
CLjnN 0.6667 0.6667 0.6667 0.1791
CLp 0.4375 0.4375 0.4375 0.1731
CL, 0.8000 0.8000 0.8000 0.5000
CLg; 0.1714 0.1714 0.1714 0.1765
All content 0.2031 0.6429 0.6429 0.2292
(b) Recall
CLinN 0.2439 0.2439 0.2439 0.2927
CLp 0.1707 0.1707 0.1707 0.2195
CL; 0.1951 0.1951 0.1951 0.2683
CLg; 0.2927 0.2927 0.2927 0.2927
All content 0.3171 0.2195 0.2195 0.2683
(c) F-measure
CLjnN 0.3571 0.3571 0.3571 0.2222
CLg 0.2456 0.2456 0.2456 0.1935
CL; 0.3137 0.3137 0.3137 0.3492
CLg; 0.2162 0.2162 0.2162 0.2202

All content 0.2476 0.3273 0.3273 0.2472
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Table 8
Precision, recall and F-Measure without and with constraints

Precision Recall F-Measure
(a) BIBDB
No constraints 0.6288 0.6364 0.5733
Constraint 1 0.6779 0.4351 0.5299
Constraint 2 0.6985 0.5649 0.5631
Constraint 3 0.6098 0.4545 0.5165
All constraints 0.7060 0.4026 0.5077
(b) NGA
No constraints 0.7506 0.2500 0.2912
Constraint 1 0.7905 0.1607 0.2555
Constraint 2 0.8265 0.2054 0.2639
Constraint 3 0.7552 0.1987 0.2776
All constraints 0.8476 0.1429 0.2331
(c) WebArt
No constraints 0.7579 0.4455 0.5161
Constraint 1 0.8200 0.3636 0.4975
Constraint 2 0.8188 0.4023 0.4954
Constraint 3 0.7568 0.3886 0.4940
All constraints 0.8550 0.3477 0.4817
(d) LOC
No constraints 0.4487 0.2402 0.2766
Constraint 1 0.6600 0.1524 0.2473
Constraint 2 0.4306 0.2000 0.2450
Constraint 3 0.4551 0.2110 0.2698
All constraints 0.6521 0.1366 0.2235

As expected, precision can be dramatically improved for all five collections when using at least one of the
constraints. For BIBDB, NGA and WebArt, applying all three constraints yield the best result, for LOC, con-
straint 1 alone (“at most one rule per target attribute”) performs best. In contrast, recall is dramatically hurt
when using any constraint; the same holds for F-measure.

4.3.5. Conclusion

No classifier, normalization functions or constraints consistently outperform all others, so the concrete
choice depends on the collection and the goal. E.g., some classifiers obtain high precision (by returning a
low number of high-confident rules), others yield high recall (by returning a large amount of mapping rules).
E.g., CLg; yields high recall but low precision. As the classifiers follow one of these extremes in most cases, it
is difficult to find a trade-off between precision and recall. In general, however, precision and recall is quite
high (values above 0.8 can be obtained), with the exception of recall for LOC (a difficult collection).

Name-based classifiers typically provide excellent precision and rather low recall (depending on the sche-
mas). In addition, content-oriented classifiers proved to be very useful for schema matching (w.r.t. both pre-
cision and recall). This is important in general settings where schema names alone are not sufficient to find
matching attributes, as e.g. for DC vs. MARC. The experiments further showed that using a normalization
function, combining classifiers and applying constraints can significantly increase the matching quality. In
contrast, using classifiers also for learning the rule weights and learning the classifier combination weights does
not lead to increased quality.

5. Related work

Our model sPLMap has its foundations in two related research areas, schema matching (Rahm & Bernstein,
2001) and information exchange (Fagin et al., 2003), and borrows from them the terminology and ideas.
Related to the latter, we view the matching problem as the problem of determining the “best possible set
2 such that the exchange of instances of a source class into a target class has the highest probability of being
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correct. From the former we inherit the requirement to rely on machine learning techniques to automate the
process of schema matching. In terms of these frameworks, sSPLMap is built upon the GLaV (global-and-local-
as-view) approach, where schemas are built independently (no schema is constructed as a view of the other).

Several different approaches for the schema matching problem have been proposed within the last few
years, e.g. (Bilke & Neumann, 2005; Dhamankar, Lee, Doan, Halevy, & Domingos, 2004; Do & Rahm,
2002; Doan, Domingos, & Halevy, 2003; Doan et al., 2001; Embley, Jackman, & Xu, 2001; Fagin et al.,
2003; Kang & Naughton, 2003; Madhavan, Bernstein, Chen, & Halevy, 2005; Melnik, Garcia-Molina, &
Rahm, 2002) (see (Dhamankar et al., 2004; Rahm & Bernstein, 2001) for a more extensive comparison). Most
recent approaches either implicitly or explicitly perform the schema mapping based on attribute name com-
parison, comparing properties of the underlying data instances and the structure in which an attribute is
embedded.

Some approaches like (Bilke & Neumann, 2005; Kang & Naughton, 2003; Madhavan et al., 2005; Melnik
et al., 2002) (to mention a few) provide either implicitly or explicitly an estimate of the quality of a set of map-
pings and then try to maximize this quality based on e.g. weighted graph matching theory. For instance, infor-
mally, in Kang and Naughton (2003) the estimate is a distance between the weighted target schema
dependency graph and the weighted source schema dependency graph, while in e.g. (Bilke & Neumann,
2005) the estimate is the ‘cost’ of a bipartite weighted matching.

To the best of our knowledge, none of the other approaches combine in a unique formal framework logic
with statistical learning and heuristics. We believe that this latter aspect is of particular importance as it con-
stitutes the base to extend our model to cases with more expressive rules (e.g. (Fagin, Kolaitis, Tan, & Popa,
2004)), schema languages (e.g. (Calvanese, Lenzerini, & Nardi, 1998)) or schemas (e.g. ontology description
languages like OWL and OWL DL (Horrocks, Patel-Schneider, & van Harmelen, 2003)). As a consequence,
all aspects of logical reasoning, considered as important, can be plugged into our model.

6. Conclusion and outlook

With the proliferation of data sharing applications over the Web, the development of automated tools for
schema matching will be of particular importance. In this paper, we have presented a Probabilistic, Logic-
based formal framework for Schema Matching, which for ease of presentation we call sPLMap. The peculiar-
ity of our approach is that it neatly combines machine learning, information retrieval and heuristic techniques
for learning a set of mapping rules. An important application area is distributed IR, where it is neither feasible
to impose a single schema nor to transform all documents into a standard schema in a pre-processing step.
Instead, queries and documents have to be transformed on-the-fly during runtime.

As future work, we see some appealing points. Fitting new classifiers into our model is straightforward the-
oretically, but it is quite more difficult to practically find the most appropriate one or a combination of them.
In the future, more variants will be embedded, developed and evaluated to improve the quality of the learning
mechanism.

Probabilistic Datalog allows for extended rules, which e.g. combine the content of several attributes, or per-
form a data type conversion (Nottelmann & Straccia, 2004; Nottelmann & Straccia, 2005): For this, we intro-
duce (probabilistic) binary operators, which compare values from two (potentially different) data types. Then,
an additional conversion predicate is required which allows for transforming data type values and operator
results between data types (and, potentially, different operators).

An interesting research direction is to evaluate the combination of multiple methods existing in the litera-
ture. Our framework could be extended in a straightforward way. Like we have done for classifiers, we can
extend Pr(2,T,S) by combining these methods: Each method M, computes a weight w(2,S, T, M,), which
is the method’s initial approximation of Pr(X,T,S). This weight w(X,S, T, M,) will then be normalized
and transformed into a probability Pr(Z,T,S|M,) = fiw(Z,S, T, M,)), the method’s estimation of Pr(Z,T,S).
All the estimations Pr(Z,T,S|M,) will then be combined together as

Pr(ZT,S) = iPr(Z,T,S|MM) -Pr(M,),

u=1
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where Pr(M,) is a measure indicating the effectiveness of the method M,,. In that case, the method proposed in
this paper may be just one of the methods M;,. .., M,,. Optimization, i.e. determining the set ~ with the high-
est quality, will then be performed ‘globally’.
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