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Abstract. In this paper, we study the ontology matching problem and propose 
an algorithm, which uses as a backbone a multi-level matching technique and 
performs a neighbor search to find the correspondences between the entities in 
the given ontologies. A main feature of this algorithm is the high quality of the 
matches it finds. Besides, as the result of the initial search introduced, our 
algorithm converges fast, making it comparable to existing techniques.  

1 Introduction 

Ontology matching is a fundamental problem in sharing information and integrating 
ontology sources in numerous applications. We witness a continuous growth in both 
the number and size of available ontologies. This, on the other hand, has resulted in 
an increased heterogeneity in the available information. For example, the same entity 
could be given different names in different ontologies or it could be modeled or 
described in different ways.  The ontology Matching Problem (OMP) is as follows: 
given ontologies O1 and O2, each describing a collection of discrete entities such as 
classes, properties, individuals, etc., we want to identify semantic correspondences 
between the components of these entities. This problem has been the subject of 
numerous studies, resulting in the development a number of useful and interesting 
tools and techniques.  
     Existing matching algorithms often focus on matching a pair of entities at a time, 
and hardly consider matching n entities to m entities at the same time, and 
correspondingly use several similarity measures to solve OMP. We view OMP as an 
n:m matching problem. Furthermore, to improve matching results, we believe existing 
methods should be used simultaneously and combined in a multi-level matching 
framework. This is the subject of our study in this paper. We introduce a neighbor 
search algorithm, with a proper initialization as an optimization for our multi-level 
matching algorithm proposed in [1], which improves the matching quality as well as 
computation time. We have developed a running program and conducted experiments. 
Our results indicate the proposed neighbor search is effective in improving our multi-
level matching algorithm, by finding quality matches efficiently.  
In Section 2 we give background definitions. Our search algorithm is introduced in 
Section 3. An illustrative scenario is provided in Section 4. The experiments and 
results are presented in Section 5.  Section 6 reviews related work, and Section 7 
includes concluding remarks and a discussion of future work. 



2 Background 

In this section, we provide some definitions of concepts and terms used in our work. 
Definition 1 (Entity-relationships) Let S be a source ontology and T a target ontology. 
We use ES = {s1, s2,…, sn} and ET = {t1, t2,…, tm} to denote the set of entities in S and 
T, respectively. In this work, we limit ourselves to finding mappings for entities of 
types classes and relationships only.  
Definition 2 (Similarity Matrix) This relational matrix, denoted L(lij), includes values 
in the range [0,1], called the similarity coefficients, denoting the degree of similarity 
between si and tj.  
Definition 3 (Matching Matrix) A matching matrix, denoted Map0-1, is a 0-1 matrix 
with dimension n×m and with entries rij ∈{0,1}. If rij = 1, it means that si and tj are 
“matchable.” They are unmatchable if rij = 0.      
Definition 4 (Matching Space) Matching space includes all possible assignments for 
the matching matrix, called the mapping space. Every assignment is a state in the 
matching space and represents a solution for the ontology matching problem.  

3 A Neighbor Search Algorithm  

The proposed neighbor search algorithm has three phases, described in Fig. 1.  
 

 

Algorithm Match(S, T) 
begin 
/* Initialization phase 
     K ← 0 ;  
     St0  ←preliminary_matching_techniques(S,T);  
     Stf ←St0 ; 
/* Neighbor Search phase 
     St ←All_Neighbors(Stn); 
 While (K++ < Max_iteration) do 
/* Evaluation phase 
  If score(Stn) > score(Stf) then 
                    Stf ←Stn ; 
  end if 
  Pick the next neighbor Stn ∈ St ; 
            St ← St – Stn ; 
  If  St = Ø then Return Stf ; 
 end 

Return Stf ; 
end 

Fig. 1.  The Search Algorithm 

First, in the initialization phase, a partial set of similarity measures is applied to the 
input ontologies to determine a single initial sate St0 for the search algorithm. In the 
second phase, we search in the neighborhood of the initial state. The neighbors of 
state St0 are the mapping states that can be computed either by adding to or removing 
from St0 a couple of vertices, obtained by toggling a bit in the similarity matrix L. So, 
the total number of the neighbor states will be n*m. We evaluate the neighbor states 
using the following score function v: 
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where K ≥ min(n,m) is the number of matched pairs, n is the number of entities in S, 
and m is the number of entities in T. 
In the third phase (evaluation phase), the algorithm will apply the next level(s) 
similarity techniques in order to find Stf, the best possible matching state solution.  

4 Illustrative Example 

Consider simple examples shown in Fig. 2, which are taxonomies for computer 
ontologies O1 and O2.  

 

    
                                  O1                                                                 O2 

S1 

computer 

S2 
      ram 
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Fig. 2. Computer Ontology Examples 

For ease of explanation, we only use three different similarity measures applied in 
two different phases. There are two similarity measures applied in the first phase to 
compute the initial state St0: name similarity (Levenshtein distance) [2] and linguistic 
similarity (WordNet) [11]. This yields two similarity matrices for the concepts. The 
first matrix based on name similarity, and the second matrix based on linguistic 
similarity. Assuming that th ≥ 0.45, and after normalizing the cost of the two 
similarity matrices, we get the matrix L. Then L is transformed into the matching 
matrix Map0-1. Note that we are using Map0-1 and Stn as synonymous. 
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The binary matrix Map0-1 above corresponds to state St0={(s1, t1), (s2, t1), (s2, t2), (s3, 
t3)}, which says entity s1 is matched to t1, s2 is matched to both t1 and t2, and s3 is 
matched to t3. Table 1 indicates the binary matrix for other neighboring states together 
with their score values. In the search phase, 9 neighbors of St0 will be evaluated to 
pick the best candidate(s) for the next level. To reduce the cost of the evaluation 
phase, we filter the neighbor states by keeping %x⎡ ⎤⎢ ⎥  of the top weighted states for 
the next level. In phase three, we applied our structure similarity measure proposed in 
[1]. Finally, the search algorithm will output St4 which has a highest overall score 
value, for being structurally more similar.  



Table 1.  Score value for each state neighbor 

Neighbor 
number 

Matched pairs Score value based 
on our score function  

Vstn
Stn1 {(s2, t1), (s2, t2), (s3, t3)} 0.499 
Stn2 {(s1, t1), (s1, t2) , (s2, t1), (s2, t2), (s3, t3)} 0.5794 
Stn3 {(s1, t1), (s1, t3) , (s2, t1), (s2, t2), (s3, t3)} 0.5524 
Stn4 {(s1, t1), (s2, t2), (s3, t3)} 0.678 
Stn5 {(s1, t1), (s2, t1), (s3, t3)} 0.6543 
Stn6 {(s1, t1), (s2, t1), (s2, t2), (s2, t3) , (s3, t3)} 0.516 
Stn7 {(s1, t1), (s2, t1), (s2, t2), (s3, t1), (s3, t3)} 0.572 
Stn8 {(s1, t1), (s2, t1), (s2, t2), (s3, t2), (s3, t3)} 0.531 
Stn9 {(s1, t1), (s2, t1), (s2, t2)} 0.6656 

5 Experiments and Results 

Case study (1): In this case study we used the OAEI 2007 benchmark test samples 
suite [13]. Except for case 206, which is related to French translation, in all other 
cases we considered, when the precision value was less than 1 the recall value was 
equal to 1. We noted all the systems we considered produced all the correct mappings, 
together with some additional unwanted mappings. The precision of our search 
algorithm on the other hand we observed did not fall below the recall value, i.e., no 
extra unwanted mappings returned by our framework. However, in test case 206, the 
reason that the matching result of our search algorithm was not fulfilled was that it did 
not use translating techniques as one of its underlying techniques. Fig 3. shows the 
comparison of matching quality of our algorithm and the other 10 systems. To 
measure a match quality, we have used the following indicators: precision, recall, and 
F-measure.  The version computed here is the harmonic mean of precision and recall 
[3]. Moreover, Fig. 4 shows an approximate time comparison indicating the 
scalability of our search algorithm (logarithmic scale). We use MLMA+ to refer to 
MLMA with the proposed neighbor search algorithm included.  
 
Case study (2): In this case study we used three pairs of ontologies: (1) the MIT 
bibtex ontology1  and the UMBC publication ontology2 which are publicly available, 
(2) computer ontologies, and (3) ontologies about computer science departments. We 
have created the second and third pairs of the ontologies. The execution time in 
seconds for our algorithm over these test cases we measured was, 4.68, 0.547, and 
1.719, respectively. A naïve implementation of MLMA would not perform as desired. 
The MLMA+ is polynomial with respect to the size of the search space 
O((|ES|×|ET|)2), where |ES| is the number of entities in S. All in all, we consider 
the proposed algorithm as an optimization for MLMA, which we called MLMA+.  

                                                           
1  http://visus.mit.edu/bibtex/0.1/bibtex.owl. 
2  http://ebiquity.umbc.edu/ontology/publication.owl. 

http://visus.mit.edu/bibtex/0.1/bibtex.owl
http://ebiquity.umbc.edu/ontology/publication.owl
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               Fig. 3.  Quality Comparison                           Fig. 4.  Efficiency Comparison 

6 Related Work 

The RiMOM system [9] integrates multiple strategies and applies a strategy 
selection method to decide the strategy will rely more on it. The proposed method in 
[12] recommends an alignment strategy for a given alignment problem. The work in 
[10] has a matching engine which contains diverse libraries that support many match 
algorithms and strategies. Falcon-AO [8] has two Linguistics matchers and one 
structural matcher. The results of Falcon-AO were derived either from linguistic or 
structural matchers. Otherwise, the Falcon-AO results will be generated by combining 
both matchers with a weighting scheme. Some researchers propose a similarity metric 
between concepts in OWL ontologies [4] is a weighted combination of similarities of 
various features in OWL concept definitions. Algorithms such as the one proposed in 
[7] make use of derived graphs or alternative representations like pair-wise 
connectivity graphs. 

There are three features which make our approach distinct from the 
aforementioned algorithms and systems. The first is that our matching results are 
guided by the fact that n entities at a time are matched to m entities. The second is in 
the way similarities are transformed into mappings and measured using our multi-
match technique in order to deal with a many to many match problem. The third 
difference is the neighbor search method we introduced for MLMA to improve its 
efficiency. 



7 Conclusions and Future Work 

We proposed a neighbor search algorithm, which given an initial mapping state 
among entities in two ontologies, searches the neighboring states and returns a list 
of states ranked based on their evaluation scores. We incorporated this search 
algorithm into our multi-level match algorithm (MLMA) proposed in [1]. This results 
in MLMA+, a framework for solving ontology match problem, which improves the 
efficiency of MLMA considerably, due to its use of the neighbor search algorithm. It 
proceeds by computing an initial state and then performing a search in its neighboring 
states. We have developed a running prototype of MLMA+ and conducted 
experiments using some well-known benchmark ontologies. Our results indicated that 
the proposed search technique improved the overall performance of MLMA. A main 
characteristic of MLMA+ is its improved efficiency over the basic MLMA obtained 
through the initial search. We are working on combining the search with machine 
learning techniques to further improve efficiency and accuracy of MLMA+. 
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