
An Effective Ontology Matching Technique

Ahmed Alasoud, Volker Haarslev, Nematollaah Shiri
Computer Science & Software Engineering, Concordia University

1455 De Maisonneuve West, Montreal, Quebec, Canada
{ahmed_a, haarslev, shiri}@cse.concordia.ca

Abstract. In this paper, we study the ontology matching problem and propose
an algorithm, which uses as a backbone a multi-level matching technique and
performs a neighbor search to find the correspondences between the entities in
the given ontologies. A main feature of this algorithm is the high quality of the
matches it finds. Besides, as the result of the initial search introduced, our
algorithm converges fast, making it comparable to existing techniques.

1 Introduction

Ontology matching is a fundamental problem in sharing information and integrating
ontology sources in numerous applications. We witness a continuous growth in both
the number and size of available ontologies. This, on the other hand, has resulted in
an increased heterogeneity in the available information. For example, the same entity
could be given different names in different ontologies or it could be modeled or
described in different ways. The ontology Matching Problem (OMP) is as follows:
given ontologies O1 and O2, each describing a collection of discrete entities such as
classes, properties, individuals, etc., we want to identify semantic correspondences
between the components of these entities. This problem has been the subject of
numerous studies, resulting in the development a number of useful and interesting
tools and techniques.
 Existing matching algorithms often focus on matching a pair of entities at a time,
and hardly consider matching n entities to m entities at the same time, and
correspondingly use several similarity measures to solve OMP. We view OMP as an
n:m matching problem. Furthermore, to improve matching results, we believe existing
methods should be used simultaneously and combined in a multi-level matching
framework. This is the subject of our study in this paper. We introduce a neighbor
search algorithm, with a proper initialization as an optimization for our multi-level
matching algorithm proposed in [1], which improves the matching quality as well as
computation time. We have developed a running program and conducted experiments.
Our results indicate the proposed neighbor search is effective in improving our multi-
level matching algorithm, by finding quality matches efficiently.
In Section 2 we give background definitions. Our search algorithm is introduced in
Section 3. An illustrative scenario is provided in Section 4. The experiments and
results are presented in Section 5. Section 6 reviews related work, and Section 7
includes concluding remarks and a discussion of future work.

2 Background

In this section, we provide some definitions of concepts and terms used in our work.
Definition 1 (Entity-relationships) Let S be a source ontology and T a target ontology.
We use ES = {s1, s2,…, sn} and ET = {t1, t2,…, tm} to denote the set of entities in S and
T, respectively. In this work, we limit ourselves to finding mappings for entities of
types classes and relationships only.
Definition 2 (Similarity Matrix) This relational matrix, denoted L(lij), includes values
in the range [0,1], called the similarity coefficients, denoting the degree of similarity
between si and tj.
Definition 3 (Matching Matrix) A matching matrix, denoted Map0-1, is a 0-1 matrix
with dimension n×m and with entries rij ∈{0,1}. If rij = 1, it means that si and tj are
“matchable.” They are unmatchable if rij = 0.
Definition 4 (Matching Space) Matching space includes all possible assignments for
the matching matrix, called the mapping space. Every assignment is a state in the
matching space and represents a solution for the ontology matching problem.

3 A Neighbor Search Algorithm

The proposed neighbor search algorithm has three phases, described in Fig. 1.

Algorithm Match(S, T)
begin
/* Initialization phase
 K ← 0 ;
 St0 ←preliminary_matching_techniques(S,T);
 Stf ←St0 ;
/* Neighbor Search phase
 St ←All_Neighbors(Stn);
 While (K++ < Max_iteration) do
/* Evaluation phase
 If score(Stn) > score(Stf) then
 Stf ←Stn ;
 end if
 Pick the next neighbor Stn ∈ St ;
 St ← St – Stn ;
 If St = Ø then Return Stf ;
 end

Return Stf ;
end

Fig. 1. The Search Algorithm

First, in the initialization phase, a partial set of similarity measures is applied to the
input ontologies to determine a single initial sate St0 for the search algorithm. In the
second phase, we search in the neighborhood of the initial state. The neighbors of
state St0 are the mapping states that can be computed either by adding to or removing
from St0 a couple of vertices, obtained by toggling a bit in the similarity matrix L. So,
the total number of the neighbor states will be n*m. We evaluate the neighbor states
using the following score function v:

()0 1 0 1 0 1/ (,). (,) (,) .
1 1 1 1

n m n m
v M ap L k Map i j L i j Map i j th

i j i j− − −= ⋅ = ≥∑ ∑ ∑ ∑
= = = =

where K ≥ min(n,m) is the number of matched pairs, n is the number of entities in S,
and m is the number of entities in T.
In the third phase (evaluation phase), the algorithm will apply the next level(s)
similarity techniques in order to find Stf, the best possible matching state solution.

4 Illustrative Example

Consider simple examples shown in Fig. 2, which are taxonomies for computer
ontologies O1 and O2.

 O1 O2

S1

computer

S2
 ram

S3
price

Has_ram
Has price

T1
 computer

 T2
 memory

T3
 cost

Has_memory
Has_cost

Fig. 2. Computer Ontology Examples

For ease of explanation, we only use three different similarity measures applied in
two different phases. There are two similarity measures applied in the first phase to
compute the initial state St0: name similarity (Levenshtein distance) [2] and linguistic
similarity (WordNet) [11]. This yields two similarity matrices for the concepts. The
first matrix based on name similarity, and the second matrix based on linguistic
similarity. Assuming that th ≥ 0.45, and after normalizing the cost of the two
similarity matrices, we get the matrix L. Then L is transformed into the matching
matrix Map0-1. Note that we are using Map0-1 and Stn as synonymous.

1.0 0.4 0.265
0.463 0.534 0.083
0.363 0.158 0.5

L
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

0-1

1 0 0
Map 1 1 0

0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

The binary matrix Map0-1 above corresponds to state St0={(s1, t1), (s2, t1), (s2, t2), (s3,
t3)}, which says entity s1 is matched to t1, s2 is matched to both t1 and t2, and s3 is
matched to t3. Table 1 indicates the binary matrix for other neighboring states together
with their score values. In the search phase, 9 neighbors of St0 will be evaluated to
pick the best candidate(s) for the next level. To reduce the cost of the evaluation
phase, we filter the neighbor states by keeping %x⎡ ⎤⎢ ⎥ of the top weighted states for
the next level. In phase three, we applied our structure similarity measure proposed in
[1]. Finally, the search algorithm will output St4 which has a highest overall score
value, for being structurally more similar.

Table 1. Score value for each state neighbor

Neighbor
number

Matched pairs Score value based
on our score function

Vstn
Stn1 {(s2, t1), (s2, t2), (s3, t3)} 0.499
Stn2 {(s1, t1), (s1, t2) , (s2, t1), (s2, t2), (s3, t3)} 0.5794
Stn3 {(s1, t1), (s1, t3) , (s2, t1), (s2, t2), (s3, t3)} 0.5524
Stn4 {(s1, t1), (s2, t2), (s3, t3)} 0.678
Stn5 {(s1, t1), (s2, t1), (s3, t3)} 0.6543
Stn6 {(s1, t1), (s2, t1), (s2, t2), (s2, t3) , (s3, t3)} 0.516
Stn7 {(s1, t1), (s2, t1), (s2, t2), (s3, t1), (s3, t3)} 0.572
Stn8 {(s1, t1), (s2, t1), (s2, t2), (s3, t2), (s3, t3)} 0.531
Stn9 {(s1, t1), (s2, t1), (s2, t2)} 0.6656

5 Experiments and Results

Case study (1): In this case study we used the OAEI 2007 benchmark test samples
suite [13]. Except for case 206, which is related to French translation, in all other
cases we considered, when the precision value was less than 1 the recall value was
equal to 1. We noted all the systems we considered produced all the correct mappings,
together with some additional unwanted mappings. The precision of our search
algorithm on the other hand we observed did not fall below the recall value, i.e., no
extra unwanted mappings returned by our framework. However, in test case 206, the
reason that the matching result of our search algorithm was not fulfilled was that it did
not use translating techniques as one of its underlying techniques. Fig 3. shows the
comparison of matching quality of our algorithm and the other 10 systems. To
measure a match quality, we have used the following indicators: precision, recall, and
F-measure. The version computed here is the harmonic mean of precision and recall
[3]. Moreover, Fig. 4 shows an approximate time comparison indicating the
scalability of our search algorithm (logarithmic scale). We use MLMA+ to refer to
MLMA with the proposed neighbor search algorithm included.

Case study (2): In this case study we used three pairs of ontologies: (1) the MIT
bibtex ontology1 and the UMBC publication ontology2 which are publicly available,
(2) computer ontologies, and (3) ontologies about computer science departments. We
have created the second and third pairs of the ontologies. The execution time in
seconds for our algorithm over these test cases we measured was, 4.68, 0.547, and
1.719, respectively. A naïve implementation of MLMA would not perform as desired.
The MLMA+ is polynomial with respect to the size of the search space
O((|ES|×|ET|)2), where |ES| is the number of entities in S. All in all, we consider
the proposed algorithm as an optimization for MLMA, which we called MLMA+.

1 http://visus.mit.edu/bibtex/0.1/bibtex.owl.
2 http://ebiquity.umbc.edu/ontology/publication.owl.

http://visus.mit.edu/bibtex/0.1/bibtex.owl
http://ebiquity.umbc.edu/ontology/publication.owl

Time-comparison

0.1

1

10

100

Ti
m

e
(s

ec
)

COMA FALCON SEMA RiMOM MLMA+

COMA 15.9 16.5 13.7 14 11.8 11.8

FALCON 2.7 1.2 1.2 1.1 0.5 1.1

SEMA 10 9 8 11 16 8

RiMOM 4.72 2.84 2.52 5.1 1 2.19

MLMA+ 8.812 8.25 8.25 6.218 8.266 8.25

101 103 104 206 228 230

 Fig. 3. Quality Comparison Fig. 4. Efficiency Comparison

6 Related Work

The RiMOM system [9] integrates multiple strategies and applies a strategy
selection method to decide the strategy will rely more on it. The proposed method in
[12] recommends an alignment strategy for a given alignment problem. The work in
[10] has a matching engine which contains diverse libraries that support many match
algorithms and strategies. Falcon-AO [8] has two Linguistics matchers and one
structural matcher. The results of Falcon-AO were derived either from linguistic or
structural matchers. Otherwise, the Falcon-AO results will be generated by combining
both matchers with a weighting scheme. Some researchers propose a similarity metric
between concepts in OWL ontologies [4] is a weighted combination of similarities of
various features in OWL concept definitions. Algorithms such as the one proposed in
[7] make use of derived graphs or alternative representations like pair-wise
connectivity graphs.

There are three features which make our approach distinct from the
aforementioned algorithms and systems. The first is that our matching results are
guided by the fact that n entities at a time are matched to m entities. The second is in
the way similarities are transformed into mappings and measured using our multi-
match technique in order to deal with a many to many match problem. The third
difference is the neighbor search method we introduced for MLMA to improve its
efficiency.

7 Conclusions and Future Work

We proposed a neighbor search algorithm, which given an initial mapping state
among entities in two ontologies, searches the neighboring states and returns a list
of states ranked based on their evaluation scores. We incorporated this search
algorithm into our multi-level match algorithm (MLMA) proposed in [1]. This results
in MLMA+, a framework for solving ontology match problem, which improves the
efficiency of MLMA considerably, due to its use of the neighbor search algorithm. It
proceeds by computing an initial state and then performing a search in its neighboring
states. We have developed a running prototype of MLMA+ and conducted
experiments using some well-known benchmark ontologies. Our results indicated that
the proposed search technique improved the overall performance of MLMA. A main
characteristic of MLMA+ is its improved efficiency over the basic MLMA obtained
through the initial search. We are working on combining the search with machine
learning techniques to further improve efficiency and accuracy of MLMA+.

Acknowledgements: This work was supported in part by grants from Natural
Sciences and Engineering Research Council (NSERC) of Canada, and by Libyan
Ministry of Education.

References

1. Alasoud, A., Haarslev,V., and Shiri, N. A Multi Level Matching Algorithm for Combining
Similarity Measures in Ontology Integration, in ODBIS VLDB-Workshop Post-
proceedings, LNCS 4623, Springer-Verlag, Berlin, Heidelberg, pp. 1-17, 2007.

2. Cohen, W., Ravikumar, P., Fienberg, S. A Comparison of String Distance Metrics for
Name-Matching Tasks. IJCAI-03: 3-78, 2003.

3. Do H.H., Melnik S., and Rahm E. Comparison of schema matching evaluations. In Proc.
workshop on Web and Databases, 2002.

4. Euzenat, J. and Valtchev, P. Similarity-based ontology alignment in OWL-Lite. In Proc.
16th European Conference on Artificial Intelligence (ECAI-04), Valencia, Spain, 2004.

5. Euzenat, J., Mochol, M., Shvaiko, P., Stuckenschmidt, H., Svab, O., Svatek, V., Robert,
W., Hage, V., and Yatskevich, M. Results of the ontology alignment evaluation initiative
2006. Proc. of ISWC workshop on Ontology Matching, Athens, pages 73–95, 2006.

6. Euzenat, J., Isaac, A., Meilicke, C., Shvaiko, P., Stuckenschmidt, H., Šváb, O., Svátek, V.,
Robert, W., Hage, V., and Yatskevich, M. Results of the ontology alignment evaluation
initiative. Proc. of the ISWC workshop on Ontology Matching, Busan, Korea, Nov. 2007.

7. Hu, W., Jian, N.S., Qu, Y.Z., and Wang, Y.B. GMO: A Graph Matching for Ontologies. In
Proc. K-Cap Workshop on Integrating Ontologies, pages 43-50, 2005.

8. Hu, W., Cheng,G., Zheng, D., Zhong, X., and Qu, Y. The results of Falcon-AO. In Proc.
Int’l workshop on Ontology Matching (OM), Athens, Georgia, U.S.A, Nov 5, 2007.

9. Li, Y., Li, J., Zhang, D., and Tang, J. Results of ontology alignment with RiMOM. In Proc.
Int’l workshop on Ontology Matching (OM), Athens, Georgia, U.S.A, Nov 5, 2007.

10. Massmann, S., Engmann, D., and Rahm, E., and Tang, J. Results of ontology alignment
with COMA++. In Proc. Int’l workshop on Ontology Matching (OM), U.S.A, Nov 5, 2006.

11. Pedersen, T., Patwardhan, S., Patwardhan, S. WordNet::Similarity – Measuring the
Relatedness of Concepts. In Proc. of 19th National Conf.on AI, San Jose, CA, 2004.

12. Tan, H., Lambrix, P. A method for recommending ontology alignment strategies. In
Proceedings of the 6th International Semantic Web Conference, Busan, Korea, 2007.

13. http://oaei.ontologymatching.org/2007/benchmarks/

http://oaei.ontologymatching.org/2007/benchmarks/

