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Abstract. Ontology matching plays a key role for semantic interoperability. Many
methods have been proposed for automatically finding the alignment between
heterogeneous ontologies. However, in many real-world applications, finding the
alignment in a completely automatic way is highly infeasible. Ideally, an ontol-
ogy matching system would have an interactive interface to allow users to provide
feedbacks to guide the automatic algorithm. Fundamentally, we need answer the
following questions: How can a system perform an efficiently interactive process
with the user? How many interactions are sufficient for finding a more accurate
matching? To address these questions, we propose an active learning framework
for ontology matching, which tries to find the most informative candidate matches
to query the user. The user’s feedbacks are used to: 1) correct the mistake match-
ing and 2) propagate the supervise information to help the entire matching pro-
cess. Three measures are proposed to estimate the confidence of each matching
candidate. A correct propagation algorithm is further proposed to maximize the
spread of the user’s “guidance”. Experimental results on several public data sets
show that the proposed approach can significantly improve the matching accuracy
(+8.0% better than the baseline methods).

1 Introduction

The growing need of information sharing poses many challenges for semantic inte-
gration. Ontology matching, aiming to obtain semantic correspondences between two
ontologies, is the key to realize ontology interoperability [10]. Recently, with the suc-
cess of many online social networks, such as Facebook, MySpace, and Twitter, a large
amount of user-defined ontologies are created and published on the Social Web, which
makes it much more challenging for the ontology matching problem. At the same time,
the Social Web also provides some opportunities (e.g., rich user interactions) to solve
the matching problem.

⋆ The work is supported by the Natural Science Foundation of China (No. 60703059), Chinese
National Key Foundation Research (No. 2007CB310803), National High-tech R&D Program
(No. 2009AA01Z138), and Chinese Young Faculty Research Fund (No. 20070003093).
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Fig. 1. Example of the candidate match selection. Ideally, we hope to query candidate match 1,
instead of match 2. With the user correction, we can propagate the user correction to guide the
matching process of other elements, as illustrated in the top-right.

Much efforts has been made for ontology matching. Methods such as Edit Distance
[13], KNN [3] and Bayesian similarity [26], have been proposed to calculate the similar-
ity between elements (e.g., concepts). However, most of existing works aim to find the
ontology matching in a completely automatic way, although the complete automation
is infeasible in many real cases [24]. One promising solution is to involve user interac-
tions into the matching process to improve the quality of matching results [24]. How-
ever, regarding the large size of ontologies, random user interactions are really limited
for helping ontology matching. Now, the question is: is there any way to minimize the
amount of user interactions, while maximize the effect (accuracy improvement) of in-
teractive efforts? Or a more specific question: given a fixed number of user interactions,
can a system “actively” query the user so as to maximize spread of the interactions?

It is non-trivial to address the problem. A simple way is to let the user select can-
didate matches or to select matches with a low confidence (similarity) to query. Such
queries can benefit the queried matches, however, it may not be helpful to the other non-
queried candidate matches. Our goal is not only to correct the possibly wrong matches
through the user interactions, but also to maximize the correction via spread (propaga-
tion) of the interactions. Thus, how to design an algorithm to actively select candidate
matches to query is a challenging issue.

Motivating Example We use an example to demonstrate the motivation of the work.
Figure 1 shows an example of the candidate match selection. The source and target
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ontologies are both about academic staff. If we select the candidate match 1 (“Academic
Staff”, “Faculty”) to query, with the user correction, we can further infer and correct
another potential error match (“Academic Staff”, “Staff”). Moreover, the sub matches
of (“Lecturer”, “Assistant Professor”) and (“Senior Lecturer”, “Associate Professor”)
would also gain a higher confidence. While if we just select the candidate match 2
(“Academic Staff”, “Staff”), it is very possible to be no improvement.

Our Solution In this paper, we propose a novel problem of ontology matching with
active user interaction. In particular, we propose an active learning framework for on-
tology matching, which tries to find the most informative candidate matches to query,
and propagate the user correction according to the ontology structure to improve the
matching accuracy. We present a simple but effective algorithm to select the thresh-
old with user feedbacks. Three measures to evaluate the confidence of each match. A
correct propagation algorithm is proposed to spread the user corrections. Experimental
results demonstrate that the proposed approach can significantly improve (+8.0%) the
matching performance with only a few queries (< 10).

The rest of this paper is organized as follows. Section 2 formalizes the problem.
Section 3 describes our active learning framework for ontology matching. Section 4
explains the method of threshold selection, three measures for error matches detection,
and the correct propagation algorithm. Section 5 presents the experimental results. Fi-
nally, we discuss related work in Section 6 and conclude in Section 7.

2 Problem Formulation

In this section, we first give the definition of ontology and then formalize the problem
of ontology matching with active user interaction.

An ontology usually provides a set of vocabularies to describe the information of
interest. The major components of an ontology are concepts, relations, instances and
axioms [26].

In this paper, our ontology matching mainly focuses on concepts and relations. Ac-
cording to the relations between concepts, an ontology can be viewed as a directed
graph, in which vertexes represent concepts and edges represent relations.

Given a source ontology OS , a target ontology OD, and an element (a concept or a
relation) ei in OS , the procedure to find the semantically equivalent element ej in OD

to ei is called ontology matching, denoted as M . Formally, for each element (ei in OS),
the ontology matching M can be represented [26] as:

M(ei, OS , OD) = {ej} (1)

Furthermore, M could be generalized to elements set matching, that is for a set of
elements {ei} in OS , the ontology matching is defined as:

M({ei}, OS , OD) = {ej} (2)

If {ei} contains all the elements of OS , the matching can be predigested as

M(OS , OD) = {ej} (3)



4 Feng Shi†, Juanzi Li†, Jie Tang†, Guotong Xie♯, and Hanyu Li♯

3 An Active Learning Framework for Ontology Matching

We propose an active learning framework for ontology matching. Algorithm 1 gives an
overview of the active learning framework. Assume that OS is the source ontology, OD

is the target ontology. M is a traditional method of ontology matching, L is the set of
confirmed matches submitted by users, and N is the iteration number, which is also the
number of candidate matches to query.

Algorithm 1. The Active Learning Framework for Ontology Matching

Input:

– the source ontology OS , the target ontology OD ,
– A traditional method of ontology matching M ,
– the confirmed match set L,
– number of matches need to be confirmed N

Initialization:

– apply M to map OS to OD , and get the match result R
– initialize L with Ø

Loop for N iterations:

– let < (eS , eD), ? > = SelectQueryMatch();
– query users to confirm the match < (eS , eD), ? >
– add < (eS , eD), l > to L
– improve the matching result R with < (eS , eD), l >

The basic process of the framework is as follows: first, it applies the traditional
method of ontology matching M to map OS to OD, and gets the match result R, where
multi-method results of different types are usually more useful for the next step. Second,
it selects an informative candidate match < (eS , eD), ? > to query users for confirma-
tion with the result of the first step and the structure information of the two ontologies
OS and OD. After the user confirmation, it adds the match < (eS , eD), l > to the con-
firmed match set L, and improves the match result R with the confirmed matches. Then
it repeats the second step for N iterations, or until it gets a result good enough.

Algorithm 1 is merely a shell, serving as a framework to many possible instan-
tiations. What separates a successful instantiation from a poor one is the follow two
problems:

1. First, how to select the most informative candidate match to query.
2. Second, how to improve the matching result with the confirmed matches.

In the next section, we will give the solutions to these two problems.

4 Match Selection and Correct Propagation

This part introduces our solution to the two core problems of ontology matching with
active learning: the candidate match selection and the matching result improvement.
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We first present a simple but effective algorithm to select the threshold for ontology
matching with user feedback, and then give several measures to detect informative can-
didate matches to query. In the end of this section, we describe our correct propagation
algorithm to improve the matching result with the user confirmed matches.

4.1 Threshold Selection with User Feedback

Most methods of ontology matching find matches through calculating the similarities
between elements of source and target ontologies. The similarity can be string simi-
larity, structure similarity, semantic similarity and so on [26]. No matter what kind of
similarity is chosen, it needs a threshold to estimate which matches are correct. So it is
very important to select a suitable threshold. However, the threshold selection is very
difficult, especially when there is no any supervised information.

Through analysis we find the relationship of thresholds and matching results in most
cases, as shown in Figure 2 (precisions, recalls and F1-Measures whose definitions are
introduced in section 5).

From Figure 2, we can find that the precision curve is an increasing one, while
the recall curve is a decreasing one, and the magnitude of change is getting smaller as
the threshold getting bigger. So the F1-Measure curve has a maximum value on some
threshold, which is our aim.
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Fig. 2. Relationship of thresholds and matching performance (precision, recall and f1-Measure).

Algorithm 2 shows our algorithm of threshold selection. The input of the algorithm
consists of the similarity set S, which contains all the matches and their similarity de-
gree, an update step st for the threshold’s updating, and an attenuation factor λ for st,
and an initial threshold θ0. First, the similarity set S needs to be normalized, and all the
similarity degrees should be normalized into [0, 1], and then let the threshold θ be the
initial value θ0. Second, it finds the match (eS , eD) whose similarity degree is the clos-
est to θ, and let a user check whether the match is correct. If it is correct, the threshold θ
increases by st, otherwise θ decreases by st. The second step is an iterative process, and
st updates according to the correctness of the selected match each iteration. If the cor-
rectness of the selected match is different from last one, the update step st will multiply
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the attenuation factor λ. Because the attenuation factor is a decimal in range (0, 1), so
after sufficient iterations, the update step st will be small enough so that the threshold
θ will stabilize at some value, which is our final threshold.

The algorithm cannot always achieve a good result, but if the value of F1-Measure
with the threshold increases first and then decreases, which is typically the case, our
algorithm can usually achieve a good value. Moreover, when the data is huge, our al-
gorithm usually can get the result after a few iterations. That is to say the number of
iteration will not increase much as the data becomes huge.

Algorithm 2. Threshold Selection

1. Input: The similarity set: S, an initial threshold: θ0, an update step: st, an
attenuation factor: λ.

2. Output: The threshold of the matching result: θ.
3. Normalize the similarity set S
4. Let θ be θ0

5. While st is big enough
6. let (eS , eD) = min{|similarity(eS , eD) − θ|}
7. ask users to comfirm the match (eS , eD)
8. if (eS , eD) is correct
9. if last match is not correct

10. st = st ∗ λ
11. end if
12. θ = θ − st
13. else
14. if last match is correct
15. st = st ∗ λ
16. end if
17. θ = θ + st
18. end if
19. end while

4.2 Candidate Match Selection

One of the key points of ontology matching with active learning is to select informative
matches to query. The most informative match means the match that can maximize
the improvement of the matching performance. If the correctness of a match is found
different from the matching result after the user confirmation, we call this match an
error match. An error match is considered to be informative, because the result can be
improved as long as the error is corrected. If the size of the data is small, or the original
match result is already very good, this kind of improvement will be limited. If the data
size is not small, or the original result is not good, we can also use the information of
the error match to find other errors to significantly improve the matching result, which
will be introduced in the next subsection.
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The probability that a match is an error match is measured with error rate, and
we propose three measures to estimate the error rate of a match as follows. Finally we
combine these three measures to find the error matches.

Confidence The first measure we define is called confidence. Assume eS and eD are
elements of the source ontology OS and the target ontology OD respectively. f is a sim-
ilarity computing function of some ontology matching method M , and θ is its threshold.
The confidence of M on a match (eS , eD) can be defined as follows:

Confidence(f(eS , eD)) = |θ − f(eS , eD)| (4)

The confidence can measure how sure the method M is about the correctness of the
match. So the match with least confidence is most possible to be an error match, which
is called least confidence selection.

If there are k ontology matching methods of different types: {M1, M2, ..., Mk}, we
can extend the least confidence selection as follows:

Q = min{
∑

fi∈{M1,M2,...,Mk}

wi ∗ |θi − fi(eS , eD)|} (5)

In the formula, fi is one of the similarity computing functions of different ontology
matching methods {M1, M2, ...,Mk}, θi and wi are its threshold and weight respec-
tively. Q is the match selecting function. It means that the similarity of a match is closer
to the threshold, it is more possible to be an error match.

Similarity Distance The second measure is named similarity distance. Assume eS

is an element from the source ontology OS , and method M maps the element eS to
eD and e

′

D, which are two elements from the target ontology OD. If the difference of
f(eS , eD) and f(eS , e

′

D) is very small, there is very likely to be error matches in these
two matches. Finally, we select the match that has the minimum difference. Formally,
similarity distance is defined as:

SD(eS , eD) = min{|f(eS , eD) − f(e
′

S , e
′

D)|}; (eS = e
′

S or eD = e
′

D) (6)

The similarity distance is very efficient in a one-to-one matching, in which most
methods only select the best one from the similar matches.

Contention Point We define another measure, named, contention point, to find mis-
takes from the contention of different methods. This measure is defined based on the
results of the matching results of some other algorithms such as edit distance or vector-
space based similarity. The contention point is defined as:

ContentionPoint = {< (es, eD), ? >∈ U |∃i, j st. Ri(eS , eD) ̸= Rj(eS , eD)} (7)
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For a match (es, eD), some of the k methods {M1,M2, ..., Mk} consider it as
matched, while the others consider not. Thus there must be mistakes among these meth-
ods, that is to say it is likely to be an error match. The contentious degree of a contention
point can be further defined as:

Q = min
(eS ,eD)∈ContentionPoint

{ max
fi∈{M1,M2,...,Mk}

Confidence(fi(eS , eD))

− max
fj∈{M1,M2,...,Mk}

Confidence(fj(eS , eD))};

fi(eS , eD) ̸= fj(eS , eD)

(8)

Intuitively, a contention one indicates that for the given match some methods con-
sider it correct and some others consider not. That is to say that the matching algo-
rithms have a maximal disagreement with the similarity confidences. In this case, the
final matching result is very likely to be an error match.

4.3 Correct Propagation

When the size of the ontology is huge, correcting the selected error match only is far
from sufficient. It is desirable that an algorithm can propagate the supervised informa-
tion to help to correct the other potential error matches between the two ontologies.

Based on this consideration, we propose a correct propagation algorithm, which
aims at detecting related error matches to the selected one. Thus when selecting a match
to query, we need consider not only the error rate but also the effect of the error match
on others, where the effect on others is called propagation rate.

Firstly, we introduce the concept of similarity propagation graph, which comes from
the algorithm of similarity flooding [18]. A similarity propagation graph is an auxil-
iary data structure derived from ontologies OS and OD. The construction of propaga-
tion(PG) abides the principle as follows:

((a, b), p, (a1, b1)) ∈ PG(OS , OD) ⇐⇒ (a, p, a1) ∈ OS and (b, p, b1) ∈ OD (9)

Each node in the propagation graph is an element from OS × OD. Such nodes are
called map pairs. The intuition behind arcs that connect map pairs is the following. For
map pairs (a, b) and (a1, b1), if a is similar to b, then probably a1 is somewhat similar
to b1. Figure 3 gives an example of the propagation graph.

For every edge in the propagation graph, it adds an additional edge going in the
opposite direction against the original one. The weights placed on the edges of the
propagation graph indicate how well the similarity of a given map pair propagates to its
neighbors and back. These so-called propagation coefficients range from 0 to 1 inclu-
sively and can be computed in many different ways.

Our algorithm of correct propagation is also based on the propagation graph, but we
both consider the negative and active effects of the propagation arcs. According to the
character of the propagation graph, for a map pair (a, b) and (a1, b1), if a is not matched
with b, then probably a1 is not matched with b1. With the measurement of error rate,
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Fig. 3. Example of the similarity propagation graph.

error matches are easier to be detected, and we can correct more error matches related
to the confirmed match according to the propagation graph, which is called correct
propagation.

Before introducing the propagation, we consider the match selection again. To cor-
rect more error matches, we should not only consider the error rate, but also the prop-
agation rate which measures the influence ability of a match. It mainly includes two
factors: first, the number of matches that a match can influence. The bigger of the num-
ber, the range that the match can influence is wider, accordingly it is possible to correct
more error matches. Second, the similarity differences between the match and its re-
lated matches. If the similarity difference is big, it is very possible to be error match
among the match and its related ones.

Now, our match selection is according to the calculation of both error rate and prop-
agation rate. When the correction (or confirmation) of the selected matches is provided
by users, we conduct the correct propagation to update all the matches. Taking Figure
3 as an example, assume that we select the match (a2, b1) to query, and it is proved to
be an error match. If the match (a2, b1) is confirmed to be an error by the user, then the
similarities of the matches (a, b) and (a1, b2) which are related to the match (a2, b1)
would be decreased. On the contrary, if the match (a2, b1) is confirmed to be correct,
then the similarities of (a, b) and (a1, b2) should be increased. The update (decrease
or increase) should be related to the similarities of the selected match, the error rates
of related matches, and the weight of the arcs. Therefore, we can define the following
update rules:

sim(ai, bi) = sim(ai, bi) + α ∗ w((x, y), (ai, bi))
∗(1 − sim(x, y)) ∗ (1 − er(ai, bi));

(x, p, ai) ∈ OS , (y, p, bi) ∈ OD

(10)

sim(ai, bi) = sim(ai, bi) − α ∗ w((x, y), (ai, bi)) ∗ sim(x, y) ∗ er(ai, bi);
(x, p, ai) ∈ OS , (y, p, bi) ∈ OD

(11)
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In the formula, the match (x, y) is the selected error match, and sim(x, y) is its
similarity degree. The match (ai, bi) is one of the matches related to the match (x, y),
and w((x, y), (ai, bi)) is the weight of their relation, and er(ai, bi) stands for the error
rate of the match (ai, bi), and α is an effect factor which is used to control the rate of
the propagation. If the match (x, y) is correct (by the user), the update function uses
Formula 10, else it uses Formula 11.

The correct propagation runs in an iterative process. In each iteration, it selects the
match for user feedback with the error rate and the propagation rate, and then let users
to confirm the selected match. After the confirmation, it updates the similarity degree,
error rate and the propagation rate of related matches. Then it repeats this process until
convergence (e.g., no any change) or the number of query times reaches a predefined
threshold.

5 Experiments

We present details of the experiments in this section.

5.1 Experiment Setup, Data, and Evaluation Methodology

We implement all the algorithms using Java 2 JDK version 1.6.0 environment. All ex-
periments are performed on a PC with AMD Athlon 4000+ dual core CPU (2.10GHz)
and 2GB RAM Windows XP Professional edition OS.

Data sets For our experiments of the first two groups, we use the OAEI 2008 30x
benchmark [2]. There are four data sets in the group of benchmark 30x, in which each
size is no more than 100 concepts and relations. The traditional matching results on
these data sets is very high, hence it is very suitable for the first two experiments. For
the experiment of the correct propagation, we use part of the OAEI 2005 Directory
benchmark [1], which consists of aligning web sites directory (like open directory or
Yahoo’s) with more than two thousand elementary tests. The reason we select this data
set lies in its available ground truth and its low matching accuracy by the traditional
methods [16].

Platform We conduct all the experiments on the ontology matching platform RiMOM
[26], which is a dynamic multi-strategy ontology alignment framework. With RiMOM,
we participated into the campaigns of the Ontology Alignment Evaluation Initiative
(OAEI) from 2006 to 2008, and our system is among the top three performers on the
benchmark data sets.

Performance Metrics We use precision, recall, F1-Measure to measure the perfor-
mance of the matching result. They are defined next.

Precision: It is the percentage of the correct discovered matches in all discovered
matches.

Recall: It is the percentage of the correct discovered matches in all correct matches.
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F1-Measure: F1-Measure considers the overall result of precision and recall.

F1 − Measure = 2(Precison ∗ Recall)/(Precision + Recall) (12)

5.2 Threshold Selection

We first analyze the performance of our approach for threshold selection. Figure 4
shows the results on the OAEI 2008 benchmark 301 [2], and the matching method
is a combination of KNN [3], Edit Distance [13] and the method using the thesaurus
WordNet [4].

0 9

0.95

1

0 9

0.95

1

0.75

0.8

0.85

0.9

V
a
lu
e

0.75

0.8

0.85

0.9
V
a
lu
e Precision

Recall

0.6

0.65

0.7

0.05 0.15 0.25 0.35 0.45 0.55

0.6

0.65

0.7

0 5 10 15

F1 Measure

Threshold Times of threshold update

Fig. 4. Performance of threshold selection on OAEI 2008 benchmark 301.

The left one in Figure 4 shows the relationship between thresholds and perfor-
mances of matching results (precision, recall and F1-Measure), and we can see it is
consistent with our point introduced in section 4 except a few dithering points. The
right one in Figure 4 present the result of our approach.

5.3 Measurements of Error Match Selection

In this subsection, we evaluate the effectiveness of the different strategies for error
match selection: confidence, similarity distance and contention point.

Figure 5 is an experiment on the OAEI 2008 benchmark 304. From the precision
figure (left), we note that the measurement combined least confidence and similarity
distance performs much better than others. But after about 10 matches confirmed, it
is hard to keep improving the matching accuracy. The reason is that the size of the
ontology is small, and the original matching accuracy is already high.

Figure 6 is another experiment on the OAEI 2008 benchmark 301. The results are
very similar to Figure 5. From the recall figure (right) we note that it improves the recall
slightly. While the recall figure (right) of Figure 5 has no improvement. The reason why
the recall has little improvement is that the thresholds chosen for the original matching
results are very low, and almost all the matches with similarity lower than the threshold
are not correct ones. Our approach can only correct the errors. Thus a draft conclusion
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Fig. 5. Performance of matching after correcting error matches on OAEI 2008 benchmark 304.

is that if there are no error matches below the threshold, the approach cannot improve
the recall value.

Figure 7 is an experimental result on the OAEI 2008 benchmark 302, which is
the best result of all the four benchmarks. From the figure we note that the measure-
ment combined with least confidence, similarity distance and contention point improves
fastest, but these measurements themselves improve slightly. This confirms us that com-
bining these three measurements is useful for ontology matching.

5.4 Correct Propagation

Figure 8 is an experiment on the approach of correct propagation with the OAEI 2005
Directory benchmark [1]. From the precision figure (left) we note that the result of cor-
rect propagation is much better than the approach of just correcting error matches. This
implies that after propagation, more error matches are corrected with the selected one.
Sometimes, the selected match is not an error match, so the approach of correcting er-
ror matches has no improvement, but the approach of correct propagation has. From
the F1-Measure figure (below), it is not surprising that the approach of correct propa-
gation grows faster than the others. Moreover, we find that the curve is steeper at the
beginning. The reason is that the first few matches have bigger propagation rate, which
means it can help to find more error matches.
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5.5 Summary

We summarize the experimental results as follows.

– First, in most cases our method of threshold selection can efficiently find a good
threshold after a few queries.

– Second, all the three measures for match selection can help find the error matches,
which are helpful to improve the matching result.

– Third, our approach of correct propagation can further improve the matching result.
The improvement is more significant at the beginning than later. This also satisfies
the limit of user feedback, that is also the reason we can improve the matching
result greatly via only a few queries.
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Fig. 8. Performance of matching after correct propagation on OAEI 2005 Directory.

6 Related Work

6.1 Ontology Matching

Many works have addressed ontology matching in the context of ontology design and
integration [6][17][19][21]. Some of them use the names, labels or comments of ele-
ments in the ontologies to suggest the semantic correspondences. [7] gives a detailed
compare of various string-based matching techniques, including edit-distance [13] and
token-based functions, e.g., Jaccard similarity [25] and TF/IDF [22]. Many works do
not deal with explicit notions of similarity. They use a variety of heuristics to match
ontology elements [17][19].

Some other works consider the structure information of ontologies. [15] uses the
cardinalities of properties to match concepts. The method of similarity flooding is also
an example using structure information [18]. Another type of method utilizes the back-
ground knowledge to improve the performance of ontology matching. For example, [4]
proposes a similarity calculation method by using thesaurus WordNet. [12] presents
a novel approximate method to discover the matches between concepts in directory
ontology hierarchies. It utilizes information from Google search engine to define the
approximate matches between concepts. [5] makes semantic mappings more amenable
to matching through revising the mediated schema. Other methods based on instances
of ontologies [28] or reasoning [27] also achieve good results.

6.2 Active Learning

Active learning can be viewed as a natural development from the earlier work on opti-
mum experimental design [11]. This method is widely used in the domain of machine
learning. [23] introduces an active-learning based approach to entity resolution that
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requests user feedback to help train classifiers. Selective supervision [14] combines
decision theory with active learning. It uses a value of information approach for select-
ing unclassified cases for labeling. Co-Testing [20] is an active learning technique for
multi-view learning tasks.

There are many works addressing ontology matching with user interaction, like
GLUE [8], APFELi [9], [28], etc. Nevertheless, the annotation step is time-consuming
and expensive, and users are usually not patient enough to label thousands of concept
pairs for the relevance feedback. So our approach takes the concept of active learning
to alleviate the burden of confirming large amounts of candidate matches, and the mea-
surements we propose are based on the features of ontology. Our approach of correct
propagation uses the propagation graph as the approach of similarity flooding [18]. The
difference is that we propagate the similarity partly and purposely, and do not do it up
and down. Our approach is more focused and more efficient than similarity flooding.

7 Conclusion and Future Work

In this paper we propose an active learning framework for ontology matching. But the
framework is just a shell, and what separates a successful instantiation from a poor one
is the selection of matches to query and the approach to improve the traditional match-
ing result with the confirmed matches by users. We present a series of measurements
to detect the error match. Furthermore we propose an approach named correct propaga-
tion to improve the matching result with the confirmed error matches. We also present
a simple but effective method of selecting the threshold with user feedback, which is
also helpful for the error match selection. Experimental results clearly demonstrate the
effectiveness of the approaches.

As the future work, one interesting direction is to explore other types of user feed-
backs. In our experiments, we take the standard boolean answer as the user feedback.
However, in some cases users cannot give a simple correct or not answer for the queried
match, especially when the ontologies are defined for some special domain. One solu-
tion is to select matches that the users are familiar with for confirmation, or translate
the match into a question that the users can easily answer. Another interesting topic is
how to reduce the negative effect of user mistakes.
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