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ABSTRACT

Users often need to gather information about “entities” of
interest. Recent efforts try to automate this task by lever-
aging the vast corpus of HTML tables; this is referred to
as “entity augmentation”. The accuracy of entity augmen-
tation critically depends on semantic relationships between
web tables as well as semantic labels of those tables. Current
techniques work well for string-valued and static attributes
but perform poorly for numeric and time-varying attributes.

In this paper, we first build a semantic graph that (i) la-
bels columns with unit, scale and timestamp information
and (ii) computes semantic matches between columns even
when the same numeric attribute is expressed in different
units or scales. Second, we develop a novel entity augmen-
tation API suited for numeric and time-varying attributes
that leverages the semantic graph. Building the graph is
challenging as such label information is often missing from
the column headers. Our key insight is to leverage the wealth
of tables on the web and infer label information from se-
mantically matching columns of other web tables; this com-
plements “local” extraction from column headers. However,
this creates an interdependence between labels and seman-
tic matches; we address this challenge by representing the
task as a probabilistic graphical model that jointly discov-
ers labels and semantic matches over all columns. Our ex-
periments on real-life datasets show that (i) our semantic
graph contains higher quality labels and semantic matches
and (ii) entity augmentation based on the above graph has
significantly higher precision and recall compared with the
state-of-the-art.
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H.3.5 [Information Storage and Retrieval]: Online In-
formation Services, Web-based services
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Figure 1: (a) Existing entity augmentation approach

(b) Proposed entity augmentation operation for numeric

and time-varying attributes

1. INTRODUCTION
Users often need to gather information about “entities” of

interest [5, 21, 16]. For example, an analyst in an enterprise
might want to gather revenue and market capitalization in-
formation of its customers in a particular sector (say, phar-
maceutical sector) to predict its sales for that sector. Or a
student might want to gather to information about colleges,
such as their tuition fees, number of enrolled students, ac-
ceptance rates and average SAT scores, in order to choose
the college to go to.

Such information gathering tasks are extremely labor-in-
tensive today. The Web contains a vast corpus of HTML
tables. In this paper, we focus on relational HTML tables
where each row corresponds to an entity and each column
corresponds to an attribute [5, 21]. In many cases, they con-
tain the information sought by these tasks [5, 21, 19, 14, 12].
The desired information is typically scattered among various
tables. To automate information gathering, researchers have
recently proposed the “entity augmentation” operation (EA)
[5, 21, 14](referred to as Extend in [5]). Given the names
of a set of entities and a few keywords describing the name
of an attribute, the entity augmentation operation leverages
the vast corpus of HTML tables to automatically “fill in”
the values of the specified entities on the specified attribute.
Figure 1(a) shows an example of an EA query where the
entities are 4 pharmaceutical companies and the keyword is
‘revenues’.

To support EA, we first find tables that “match” with
the query table, i.e., contains some of the entities and an
attribute whose name matches the keywords. We then con-
solidate the matching tables to fill in the desired values.

For high precision and recall, it is critical that the match-
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ing tables are semantically consistent. Matching the at-
tribute names with the keywords using IR techniques does
not ensure this. For example, the query shown in Figure
1(a) might match with tables containing 2010 revenues as
well as those containing 2011 revenues, those containing rev-
enues in billions of USD as well as those containing revenues
in millions of Euros (because they all contain the keyword
‘revenues’). Consolidating values from such different tables
without understanding the semantic relationships between
them leads to erroneous augmentation.
Baseline Approach: The baseline approach to compute
semantically consistent matches is to build a semantic match-
ing graph over web tables [21]. Suppose each web table is a
binary relation with the first column corresponding to the
entity name and the second to an attribute of the entity (re-
ferred to as entity-attribute binary (EAB) relations). Each
web table is a node in the graph. There is an edge between
two nodes iff (i) the first columns of the two web tables con-
tain the same type of entities and (ii) the second columns
refer to the same attribute of those entities. The edges are
computed using schema matching techniques [21].

The accuracy of entity augmentation critically depends
on the accuracy of the semantic graph. While the baseline
technique works well for string-valued and static attributes,
it is inadequate for numeric and time-varying attributes.

Example 1. Consider the 5 web tables shown in Figure
2. The baseline technique identifies the 3 edges shown us-
ing solid, black lines (referred to as simple(S) edges as they
capture simple, 1:1 mappings): between T2 and T3, T1 and
T4 and T4 and T5. Consider the query table Q in Figure
1(a). The baseline technique matches with all 5 tables. The
result of entity augmentation is shown in Figure 1(a). For
Eli Lilly, T4 and T5 provides the value 29.1 while T1 pro-
vides 21.8; hence, it selects 29.1 (based on aggregate score).
For Merck, T1 provides 27.4, T5 provides 45.9 and T2 pro-
vides 21091; say, it selects 27.4 based on matching score.
For Roche and Novartis, T3 provides the values 36113 and
33762 respectively. The result is undesirable: the value for
Eli Lilly is in USD billion and from 2011, the one for Merck
is also in USD billion but from 2010 and the ones for Roche
and Novartis are in Euro million and from 2010.

Why does the baseline approach produce semantically in-
consistent results? First, we observe that a large fraction
attributes in web tables are numeric and the same semantic
attribute occurs in a wide variety of units and scales across
different web tables. For example, in Figure 2, T1 has 2010
revenue in billions of USD while T2 and T3 have it in millions
of Euros. The baseline approach has no knowledge of unit
and scale; without this knowledge, it is impossible to pro-
duce semantically consistent results. Second, many numeric
attributes are time-varying in nature: different tables, pos-
sibly created at different times, contain values of the same
attribute at different points of time. For example, T1 has
the revenue information for 2010 while T4 and T5 have the
same information for 2011. The baseline approach has no
knowledge of time; without this, it is again impossible to
produce semantically consistent results. Finally, the base-
line approach fails to detect relationships where the same
semantic attribute is expressed in different units or scales.
For example, it fails to detect that T1, T2 and T3 contain the
same semantic attribute (2010 revenue) and the values can
be converted from one to another. Without this knowledge,
it is impossible convert the values in the matching tables
into the desired scale and unit.
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Figure 2: Example of Semantic Graph over Web Tables

Main insights and contributions: In this paper, we build
a semantic graph over web tables suited for numeric and
time-varying attributes. It consists of:
(i) Semantic labels: Annotates each attribute column with
unit, scale and timestamp (referred to as “semantic labels”).
In this paper, we focus on year as the timestamp.1 The se-
mantic labels are shown in red inside boxes in Figure 2).
(ii) Semantic matches: Computes semantic matches between
columns representing the same semantic attribute, even if
they are expressed in different units and scales. For exam-
ple, in addition to the S edges, the graph should contain
edges between T1 and T2 and between T1 and T3 (shown
using dashed, red lines) in Figure 2. We refer to these as
X edges (X referring to transformations/conversions). We
assume a set of pre-defined conversion rules. An X edge be-
tween a pair of tables T and T ′ is associated with a set of
conversion rules which together convert the values between
T.B and T ′.B. For example, the X edge between T1 and T3

is associated with two conversion rules: Euro = 1.3× USD

and bil = 1000 ×mil.
There are several technical challenges in building such a

graph. First, identifying the semantic labels as well as the X
edges is hard as the unit and scale information is often miss-
ing in the column headers or values [19, 14]. For example,
table T3 does not specify that the information is in millions
of Euros. Our key insight is to leverage the wealth of tables
on the web: even if the column header does not contain the
label information, the semantically matching columns of oth-
er web tables might contain the label information (in their
column headers). We can “propagate” those labels to this
table. For example, T3 semantically matches with T2; as-
suming we can extract T2’s labels mil and Euro “locally”
from its column header and column values, we can prop-
agate them to T3. Although this shows propagation over
an S edge, such propagation can occur even over X edges.
However, this creates an interdependence between labels and
semantic matches: we need semantic matches to compute
the labels and we need the labels to compute the match-
es. We address this challenge by representing the task as a

1Our approach can handle other granularities of timestamp like
quarter, month, day, etc. We focus on year for simplicity of ex-
planation.
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probabilistic graphical model (Markov random field) that si-
multaneously discovers labels and semantic matches over all
columns. Second, making such inferences can lead to incon-
sistencies. For example, the same table might be assigned
both Euro and USD as labels. We address this challenge by
defining hard constraints to control such inconsistent labels
and integrating them into the inference algorithm. Finally,
schema matching techniques can compute spurious matches.
For example, the values of an attribute (say, revenues) may
not change significantly from one year to another; this can
lead to spurious matches. In Figure 2, the revenues of Pfiz-
er and Abbott Labs did not change significantly from 2010
to 2011; this leads to a spurious semantic match between
T1 and T4. This leads to semantically inconsistent result-
s as shown in Example 2. Our main insight is to leverage
the discovered labels to eliminate such spurious edges. For
example, we can infer that the edge between T1 and T4 is
spurious based on the discovered labels 2010 and 2011 re-
spectively (hence marked with a red cross). We encode this
knowledge as hard constraints into our graphical model.

We have built the InfoGather+ system based on the
above insights. Our contributions can be summarized as
follows:
•We propose a novel technique based on probabilistic graph-
ical models to discover the semantic labels of columns and
semantic matches between columns over all web tables col-
lectively instead of individually. Our model elegantly com-
bines diverse signals such as “local” extraction of labels from
the column headers and values, semantic matches comput-
ed using traditional schema matching techniques and label
propagation. We develop efficient algorithms to solve the
joint discovery task.
• We present a novel entity augmentation API suited for
numeric and time-varying attributes. Specifically, we allow
users to specify unit, scale and time information to unam-
biguously specify the augmentation task. An example of the
API and the desired output (based on the graph shown in
Figure 2) is shown in Figure 1(b). We develop novel query
processing algorithms for the new entity augmentation op-
eration.
•We perform extensive experiments on three real-life dataset-
s of web tables. Our experiments show that the graph pro-
duced by our graphical model has significantly higher quality
in terms of semantic labels and semantic matches compared
with the baseline approach. Furthermore, entity augmenta-
tion based on the above graph has significantly higher pre-
cision and recall compared with the baseline approach.

The rest of the paper is organized as follows. We for-
mulate the semantic graph building problem in Section 2.
Section 3 describes the system architecture. We present our
model and inference algorithms in Section 4. We describe
the entity augmentation API and query processing algorith-
m in Section 5. Experiments, related work and conclusions
appear in Section 6, 7 and 8.

2. PROBLEM DEFINITION

2.1 Data Model
We assume that each web table is an entity-attribute bi-

nary (EAB) relation, i.e., a web table T ∈ T is of the form
T (K,B) where K denotes the entity name attribute and B
is an attribute of the entity. Figure 2 shows five web tables
(T1,T2,T3,T4,T5) satisfying the EAB property. We assume
that each web table T has (i) a column header HT of the
attribute column T.B (e.g., HT1

for table T1 in Figure 2 is

Rule 

Id

LHS Conversion 

Factor (θ)

RHS

r1 euro 1.3 usd

r2 bil 1000 mil

r3 usd 6.2 cny

r4 mil 1000 k

r5 usd 80.2 jpy

r6 mts 3.28 ft

r7 ft 12 inches

r8 inches 2.54 cms

euro

usd

cnyjpy

bil mil k

ft

mts

cms

inches

(a) (b)

Figure 3: (a)Conversion rules (b) Mutex groups

“2010 Revenues (USD bil)”). HT can be empty if the table
has no column headers. (ii) context information CT includ-
ing header rows that describes the table (that spans across
all the columns), caption of the table, text surrounding the
table and the url and title of the web page from which it
was extracted. In our system, we distinguish between the
different context fields. For simplicity, we ignore these dis-
tinctions in this paper.

In practice, not all web tables are EAB relations. Most
such tables have a “subject column”; this column contains
the names of the entities. All other columns are attributes of
these entities [19]. Furthermore, there are effective heuristics
to detect the subject column [19]. We can therefore split the
n−ary table into (n− 1) EAB relations: the subject column
with each of the other (n− 1) columns.

2.2 Conversion Rules
We assume that the set of conversion rules are known up-

front. They are specified by the system administrator (or
domain experts) using a simple, rule specification language.
Each rule has 3 components: a left-hand side (LHS), a con-
version factor (θ) and a right-hand side (RHS). The LHS
and RHS are strings describing units and scales. For exam-
ple, for the rule Euro = 1.3 × USD, the LHS is Euro, θ is
1.3 and the RHS is USD. Figure 3(a) shows more examples
of rules.

The same unit and scale can be referred to in several ways.
For example, USD is also referred to as $ and US Dollar;
mil is also referred to as mln, million and millions. We as-
sume there is a canonical string for every unit and scale; the
rules are specified using the canonical strings. Furthermore,
we assume that all the synonyms are known so that their
occurrences can be detected in column headers and column
values.

For simplicity, we assume if a rule a = θ×b is present, the
reverse rule b = 1

θ
× a is also present in the rule database

(not shown in Figure 3(a) to avoid clutter). Finally, our
system can handle ranges as the conversion factor in order
to capture fluctuating conversion factors. For example, one
might specify the conversion factor between Euro and USD
to be anywhere between 1.2 and 1.3. For simplicity, we focus
on a single number as the conversion factor. Note that the
rules can change with time: the system administrator can
insert new rules, delete existing rules or modify the LHS,
conversion factor or RHS of existing rules.

2.3 Problem Statement
Given the corpus of web tables and a set of conversion

rules, the goal is to build a semantic graph G over web tables
that enables us to perform accurate entity augmentation.
Each web table T ∈ T is a node in G. The ideal semantic
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graph G should contain:
(i) S edges: between two nodes T (K,B) and T (K′, B′) iff
T.K and T.K′ refer to the same type of entities and T.B and
T.B′ refer to the same attribute of those entities, expressed
in the same unit and scale and reflect information of the
same points of time (i.e., same year).
(ii) X edges: between two nodes T (K,B) and T (K′, B′) iff
T.K and T.K′ refer to the same type of entities and T.B

and T.B′ refer to the same attribute of those entities (at the
same points of time) but expressed in different units and
scales. Each X edge is associated with a set of conversion
rules which converts the values from T.B to T ′.B′. Since
the reverse rule is present for each forward rule, for every X
edge from T to T ′, there is an X edge with an equivalent set
of rules from T ′ to T . Hence, we ignore the directionality of
X edges in the discussions except when necessary.
(iii) Semantic labels: for unit, scale and year at each node.
We distinguish between the unit and scale labels (SU labels
in short) and year labels as a node can be assigned multiple
SU labels but only one year label.

3. SYSTEM ARCHITECTURE
Figure 4 shows the architecture of the InfoGather+ sys-

tem. It has two components: offline preprocessing and query
time processing.
Offline preprocessing: There are 3 main steps in this
component:
• Extract HTML tables from the web crawl and distinguish
the relational tables from other types of tables, such as lay-
out tables and attribute-value tables. Our approach is sim-
ilar to the one in [7]; we do not discuss this further as it is
not the focus of this paper.
• Build the semantic graph. This is the focus of the paper
and is discussed in detail in Section 4.
• Build indexes on the web tables and the graph for efficient
query time processing. We build 3 indexes: (i) An inverted
index on entities (EI). Given a query table Q, EI(Q) returns
the set of web tables (along with scores) that contains at
least one of the query entities. (ii) An inverted index on
column names and semantic labels (NLI): Given a query ta-
ble Q, NLI(Q) returns the set of tables (along with scores)
whose column headers contain the query keywords and/or
the set whose semantic labels match with the query label-
s. (iii) An index on graph edges (GI): Given a web table
T , GI(T ) returns the set of tables that are connected to
T in the semantic graph along with a score indicating the
strength of the matching relationship.

Our offline processing needs to scale to hundred of mil-
lions of tables. Steps 1 and 3 are easily parallelizable (e.g.,
using the MapReduce framework). We discuss scalable im-
plementation of Step 2 in Section 4.
Query time processing: We focus on entity augmenta-
tion queries in this paper. We can support other classes
of queries like augmentation by example [21], attribute dis-

covery [21] and search by column keywords [14] using this
architecture. There are two main steps:
• Identify matching tables and edges: along with their scores
for the query. We leverage the EI, NLI and GI indexes for
this purpose.
• Fill-in values: For each query entity, we then collect the
corresponding values in these matching tables along with
the scores, convert to the desired unit and scale, aggregate
the scores for each value and select the one with the highest
aggregate score.

4. SEMANTIC GRAPH CONSTRUCTION
One option is to follow a “staged” approach: start with

the semantic graph proposed in the baseline approach [21]
(which contains only S edges), then add semantic labels and
finally add X edges as follows:
• Semantic labels: Let L denote the set of scale and unit
descriptor strings that appear in the LHSs and RHSs of the
conversion rules. Formally,

L =
⋃

r∈R

r.LHS ∪
⋃

r∈R

r.RHS

where R denotes the set of conversion rules and r.LHS

(r.RHS) the scale or unit descriptor constituting LHS (RHS)
of rule r. We assume that we know the synonyms for each
scale or unit descriptor l ∈ L. We annotate a web table T
with a label l ∈ L if either l or one of its synonyms occur in
either the column headerHT of T.B or column values of T.B.
For example, we annotate T1 in Figure 2 with {USD, bil}
and T2 with {Euro,mil}.

Let Y denote the set of year strings; we use all year strings
from “1900” to “2050”. We annotate a web table T with
y ∈ Y if the y occurs in either in the column header HT of
T.B or in the context CT of T . For example, we annotate
T1 in Figure 2 with 2010. We refer to this approach as “lo-
cal extractions” as the labels are extracted locally from this
table.
• X edges: After we have added the semantic annotations
as described above, we add an X edge between T and T ′

associated with the set R ⊆ R of conversion rules iff (i) the
set LT of labels of T contains LHS of each rule r ∈ R, i.e.,⋃

r∈R
r.LHS ⊆ LT (ii) the set L′

T of labels of T ′ contains
RHS of each rule r ∈ R, i.e.,

⋃
r∈R

r.RHS ⊆ L′
T and (iii) the

values of the common entities in the two tables can be con-
verted from one to the other by multiplying with the prod-
uct of the conversion factors, i.e., SimX(T, T ′, R) > δ where
SimX(T, T ′, R) denotes the fraction of common entities that
can be converted using the product of the conversion factors
and δ is a threshold. Formally,

SimX(T, T,R)

=
|(t, t′) ∈ T × T ′ s.t. t.A = t′.A ∧ t′.B

t.B
∼ Πr∈Rr.θ|

|(t, t′) ∈ T × T ′ s.t. t.A = t′.A|

For example, we add an X edge between T1 and T2 corre-
sponding to conversion rulesR = {USD = 0.77×Euro, bil =
1000×mil} because (i) T1 has labels {USD, bil} (ii) T2 has
labels {Euro,mil} and (iii) the values of the common enti-
ties (i.e., Pfizer and Merck) satisfy the product of the con-
version factors, i.e., 46277

60.1
∼ (0.77 × 1000) for Pfizer and

21091
27.4

∼ (0.77×1000) for Merck. So, SimX(T1, T2, R) = 1.0.
Note that we allow slight variations in values while checking
the convertibilities.

This approach suffers from two problems:
• Low precision: Text in the context fields as well as column
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Figure 5: Graphical model for matching and annotating

3 tables T1, T2 and T3

headers can be noisy and ambiguous. Annotations based on
only local extraction might lead to incorrect labels.
• Low coverage: Often, unit, scale and year information is
missing in the column headers, values and context. For ex-
ample, T3 does not contain this information. So, the staged
approach fails to annotate T3 with the unit, scale and year
information; consequently, it fails to detect the two X edges
(corresponding to conversion rules R1 and R2 listed in Fig-
ure 3) between T1 and T3. This is exacerbated by the fact
that many tables do not have column headers and/or con-
text information.

Our main insight is that we can improve the precision and
coverage if we compute the labels not just using local extrac-
tions but also using labels of semantically matching columns.
This creates an interdependence between labels and seman-
tic matches: we need semantic matches to compute the la-
bels and we need the labels to compute the matches. We
propose a global approach that collectively computes all the
labels and matches and combines the diverse signals. We
present an elegant problem formulation based on probabilis-
tic graph models (Markov random field). We first provide
a brief overview of graphical models and then present our
formulation.

4.1 Probabilistic Graphical Models
We use undirected graphical models in this paper, referred

to as Markov networks or Markov random fields. A graphi-
cal model represents the joint distribution over a set of ran-
dom variables X = {X1, · · · , Xn} where each Xi can take
values from the space of labels [11]. The model represents
each element of X as a node in a graph G and captures the
dependencies between them with a set of cliques of G.

We identify the cliques and define a potential function
ψ(C,XC) → R for each clique. ψ(C,XC) captures the com-
patibility of the labels XC assigned to the variable subset
C. We use two kinds of potentials: node potentials ψ(i,Xi)
defined on the label Xi of a single node i and edge poten-
tials ψ(i, j,Xi, Xj) defined over edge (i, j) in G and labels
(Xi, Xj) assigned to the two nodes it connects. The overall
probability distribution is the normalized product of all of
the potentials. In logarithmic representation,

P (X1, · · · , Xn) ∝ exp(
∑

i

ψ(i,Xi) +
∑

i

∑

j

ψ(i, j,Xi, Xj))

The inference problem is to find argmaxX P (X1, · · · , Xn),
the most likely joint assignment of labels to variables.

We describe how we model semantic annotation and match-
ing task as a graphical model by defining the random vari-
ables, node and edge potentials, the overall objective and
finally the inference algorithm.

4.2 Variables
For every table T , we associate two random variables: LT

to denote the set of SU labels and yT to denote the year label.
There can be multiple SU labels assigned to T ; hence, LT

can take a value from the set P(L) where P(S) denotes the
powerset of any set S . Recall L denotes the set of scale and
unit descriptor strings that appear in the LHSs and RHSs
of the conversion rules. On the other hand, there can be
at most one year label assigned to T ; hence, yT can take a
value from the set Y ∪ {NA} (NA denotes no year). For
every pair of tables T , T ′, we associate a random variable
BTT ′ denoting the semantic match between T and T ′. There
can be either an X edge (represented by a set of one or more
conversion rules) or an S edge or no edge at all; hence BTT ′

can take a value from the set {P(R)−{φ}}∪{S,NA}. Recall
R denotes the set of conversion rules.

4.3 Node and Edge Potentials
We define node and clique potentials to combine diverse

signals like local extraction of labels from the column head-
ers and values, semantic matches computed using traditional
schema matching techniques and label propagation.

4.3.1 Local extraction of SU labels

One important signal in assigning SU labels is the local
extraction technique described in the staged approach, i.e.,
we assign an SU label l ∈ L to web table T iff either l or
one of its synonyms occur in either the column header HT

of T.B or column values of T.B. We define two features for
this purpose. We define a binary feature function fH(T, l)
which is set to 1 if HT contains either the label l or a syn-
onym of l, and 0 otherwise. For column values, we extract
the strings that precede and follow the numeric values in col-
umn T.B. Let PFStrings(T ) denote the set of strings that
consistently precede or follow the values across the entire
column (e.g., in more than 80% of the rows). For exam-
ple, in Figure 2, PFStrings(T2) = {Euro}. We define a
binary feature function fV (T, l) which is set to 1 if there
exists a s ∈ PFStrings(T ) such that s either contains l or
a synonym of l, and 0 otherwise. A set LT of labels is a
good assignment if either fH(T, l) or fV (T, l) is 1 for all or
most labels in it. We define the node potential ψsu(T,LT )
as follows:

ψsu(T,LT ) =

∑
l∈LT

max(fH(T, l), fV (T, l))

|LT |

SU labeling, especially with label propagation, can lead
to inconsistencies. For example, the same table might be
assigned both Euro and USD as labels. We define hard
constraints to control such inconsistent labels and integrate
them into our node potential ψsu(T,LT ). We define a set
of mutually exclusive groups (referred to as “mutex groups”)
such that any table can be assigned at most one label from
a mutex group. Two strings l and l′ are in the same mutex
group if l is connected to l′ via a chain of one or more con-
version rules l = θ1 × p1, p1 = θ2 × p2, · · · , pn−1 = θn × l′.
Suppose the system has the 8 conversion rules shown in Fig-
ure 3(a). The mutex groups for the 8 rules are shown in
Figure 3(b). The mutex groups can be computed simply as
follows. Construct a graph with each label l ∈ L as a node.
Insert an edge between two nodes if there is a rule with the
two strings as its LHS and RHS. Compute all the connect-
ed components of the graph. Each connected component
corresponds to a mutex group. Let Mutex(l, l′) denote a
binary variable which is true if there exists a mutex group
containing both l and l′ and false otherwise. We modify
ψsu(T,LT ) to disallow inconsistent labeling by taking large
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negative values for inconsistent labels. The final node po-
tential ψsu(T,LT ) is:

ψsu(T,LT ) = −∞ if l, l′ ∈ LT s.t. Mutex(l, l′) is true

=

∑
l∈LT

max(fH(T, l), fV (T, l))

|LT |
otherwise

4.3.2 S and X edge computation

We discuss computing semantic matches between pairs of
tables. The schema matching technique proposed for web
tables in [21] is an important signal to determine S edges,
i.e., there is likely to be an S edge between two web tables
T and T ′ if the common entities in the two tables have e-
qual values on the second column. Define tuple similarity
SimS(T, T

′) as the fraction of common entities that have
approximately equal values:

SimS(T, T
′) =

|(t, t′) ∈ T × T ′ s.t. t.A = t′.A ∧ t.B ∼ t′.B|

|(t, t′) ∈ T × T ′ s.t. t.A = t′.A|

Note that we allow slight variations in values while checking
the equalities. S is a good assignment forBTT ′ if SimS(T, T

′)
is above a certain threshold, say δ.

For X edges, we follow the computation technique de-
scribed in the staged approach, i.e., there is likely to be
an X edge associated with a set R ∈ R of conversion rules
between T and T ′ if (i) T ’s labels contain the LHSs of R
(ii) T ′’s labels contains the RHSs of R and (iii) the values
of the common entities can be converted using the produc-
t of the conversion factors. Recall SimX(T, T ′, R) denotes
the fraction of common entities that can be converted using
the product of the conversion factors. An X edge associated
with set of rules R is a good assignment if (i) and (ii) are
true and SimX(T, T ′, R) is above a certain threshold, say δ.
We define the final clique potential ψe(T, T

′, LT , L
′
T , BTT ′ )

as follows:

ψe(T, T
′
, LT , L

′
T , BTT ′ )

= SimS(T, T
′) if SimS(T, T

′) > δ ∧ BTT ′ = S

= SimX(T, T ′
, R) if SimX(T, T ′

, R) > δ ∧ BTT ′ = R

∧
⋃

r∈R

r.LHS ⊆ LT ∧
⋃

r∈R

r.RHS ⊆ L
′
T

= 0 otherwise

4.3.3 Local Extraction of year labels

Just like SU labels, local extraction is an important clue
in assigning year labels, i.e., we assign a year label y ∈ Y to
T if the y occurs either in the column header HT of TB or
in the context CT of T. As in the previous case, we define
two binary feature functions: (i) fH(T, y), which is set to 1
if HT contains y and to 0 otherwise and (ii) fC(T, y) which
is set to 1 if CT contains y and to 0 otherwise. yT is a good
assignment if either fH(T, yT ) or fC(T, yT ) is 1. We define
the node potential ψy(T, yT ) as follows:

ψy(T, yT ) = max(fH(T, yT ), fC(T, yT ))

4.3.4 SU and year label propagation

If there is an S edge between T and T ′, by definition, we
can propagate all the labels l ∈ LT of T to T ′ and vice-versa.
For example, in figure 2, we propagate the labels (mil and
Euro) from T2 to T3. LT and L′

T are good assignments to
two tables T and T ′ connected by an S edge if all or most
of their elements are the same, i.e., the set similarity (e.g.,
Jaccard Similarity) is high.

If there is an X edge (associated with a set R of rules) from
T to T ′, we can propagate all labels l ∈ (LT −

⋃
r∈R

r.LHS)

from T to T ′ and all labels l ∈ (L′
T −

⋃
r∈R

r.RHS) from T ′

to T .2 The insight here is that T and T ′ are semantically
identical except in the scales and units present in the rules
connecting them; so, all the other labels of T apply to T ′ and
vice-versa. For example, consider two tables T and T ′: T has
labels LT = {mil, USD} and there is an X edge associated
with the rule USD = 0.77 × Euro from T to T ′. We can
propagate the label {mil, USD} − {USD} = {mil} from T
to T ′. LT and L′

T are good assignments to two tables T
and T ′ connected by an X edge associated with the set R
of rules if all or most of the elements in LT −

⋃
r∈R

r.LHS

and L′
T −

⋃
r∈R r.RHS are the same, i.e., the set similarity

(e.g., Jaccard Similarity) between those two sets is high. We
define the edge potential ψlp(T, T

′, LT , L
′
T , BTT ′ ) as follows:

ψlp(T, T
′, LT , L

′
T , BTT ′ )

= JaccSim(LT , L
′
T ) if BTT ′ = S

= JaccSim(LT −
⋃

r∈R

r.LHS,L′
T −

⋃

r∈R

r.RHS) if BTT ′ = R

= 0 otherwise

We can propagate the year label from T to T ′ if there is
either a S edge or X edge between them. yT and y′T are
good assignments to two tables T and T ′ connected by an S
or X edge if yT = y′T 6= NA. We define the edge potential
ψlp(T, T

′, yT , y
′
T , BTT ′) as follows:

ψlp(T, T
′
, yT , y

′
T , BTT ′ ) = 1 if yT = y

′
T ∧ yT 6= NA

= 0 otherwise

4.3.5 Spurious edge elimination

Schemamatching techniques can introduce spurious edges.
One significant source of errors is time-varying attributes: if
the values of an attribute (say, revenues) did not change sig-
nificantly from one year to another, it can lead to a spurious
match. In Figure 2, the revenues of Pfizer and Abbott Labs
did not change significantly from 2010 to 2011; this leads to
a spurious semantic match between T1 and T4. We disal-
low such spurious matches by taking large negative values
when the year labels are not identical. We define the clique
potential ψec(T, T

′, yT , y
′
T , BTT ′) as follows:

ψec(T, T
′
, yT , y

′
T , BTT ′ ) = −∞ if yT 6= y

′
T ∧ yT 6= NA

∧ y
′
T 6= NA ∧BTT ′ 6= NA

= 0 otherwise

4.4 Overall Objective
The goal is to find the assignment to the variables LT , yT

and BTT ′ such that the following objective is maximized:

∑

T

ψsu(T, LT ) +
∑

T

ψy(T, yT ) (local extraction)

+
∑

T,T ′∈T

ψe(T, T
′
, LT , L

′
T , BTT ′ ) (S and X edges)

+
∑

T,T ′∈T

ψlp(T, T
′
, LT , L

′
T , BTT ′) (SU label propagation)

+
∑

T,T ′∈T

ψlp(T, T
′
, yT , y

′
T , BTT ′ ) (year label propagation)

+
∑

T,T ′∈T

ψec(T, T
′
, yT , y

′
T , BTT ′ ) (edge constraint) (1)

2We consider the directionality here. However, considering the
reverse direction (from T ′ to T ) yields the same result.
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4.5 Inference Algorithm

4.5.1 Independent Inference

We first show how to find the optimal node and edge label-
ing to maximize the above objective in the case of no label
propagation. This optimization can be solved in polynomial
time because the optimization for each objective component
can be solved completely based on local information. This is
similar to the staged approach described before. The pseudo
code is shown in Algorithm 1. The local extraction of unit,
scale and year is first performed based on feature functions
defined above. Once the node labels have been determined,
we compute the S and X edges using the similarity function
and the computation technique described above. The edge
labels can then be obtained accordingly. Finally, we change
the edge label to NA for those having different years on two
sides to satisfy the edge constraint ψec.

Algorithm 1: Independent Inference

1 foreach table T ∈ T do
2 Initialization: LT = {}, yT = NA

// local extraction of unit and scale

3 foreach label l ∈ L do
4 if max(fH (T, l), fV (T, l)) = 1 then
5 LT .add(l);

// local extraction of year

6 foreach year y ∈ Y do
7 if max(fH (T, y), fC(T, y)) = 1 then
8 yT = y;

// S and X edge computation

9 foreach table pair T, T ′ do
10 BTT ′ = argmaxψe(T, T ′, LT , L

′
T
, BTT ′ );

// Spurious edge elimination

11 foreach table pair T, T ′ do
12 if ψec(T, T ′, yT , y

′
T , BTT ′ ) = −∞ then

13 BTT ′ = NA;

14 return LT, yT, BTT′ ;

4.5.2 Hardness of Collective Inference

We next show that finding the labels that maximize the
final objective function with label propagation is NP-Hard,
even for a simple case where we only have one variable yT .
In this simple case, our objective is turned to

max
y

∑

T∈T

ψy(T, yT ) +
∑

T,T ′∈T

ψec(T, T
′
, yT , y

′
T )

+
∑

T,T ′∈T

ψlp(T, T
′
, yT , y

′
T ) (2)

Theorem 1. Finding the optimal labeling for objective (2)
is NP-Hard.

Proof. We prove it by reduction from metric labeling
problem [10]. Metric labeling is defined over a weighted
undirected graph G = (V,E) and a label set L, where the
weight (nonnegative) w(v, v′) indicates the strength of the
relationship between node v and v′. We are given: (1) a
nonnegative cost function c(v, l) for assigning label l to the
node v; (2) a distance d(l, l′) between label l and l′. The
objective is to find a labeling function f : V → L such that
the following total cost is minimized:

C(f) =
∑

v∈V

c(v, f(v)) +
∑

(v,v′)∈E

w(v, v′) · d(f(v), f(v′))

BTT’

�lp

LT

yT

�e

�ec

�y

�su
��������

	�
���

Figure 6: Factor graph.

To reduce the metric labeling to our problem, we let each
node v ∈ V corresponds to one T ∈ T . The variable yT
can only take labels from set L and can not be NA. Then
we define node potential ψy and edge potential ψec, ψlp as
follows:

ψy(v, l) = −c(v, l)

ψec(v, v
′
, l, l

′) = −w(v, v′) · d(l, l′)

ψlp(v, v
′
, l, l

′) = 0

Since the the cost c and distance d are both nonnegative,
maximizing ψy(v, l) is equivalent to minimizing the cost for
assigning l to v. Similarly, maximizing ψec(v, v

′, l, l′) is e-
quivalent to minimizing the cost for assigning l and l′ to a
pair of nodes. We let ψlp be zero so that it does not affect
the final labeling. Hence, the objective function (2) is con-
sistent with the total cost in metric labeling. If a labeling
function f can be found in polynomial time to maximize the
objective (2), it can also minimize the total cost C in metric
labeling problem.

4.5.3 Approximation Algorithm

We develop an approximation algorithm to resolve the
collective inference by adapting the techniques proposed in
probabilistic graphical model, specifically, the belief propa-
gation algorithm [11]. Belief propagation algorithm operates
on a factor graph which contains variable nodes and factor n-
odes, and proceeds by passing “belief” via messages between
variable nodes and factor nodes. In our problem, there are
three variables and five factors. We show the factor graph
in Figure 6. There is an edge between a variable x and a
factor ψ iff x appears in ψ.

The algorithm starts with initializing the node potential
ψsu and ψy for each table T by doing the local extraction of
scale, unit and year labels. The collective inference is then
processed by iteratively passing messages between neighbor-
ing nodes. At each iteration, we schedule the message pass-
ing process in three steps. The first step is centered on edge
potential ψe. The messages are sent from the scale/unit la-
bel LT to ψe, then to the edge label BTT ′ and then sent
back. This step tries to create more edges between tables
based on current belief on node labeling and, at the same
time, tries to select labels that are beneficial for edge cre-
ation. At the second step, the focus is on the edge potential
ψlp for label propagation. The messages are passed from LT ,
yT and BTT ′ to ψlp; ψlp then sends back messages according
to the set of labels that produce the highest potential. The
final step deals with the constraint ψec for eliminating spu-
rious edges. The passing schedule for this step is similar to
Step 1 except that the messages are sent between year label
yT , edge label BTT ′ and ψec. The algorithm stops when the
message values converge or the number of iteration reaches
the max limit. The final values of variables are derived from
the messages. The details of the algorithm is presented in
Algorithm 2.
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Algorithm 2: Collective Inference

1 foreach table T ∈ T do
2 Compute ψsu(T, LT ), ψy(T, yT );

3 Initialization: M = 0
4 while Iteration ≤ max iteration do
5 foreach table pair T, T ′ do

// Step 1

6 M(LT → ψe) = ψsu(T, LT ) +
∑

T ′ M(ψlp → LT );
7 M(LT ′ → ψe) = ψsu(T, LT ′ ) +

∑
T ′′ M(ψlp → LT ′ );

8 M(ψe → BTT ′ ) = maxLT ,L
T ′

[ψe +M(LT → ψe) +M(LT ′ → ψe)];

9 M(BTT ′ → ψe) = M(ψlp → BTT ′ ) +M(ψec → BTT ′ );
10 M(ψe → LT ) = maxL

T ′ ,BTT ′
[ψe +M(LT ′ → ψe) +M(BTT ′ → ψe)];

11 M(ψe → LT ′ ) = maxLT ,B
TT ′

[ψe +M(LT → ψe) +M(BTT ′ → ψe)];

// Step 2

12 M(LT → ψlp) = ψsu(T,LT ) +
∑

T ′ M(ψe → LT );
13 M(LT ′ → ψlp) = ψsu(T, LT ′ ) +

∑
T ′′ M(ψe → LT ′ );

14 M(yT → ψlp) = ψy(T, yT ) +
∑

T ′ M(ψec → yT );
15 M(yT ′ → ψlp) = ψy(T, yT ′ ) +

∑
T ′′ M(ψec → yT ′ );

16 M(BTT ′ → ψlp) = M(ψe → BTT ′ ) +M(ψec → BTT ′ );
17 M(ψlp → BTT ′ ) = maxLT ,L

T ′ ,yT ,y
T ′

[ψlp +M(LT → ψlp) +M(LT ′ → ψlp) +M(yT → ψlp) +M(yT ′ → ψlp)];

18 M(ψlp → LT ) = maxL
T ′ ,yT ,y

T ′ ,BTT ′
[ψlp +M(LT ′ → ψlp) +M(yT → ψlp) +M(yT ′ → ψlp) +M(BTT ′ → ψlp)];

19 M(ψlp → LT ′ ) = maxLT ,yT ,y
T ′ ,BTT ′

[ψlp +M(LT → ψlp) +M(yT → ψlp) +M(yT ′ → ψlp) +M(BTT ′ → ψlp)];

20 M(ψlp → yT ) = maxy
T ′ ,LT ,L

T ′ ,BTT ′
[ψlp +M(yT ′ → ψlp) +M(LT → ψlp) +M(LT ′ → ψlp) +M(BTT ′ → ψlp)];

21 M(ψlp → yT ′ ) = maxyT ,LT ,L
T ′ ,BTT ′

[ψlp +M(yT → ψlp) +M(LT → ψlp) +M(LT ′ → ψlp) +M(BTT ′ → ψlp)];

// Step 3

22 M(yT → ψec) = ψy(T, yT ) +
∑

T ′ M(ψlp → yT );
23 M(yT ′ → ψec) = ψy(T, yT ′ ) +

∑
T ′′ M(ψlp → yT ′ );

24 M(ψec → BTT ′ ) = maxyT ,y
T ′

[ψec +M(yT → ψec) +M(yT ′ → ψec)];

25 M(BTT ′ → ψec) = M(ψlp → BTT ′ ) +M(ψe → BTT ′ );
26 M(ψec → yT ) = maxy

T ′ ,BTT ′
[ψec +M(yT ′ → ψec) +M(BTT ′ → ψec)];

27 M(ψec → yT ′ ) = maxyT ,B
TT ′

[ψec +M(yT → ψec) +M(BTT ′ → ψec)];

28 if converged then
29 break;

30 return LT, yT, BTT′ ;

4.5.4 Scalable Implementation of Collective Infer-
ence

There are hundreds of millions of tables on the web; to
build the semantic graph over all web tables, the belief prop-
agation algorithm need to scale to factor graphs containing
billions of nodes. Many large scale graph processing tasks
can be expressed as a sequence of iterations, in each of which
a vertex can receive messages sent in the previous iteration,
send messages to other vertices, and modify its own state
and that of its outgoing edges or mutate graph topology.
Hence, several systems have been developed for above com-
putation model over very large-scale graphs (e.g., Pregel [13],
Trinity [17]). Since the belief propagation algorithm follows
the same computational model, we can leverage those tech-
nologies for scalable implementation of collective inference.

5. QUERY PROCESSING
We focus on entity augmentation queries in this section.

Our system can support other types of web table search
queries [21, 14]. We first define the query interface of our
system.

5.1 Query Interface

Definition 1 (Query Interface). An entity augmen-
tation query Q = 〈A,E,SU, Y 〉 consists of four components:

A: keywords describing attribute name.
E: the set of entities of interest.
SU: unit and scale (optional).
Y: timestamp (optional).

The proposed API significantly extends the previously
proposed entity augmentation API which takes only attribute
name and entity set as input [21]. We extend the query lan-
guage with SU and Y to unambiguously specify the augmen-
tation task. Furthermore, it better leverages the semantic
graph we build in this paper.

5.2 Query Time Processing
We briefly introduced the two main steps for EA queries in

Section 3. We also described the indexes built for efficient
query time processing. We now present the processing in
detail. The pseudo code is shown in Algorithm 3.

Step 1: Identify matching tables. Given the query Q, we
first leverage the EI index to identify the set of tables that
contains at least one of the entities in Q.E. Among these
tables, we use the NLI index to identify the subset of tables
that satisfy the following conditions: (1) The column header
matches with the attribute name keywords in Q.A; (2) The
year label matches with the query label in Q.Y (if any); (3)
The unit and scale labels match with each of the query la-
bels in Q.SU . A unit/scale label is considered a match if it
occurs in the same mutex group as Q.SU . This is because
they are convertible from one to another; we can convert
values from the units they are available in to the desired
query unit. Finally, for each qualified table, we search for
its semantically matching tables using GI index. The qual-
ified tables together with their matching tables become our
sources for filling in values at next step.

Step 2: Fill-in values. For each table identified at Step
1, we collect the values provided in the table for each of
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Algorithm 3: Query Processing

// Step 1: Identify matching tables

1 S = EI(Q);
2 S = S ∩NLI(Q);
3 S = S ∪

⋃
T∈S

GI(T );

// Step 2: Fill-in values

4 foreach table T ∈ S do
5 foreach tuple t ∈ T do
6 if t.e ∈ Q.E then
7 v = Convert(t.v, LT , Q.SU);
8 Aggregate(t.e, v);

9 AugmentEntity(Q.E);

the query entities. We compare the table’s semantic labels
(unit and scale) with the query labels. If they do not agree,
we convert the values to the desired unit and scale. The
converted values are then aggregated. Finally, we augment
the query entities with the values with the highest aggregate
score.

Example 2. Consider the web tables shown in Figure 2.
Suppose the collective inference approach has discovered the
semantic labels and edges shown in Figure 2. Consider the
EA query in Figure 1(b). The query processing algorithm
will identify T1, T2 and T3 as matching tables because (1)
their column headers contain “revenues” (2) their year label-
s match with ‘2010’ and (3) they contain unit/scale labels
that are in the same mutex group as USD (USD, Euro and
Euro respectively). For Eli Lilly, T1 provides 21.8 which
is already in USD bil. For Merck, T1 provides 27.4 and T2

provides 21091; the latter is converted to USD bil which also
results in 27.4. For Roche and Novartis, T3 provides the val-
ues 36113 and 33762 respectively; they are converted to USD
bil resulting in 46.9 and 43.8 respectively. This produces the
desirable, semantically consistent results (all from 2010 and
all in USD bil) shown in Figure 1(b).

6. EXPERIMENTS
We present an experimental evaluation of the techniques

proposed in the paper. The goals of the experimental study
are:
• To evaluate the quality of the semantic labels (unit, scale
and year) and semantic matches discovered by our collective
inference approach
• To evaluate the impact of the discovered labels and match-
es on entity augmentation (EA) queries and to compare with
the baseline approach
• To evaluate the efficiency of processing EA queries speci-
fied using the proposed query interface

6.1 Experimental Setup

Datasets: We conducted experiments on three real-life data-
sets of web tables: Company, Country and City, which are
extracted from a recent snapshot of Microsoft Bing search
engine. Table 1 shows the detailed statistics of the datasets
including the number of web tables, the total number of nu-
meric attributes across all the tables and the average number
of numeric attributes per table.

EA Queries and golden truth: We conducted experi-
ments for the following EA queries:
• Company revenue and profit: We compiled the golden
truth by extracting the Forbes Global 2000 list of year 2011

Table 1: Datasets statistics

Domain Tables Numeric Attrs Average
Company 39,223 80,149 2.04

City 81,977 140,459 1.71
Country 159,730 344,509 2.16

from [2]. We chose various subsets of those companies as the
entities. We considered multiple EA queries with “revenue”
and “profit” as attribute keywords, in various units and s-
cales and from year 2011.
• Country area: We compiled the golden truth by extracting
the list of 249 countries along with their total area from a
Wikipedia page [3]. We chose various subsets of those coun-
tries as entities. We considered multiple EA queries with
“area” as attribute keyword and in different units.
• Country taxrate: We compiled the golden truth by ex-
tracting the list of corporate income tax rates of 34 OECD
member countries from Tax Foundation [4]. We chose var-
ious subsets of those countries as entities. We considered
multiple EA queries with “tax rate” as attribute keywords
and from different years.
• City population: We compiled the golden truth by ex-
tracting the list top 600 largest cities in 2011 from the City
Mayors site [1]. We chose various subsets of those cities as
entities. We considered multiple EA queries with “popula-
tion” as attribute keyword, in various scales and from year
2011.

Conversion rules: The set of conversion rules are shown
in Table 2. We list only the ones relevant to the EA queries
reported in the paper. We omit the conversion factors and
only show the units/scales involved in the rules. For ex-
ample, for the city population EA query, the relevant rules
are those for converting between four scale labels, i.e. bil-
lion, million, thousand and NA. We also have a database
containing synonyms of unit and scale descriptors.

Table 2: Conversion rules

Query Attribute Conversion tokens
Company euro usd
revenue/profit billion million thousand NA

City population billion million thousand NA

Country area sq.meter sq.feet sq.km sq.mile

Our algorithms are implemented in C# and the experi-
ments were performed on a Windows server with a Quad-
Core AMD Opteron 2.3 GHz CPU and 128GB RAM.

6.2 Evaluating Quality of Semantic Graph
We evaluate the graph quality in terms of the quality

of the semantic labels (unit, scale and year) and semantic
matches. In this set of experiments, we report the results
on Company dataset.

6.2.1 Node Label Quality

We manually selected a random set of 1000 EAB tables
whose attributes are related to company revenue. We com-
pare the labels on these tables discovered by our collective
inference approach (CI in short) with the ones discovered
by the independent inference approach (II in short). Ta-
ble 3 shows the quality results of the node labels. Recall
that II computes labels based on local extractions only and
X edges based on those labels. For SU labels (scale and u-
nit), CI discovers more labels compared with II (labels for
35% more nodes) and with high precision (∼ 97%). II an-
notates 510 out of 1000 tables; CI annotate 180 more tables
(due to label propagation).
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We first analyze the new tables annotated by CI approach.
We randomly sampled 100 (out of 180) tables and manually
checked the labels. We found 97 tables are labeled correctly
and completely and 3 tables (all in <million, usd>) are par-
tially correct. We further analyze those 3 partially correct
tables. CI annotates two of them with million only and one
with usd only. By manually checking the original web page,
we found that the first two tables contain revenue values of
year 1955. Since the majority of web tables contain recent
information and those values are very different from the ones
of recent years, they are not connected to the majority of
tables in the semantic graph. Hence, CI fails to propagate
the correct unit to those two tables. The other error occurs
on the table which contains information about Revenue per
Employee instead of total revenue.

We now evaluate the labels discovered by both II and CI.
We observe 428 out of 510 labels are identical. CI annotates
81 of those 510 tables with additional labels (e.g., usd →
<usd, million>). Interestingly, CI even made a correction
to one of the tables3. The table header specifies million,
whereas the values are in fact in billion.

For year labels, CI labels 4X more nodes compared with
II and with a precision of ∼ 89%. II annotates only 129
out of 1000 tables while CI annotates 527 tables (due to la-
bel propagation). Again, we take a random sample of 100
tables and manually check the year annotation. The accura-
cy is 89%. From a careful analysis of the data, the mistakes
made on the 11% tables can be mostly attributed to the sim-
ilar values between different years. For example, we notice
there are two tables, one of year 2006 and one 2011. How-
ever, there are 6 out of 8 entities in the 2006 table having
values very close to 2011 revenue values. Similar to the SU
label, our approach can also make correction to year labels.
While analyzing the annotation results, we encounter a 2011
revenue table4 that happens to have “2010 revenue” in the
header – our approach correctly assigned the label 2011 to
it.

Table 3: Node label quality

SU
II 510

same: 428
diff: 1

CI 690
more: 81 (100%)
new : 180 (∼97%)

Year
II 129

same: 127
diff: 2

CI 527
more: –
new : 398 (∼89%)

6.2.2 Edge Quality

We study the quality of the semantic matches (i.e., edges)
produced by our techniques. We evaluate it on the Company
dataset as well. We consider the edges between the 1000 rev-
enue tables. Table 4 shows the edge quality results. Recall
that our approach creates new X edges and eliminates spu-
rious edges (between tables that contain information from
different years). In the table, we show the number of X edges
created and the spurious edges eliminated by II and CI ap-
proaches. For X edge creation, II creates 205 edges while CI
creates 405. For spurious edge elimination, II removes only
4 edges while CI eliminates 336 edges (out of 1935 S edges).
Both are due to label propagation: more labels lead to more

3
http://www.americanet.de/html/wirtschaft_

_grosste_firmen.html
4
http://waste360.com/corporate-sustainability-50/

2011

X edge creation and more spurious edge elimination. To e-
valuate the accuracy of the edges we created and eliminated,
we randomly took 100 sample edges from each of the set and
performed another round of manual checking. The accuracy
results are included in the Table 4 as well. The accuracy of
CI is 83% and 79% for created and eliminated edges respec-
tively. By analyzing the data, we found that the mistakes
are again caused by the same (or similar) values shared by
tables from different years.

Table 4: Edge quality

X Edge Elimination
II CI II CI

Number 205 405 4 336
Accuracy ∼90% ∼83% 100% ∼79%

6.3 Evaluating Entity Augmentation Quality
We implemented four different approaches (2 baseline ap-

proaches and 2 variations of our approach):
• S: This is a baseline approach which treats unit/scale and
year specified in the query as normal keywords in attribute
name. It considers a table relevant to query Q only if the
table header contains all of the keywords in Q.A, Q.SU and
Q.Y . The edges between tables are simple S edges.
• S-Syn: This is similar to S approach except that we lever-
age synonyms of attribute names. We mine the attribute
synonyms using the approach proposed in [21]. For attribute
name, a table T is considered a match to Q if the union of
the synonyms of T ’s attribute covers all the keywords in
Q.A, Q.SU and Q.Y .
• Independent Inference(II): This approach computes SU
and year labels based on local extraction and X edges based
on those labels. It also eliminates spurious edges based on
those local labels. It uses the query processing algorithm
proposed in Section 5.
• Collective Inference(CI): This is our proposed approach
based on the collective inference algorithm. It also uses the
query processing algorithm proposed in Section 5.
In this section, we report the EA quality for the above ap-
proaches. We use two metrics to measure EA quality: cov-
erage and precision.
coverage = #entities augmented

#entities in query

precision = #entities correctly augmented

#entities augmented

We first present the results for two simple scenarios where
the query specifies only SU (no year) and only Y (no SU)
(Country-area and Country-tax rate respectively). We then
present the results for the scenario where both SU and Y

are specified in the query.

6.3.1 SU-only Scenario

Figure 7 shows the coverage and precision results of aug-
menting country area in square km. The x-axis represents
different entity sets: the top-k countries in descending or-
der of the country area for various values of k. We did this
to study the sensitivity of the approaches to head and tail
entities 5 All the four approaches achieve high coverage; the
coverage decreases as we encounter more tail entities. How-
ever, S and S-Syn approaches have poor precision: the high-
est is 0.22 on 250 countries. In contrast, II and CI achieve
consistently high precision across all entity sets: an average

5 This assumes that the countries with larger area are head coun-
tries and the ones with smaller area are tail. There is a correlation
between area and query popularity but this, in general, is not true;
hence, the sensitivity aspect of this study is not conclusive.
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Figure 7: Country area: square km
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Figure 8: Country area: sqft
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Figure 9: Country taxrate

precision of 0.87 for II approach and 0.93 for CI. This con-
firms that adding X edges and semantic labels significantly
impacts the quality of EA queries. The improvement is more
significant in CI where we create more X edges and labels
via label propagation.

Figure 8 shows the results of augmenting country area
using a different unit: sqft. The drawback of baseline ap-
proaches is more obvious in this query. The baseline ap-
proaches fail to augment even a single entity. This is because
country area is not available in the desired unit; hence, S
and S-Syn finds zero relevant tables. On the other hand,
our approaches achieve high coverage and precision as we
can convert the values from the units they are available in
to the desired unit.

6.3.2 Year-only Scenario

Figure 9 shows the results of augmenting country tax rate
for year 2006-2009. The baseline approaches reach high cov-
erage for all years. However, the average precision is only
0.55 and 0.54 for S and S-Syn respectively. This is due to
spurious edges between tables that contain information from
different years; hence, the results contain values from years
different from the query year. II and CI improves the av-
erage precision to 0.72 and 0.92 respectively by eliminating
spurious edges. Note that II returns zero result for year
2009. This is because II fails to hit the tables that contain
the query answer without propagating the years. Overall,
CI significantly outperforms II and the baselines as it does a
better job in propagating the labels and eliminating spurious
edges (as shown in Table 4).

6.3.3 SU+Year Scenario

We compare the approaches for the scenario where the
query specifies both unit/scale and year. We present results
for four entity augmentation queries on Company and City
datasets. For this set of experiments, we omit the S ap-
proach in the figures, because S either returns zero results
or similar results as S-Syn.

Figure 10 compares the 3 approaches for the company-
revenue query in <million, $> for year 2011. The baseline
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Figure 10: Company revenue: million $
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Figure 11: Company revenue: billion $
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Figure 12: Company profit: million $
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Figure 13: City population: million

approach has good coverage but suffers from poor precision
(∼ 0.4). II does not improve the precision significantly but
CI improves the precision to 0.9. This indicates that the
higher quality labels and edges produced by CI significantly
improves the quality of EA queries.

Figure 11 shows the results for the company-revenue query
in <billion, $> for year 2011. Similar to augmenting coun-
try area in sqft, the baseline approach returns zero results,
whereas CI is not affected by changing of query scale from
million to billion. This is due to the unavailability of infor-
mation in <billion, $> and our ability to convert the values
from the units they are available into <billion, $>.

Figure 12 plots the results of the company-profit query
in <million, $> for year 2011. CI consistently outperforms
both II and the baseline approach. Figure 13 shows the re-
sults for the city-population in million for year 2011. Again,
CI significantly outperforms both II and the baseline ap-
proach on precision and achieves high coverage as well. The
average coverage and precision are 0.9 and 0.9 respectively.

6.4 EA Query Efficiency
We evaluate the efficiency of processing EA queries using

the CI approach. Figure 14 shows the query response time
as we increase the number of entities from 50 to 400. The
response time is within 1 second and increases sub-linearly
with the number of entities, making our approach usable in
interactive applications.

In summary, our experiments show that our collective in-
ference approach produces higher quality semantic matches
and semantic labels which significantly improves the quality
of entity augmentation queries.
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Figure 14: Query response time

7. RELATED WORK
Our work is most related to works on annotating web

tables [12, 19] and semantic matching between web tables
[21]. Given a catalog (e.g., YAGO), Limaye et. al. anno-
tates columns in web tables with those catalog types, pairs
of columns with those catalog relationships and table cells
with those catalog entities [12]. In contrast, Venetis et. al.
leverages a database of classes, instances and relationships
extracted automatically from the web to perform such anno-
tations. Our annotations are fundamentally different from
those annotations: we annotate columns with unit, scale and
year information. To the best of our knowledge, such anno-
tations have not been studied before in the context of web
tables. Our work significantly extends the semantic match-
ing in InfoGather [21]. InfoGather focuses only on S
edges which is inadequate for numeric and time-varying at-
tributes. InfoGather+ discovers X edges and semantic
labels in addition to S edges; as a result, it performs signifi-
cantly better compared with InfoGather.

Search over web tables has received significant research
attention recently [6, 5, 21, 14]. Cafarella et. al. proposes a
simple keyword search that returns a ranked list of web ta-
bles [5]. More recent works propose to consolidate matching
tables to synthesize the desired table for the user. One ex-
ample is the entity augmentation operation proposed in [5,
21]. Another example is the user specifying sets of keywords
she wishes to see in the answer table (e.g., “Pain killer|Side
effects”); the system consolidates a single answer table for
such queries [14]. Our work on semantic graph is orthogonal
to these works; it is critical for all consolidation-based ap-
proaches. Secondly, we significantly extend the entity aug-
mentation API for numeric and time-varying attributes.

Our work on semantic graph is related to the vast body of
work on schema matching [15, 9]. Traditional schema match-
ing works find semantic matches between two database sche-
mas. Most works focus on one-to-one mappings; the works
that deal with complex matches rely only on “local” extrac-
tion [8] (i.e., looks for labels in the column headers and val-
ues). In this paper, we argue that this is inadequate for
web tables as such information is often missing from column
headers. We leverage the fact that there are millions of ta-
bles on the web; even if the local header does not contain the
information, some semantically matching table will contain
it. Furthermore, we annotate tables with semantic labels
which is not considered in schema matching works.

Recently, researchers have started studying ways to assign
a timestamp (or time span) to facts in a knowledgebase (like
YAGO or Freebase) [20, 18]. In this paper, we study year
annotation in conjunction with scale and unit annotation
and semantic matches in the context of web tables.

8. CONCLUSION
In this paper, we present the InfoGather+ system to

answer entity augmentation queries accurately for numeric

and time-varying attributes. We build a semantic graph that
(i) labels columns with unit, scale and year information and
(ii) computes semantic matches between columns even when
the same numeric attribute is expressed in different units
or scales. Our experiments demonstrate that by leveraging
the semantic graph, we can answer such queries much more
accurately compared with the state-of-the-art.

Our work can be extended in multiple directions. In this
paper, we focused on leveraging the semantic graph for enti-
ty augmentation; how to leverage it for other modes of web
table search is an item of future work.
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