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a b s t r a c t

Resolving semantic heterogeneity across distinct data sources remains a highly relevant problem in the
GIS domain requiring innovative solutions. Our approach, called GSim, semantically aligns tables from
respective GIS databases by first choosing attributes for comparison. We then examine their instances
and calculate a similarity value between them called entropy-based distribution (EBD)1 by combining
two separate methods. Our primary method discerns the geographic types from instances of compared
eywords:
chema
IS
azetteer
eocoding

attributes. If successful, EBD is calculated using only this method. GSim further facilitates geographic type
matching by using latlong values to further disambiguate between multiple types of a given instance and
applying attribute weighting to quantify the uniqueness of mapped attributes. If geographic type match-
ing is not possible, we then apply a generic schema matching method, independent of the knowledge
domain, which employs normalized Google distance. We show the effectiveness of our approach over

s acr
eotypes
eosemantics

the traditional approache

. Introduction

The amount of geospatial data that is accumulating in
azetteers, geodatabases and many other geographic data sources
ontinues to increase at a very fast pace. One of the results of this
s the proliferation of independent and heterogeneous data repos-
tories of geospatial data accumulated by an increasingly disparate
et of processes. For instance, unmanned aerial vehicles may take
napshots of a land area to analyze its transformation over a period
f time [39], and sensor networks commonly are employed to mea-
ure the water level of a river to analyze its potential for producing
ooding conditions [40].

Because of this, questions regarding the feasibility and potential
pplications for integrating geospatial data in these repositories
ave arisen. These questions are some of the most crucial ques-
ions regarding information integration, which extends far beyond
he geospatial domain. It has been explored in the form of seman-

ic similarity research from cognitive science, information retrieval
nd artificial intelligence conducted over the past few decades
41–43]. With regard to the geospatial domain, geospatial data
nherently possess vagueness, uncertainty and varying levels of
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P. Parveen), lkhan@utdallas.edu (L. Khan), Bhavani.thuraisingham@utdallas.edu (B.
huraisingham), shekhar@cs.umn.edu (S. Shekhar).
1 EBD = entropy based distribution; GT = geographic type; NGT = non-geographic

ype; GD = normalized Google distance.
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granularity [36]. Different sets of data modeling the same geo-
graphic location may be represented by differing file formats, type
representations, coordinate reference systems, projections, natural
language text descriptions, and much more. As a result, measuring
the semantic similarity of geospatial data is a uniquely challenging
problem that will continue to require innovative solutions that are
increasingly sophisticated as the unique properties of geospatial
data become better understood.

Semantic similarity in the geospatial domain has been suc-
cessfully applied to numerous information retrieval and ranking
problems, including geolocation [29], text classification [30],
geospatial tagging, land cover similarity [34], ontology alignment
[4,24,25,31,38,44], recreational tasks like route planning for moun-
tain climbing [20], more serious tasks like emergency response
decision making [22] and much more. Furthermore, the success
of the geospatial Semantic Web depends very much on semantic
similarity algorithms being able to determine commonalities and
differences between geospatial data and their data models [28].
Efforts such as the Data Web and LinkedGeoData [19] represent
transitional efforts progressing towards a geospatial Semantic Web,
as they connect disparate geospatial datasets to better facilitate
geographic information retrieval and semantic similarity.

The main focus of our research is determining the semantic simi-
larity between geospatial data within compared schemas. Research

into the problem of schema matching within the geospatial domain
would seem to be integral to the above efforts. Relatively speak-
ing, though, it has not received very much attention. A number of
research efforts [1,2,47] have focused on instance-based schema
matching methods that depend on the semantics embedded in
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tructured information, such as a domain ontology, to identify
orrect correspondences. However, if a domain ontology is not
vailable, or if it is not designed well (either because it is incomplete
r subjective), then these methods will not work very well.

In this paper, we introduce GSim, an information-theoretic
lgorithm used to measure instance similarity between compared
ttributes in geospatial schemas. Unlike the above methods of
eospatial schema matching, GSim does not require any struc-
ured information for assistance in deriving attribute matches. At

high level, it works by first comparing tables. This is done by
rst determining pairs of attributes between the tables that are
o be compared. Comparing all attributes of the compared tables
nd their instances against one another would result in a signifi-
ant time penalty. Therefore, as a preprocessing measure, we use
ttribute name and data type matching to reduce the space of pos-
ible attribute mappings. Second, for each pair, we examine the
espective attributes’ instance data using two separate instance-
imilarity methods. Third, we determine corresponding attributes
cross tables based on semantic similarity scores. Combining all
f the scores from aligned attributes will determine similarity
etween the tables as a whole.

GSim’s primary approach for examining instance data deter-
ines the geographic types (GT) over the instances associated with

ompared attributes. This is done by leveraging an external data
ource known as a gazetteer [12,13] this might happen if the fea-
ure has a common name, such as “Johnson”, as there might be
Johnson Road”, “Johnson River”, etc. A more advanced geotyping
lgorithm, which GSim features, is able to identify exactly one GT
or any instance recognized by a gazetteer with the help of lat-
ong values. Latlong values help in disambiguating several instances

ith the same name, such that the proper GT may be associated
ith the instance in the schema. Of course, the effectiveness of this

pproach depends on whether the feature-type thesaurus in the
azetteer contains a set of types that is able to represent all of the
nstances from our data. Thus, we have made an assumption in this
aper that any instance in our data set that can be identified by a
azetteer has a type which can be represented by that gazetteer.

Whenever possible, GSim calculates similarity between
ttributes using GTs alone. If the dataset contains latlong values
ssociated with each instance, then based on our type assumption
e made above, it is possible to guarantee a 1:1 mapping between

ach instance and its GT as identified by a gazetteer. However,
ue to the great variability in how geographic data is stored and
epresented, not all geographic instances necessarily come with
atlong values. Thus, when the instances are fed to a gazetteer, we

ay derive more than one GT for certain instances. As a result,
he best that can be done is to derive 1:N mappings of these
nstances to their respective sets of GTs. Subsequently, similarity
s calculated using these mapped GTs after applying a pruning
lgorithm for disambiguation purposes.

In the case where too many instances within the compared
ttributes lack GT information, then GSim resorts to its secondary
pproach, which uses a generic schema matching algorithm based
n a semantic distance measure known as normalized Google dis-
ance (GD) [23]. GD, combined with K-medoid clustering of the
nstances of an attribute, yields a set of non-geographic types spe-
ific to that attribute which are then used to compute semantic
imilarity with another attribute in a different table. This method
s generic because it is not dependent on geographic types at all.
espite the utility of GD, solely relying on it to determine similar-

ty is unwise, particularly in the GIS domain. The reason is that a

umber of situations exist where the instances are determined to be
imilar due entirely to their close geographic proximity. One such
ituation is depicted in Section 4.2. GD, which depends on the Web
ages indexed by the Google search engine, was chosen because
f its effective coverage of the GIS domain. This is in contrast
Agents on the World Wide Web 9 (2011) 52–70 53

to an external knowledge source such as WordNet [48], a lexi-
cal database of English containing over 117,000 synsets and over
200,000 word-sense pairs. While the coverage of WordNet is quite
extensive for various domains, for the GIS domain, it is not very
extensive at all. Once the instance type has been determined, simi-
larity is calculated by considering the collection of types extracted
from instances between the compared attributes. It is based on
an information-theoretic measure known as entropy-based dis-
tribution (EBD), which is defined as the ratio of the conditional
entropy within each type over a pair of compared attributes with
the entropy taken over all types for that same pair. An EBD value
has a range from 0 to 1, with 0 indicating no similarity whatso-
ever between the attributes, and 1 indicating identical attributes.
The more similar that (1: the sets of GTs between the compared
attributes are, and (2: the number of instances representing identi-
cal types between the compared attributes are, the higher the EBD
will be, and vice versa. A formal definition of EBD is given in Section
3.3.

The major advantage of using of an information-theoretic mea-
sure over other semantic similarity measures is its versatility and
lack of constraints. Other similarity methods, such as those that
use description logic (DL) [31], NLP [35] or network based match-
ing [25], require a strictly defined set of relationships between
concepts and attributes. For example, calculating the difference
in depths between two concepts (as one would do in network-
based approaches), or determining a common parent between two
concepts (as one might do in DL approaches) is only possible if
the concepts are represented in a hierarchy, such as an ontology.
NLP approaches are dependent upon the relationships between the
words in a natural language description of a geographical concept.
In turn, this depends on the presence of natural language text in a
geographic concept, which is not guaranteed, the use of a language
for which part of speech tagging can be confidently applied, etc. On
the other hand, information-theoretic measures like EBD do not
require that data in attributes or concepts be organized in any way.
In fact, a flat structure of attributes and concepts is not a problem for
an information-theoretic measure. The only requirement that it has
is for a probabilistic model to be applicable to the data being com-
pared [37]. If this is the case, then information-theoretic measures
can also be combined with any other semantic similarity technique,
and it can be applied to various data models. For instance, although
we applied the EBD measure in GSim to geodatabases, it can also be
applied to ontology matching for Semantic Web applications. Since
GSim uses instance-based matching to align attributes between
tables in a 1-1 fashion, it can also be used to align the properties
associated with the concept instances in a 1-1 fashion. This results
in the alignment of concepts between ontologies.

Regardless of whether GSim uses GT matching or GD to
match instances, it performs matching at the concept/attribute
level by examining instances belonging to those compared
attributes/concepts. We consider every attribute/concept matched
by GSim to consist of a set of one or more instances (in our
experiments, it should be noted that every attribute contained
≥24 instances). Therefore, if the similarity between the instances
of compared attributes/concepts is high, then this implies that
the attributes/concepts themselves share this similarity. On the
other hand, if the similarity between the instances of com-
pared attributes/concepts is low, then this again implies that the
attributes/concepts themselves share this similarity.

In this paper, we compare three pairs of geospatial data sources
using their respective table instances in an effort to determine their

similarity; the first pair contains tables describing similar models
of transportation networks over multiple jurisdictions, the second
pair contains tables detailing varying geographic features beyond
road networks, and the third pair contains a mixture of road net-
work data and POI data. The data sources contain large variations
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n the geographic areas covered, the number of attributes and the
umber of instances.

The challenges that we will address in this paper are as follows.
irst, the derivation of attribute mappings between two compared
ables, along with the similarity calculations for each attribute map-
ing, may be accomplished in many different ways. We intend
o clearly distinguish our method from others applied to schema

atching. Second, only in the ideal case does the gazetteer match
ne specific GT for each of the instances. In reality, some instance
ames, such as “Clinton”, are very common, and as a result, the
azetteer is likely to return several GTs. Thus, the challenge of han-
ling multiple possible GTs for a given instance is addressed. The
hird challenge addressed by our research is the problem of deter-

ining the most uniquely relevant attributes within a particular
able. It is possible for two tables to share a high similarity score
ased on matching attributes which are not relevant to the con-
ept that the tables represent. Additionally, these attributes may
e commonly occurring relative to other attributes within tables
f the same data source. To remedy this, GSim applies attribute
eighting to measure table similarity by placing more weight on

hose attributes which are more relevant to their respective tables
nd more unique, relative to all other attributes in the data source.
his way, the measured EBD value generated for any given table
omparison will be based on attributes that represent the essence
f the compared tables.

Our contributions in this paper are as follows. First, we
escribe GSim, a method of aligning geospatial schemas using an

nformation-theoretic measure to determine the semantic similar-
ty of attributes. This is primarily accomplished via GT matching.
econd, we propose a method of disambiguating among multiple
ossible GTs associated with an instance using an associated lat-

ong value. Third, we provide a way to perform attribute matching
sing non-geographic types, in case insufficient GT information is
vailable. Finally, we introduce a method of attribute weighting
hat accounts for the uniqueness of the paired attributes relative
o all others. This is done in order to improve the accuracy of the
emantic similarity value between tables.

The rest of this paper is organized as follows. In Section 2, we
iscuss an overview of related work. Section 3 states definitions, the
roblem to be solved and our proposed solution. Section 4 presents

n detail the GSim algorithm, detailing both the geographic lookup
omponent as well as the more generic GD component. In Section
we present our results generated with GSim and compared them

gainst those generated using N-grams. Finally, in Section 6, we
utline our future work.

. Related work

In this section, we will first present other work related to schema
atching. Second, we present work in the GIS domain making

se of a gazetteer. Third, we present work making use of reverse
eocoding. Fourth, we will present work done regarding attribute
eighting. Finally, we contrast our work with another approach
sed to solve the schema matching problem.

A number of schema matching publications [5–8] tailored to
he database community influenced our work. The survey of
pproaches to automated schema matching by Ralun and Bernstein
5] includes a taxonomy which uses several criteria to catego-
ize matching approaches such as schema and instance based
ethods, element-level and structure-level methods, and linguis-
ic and constraint-based methods. While this work surveys a wide
wath of approaches covered in schema matching literature, it does
ot present any approaches specifically tailored to the geospa-
ial domain. Matching in the geospatial domain presents unique
hallenges, due to the properties inherent in geospatial data such
Agents on the World Wide Web 9 (2011) 52–70

as geometry, georeferenced coordinates, variations in formatting
and coordinate systems, and much more. The nature of geospa-
tial data is complex enough such that most applications, including
our current implementation of GSim, have only addressed a sub-
set of its unique properties. Dai et al. [6] discuss instance-based
schema matching using distributions of N-grams among compared
attributes. The differences between our work and [6] is discussed
later in this section. Bohannon et al. [7] investigate contextual
schema matching, in which selection conditions and a framework
of matching techniques are used to create higher quality mappings
between attributes of compared schemas. Among their methods
for deriving selection conditions is the training of a classifier on the
attribute values from an attribute involved in a match. This would
imply that the values of an attribute can be expressed by a pattern,
such as a regular expression. However, this would not work in the
geospatial domain because a number of attributes, such as ‘City’
and ‘County’ cannot have their attribute values described by a gen-
eralized expression. Thus, training classifiers on these attributes
would not make a contribution towards a match with other simi-
lar attributes. Warren and Tompa [8] propose an iterative algorithm
that deduces the correct sequence of concatenations of column sub-
strings in order to translate from one database to another without
the use of a set of training instances. While this work addresses
some of the same challenges that we do, our work is distinguished
by the inclusion of attribute weighting to account for differences
in the importance of certain attribute comparisons over others,
and also by our use of latlong driven disambiguation as applied
to geographic instances identified by gazetteers.

Within the AI community, a number of works in the schema
matching area applied machine learning and statistical methods to
learn attribute properties from data and examples. Li and Clifton
[9] describe a tool known as SEMINT, which uses neural networks
to determine match candidates by learning the metadata and data
values patterns of attributes. From this, other attributes with sim-
ilar metadata and data value patterns are sought in order to create
1:1 attribute mappings. However, their methods would not work
in many cases for geospatial schema matching because several
attributes in this domain share similar metadata and/or data value
patterns, yet are completely different. For instance, the attributes
“County” and “City” both could be characterized with the same SQL
datatype (i.e.: CHAR (40)), and they may even share some identical
data values. However, learning these characteristics would never
amount to anything, because of the arbitrary nature of the names
of counties and cities. Berlin and Motro [10] describe a tool known
as Autoplex which uses supervised machine learning techniques
such as Naïve Bayes classification for automating the discovery of
new content for virtual database systems. While the versatility of
the Naïve Bayes approach is widely known, its binary classification
methodology is a problem for geospatial schema matching. In the
Naïve Bayes approach, an instance either belongs to an attribute or
it does not. In geospatial schema matching, a finer grained approach
is needed since instances often display degrees of membership to
various attributes. GSim takes into the possibility of instances hav-
ing multiple GTs. It attempts to reduce the number of GTs for an
instance to one, but if this is not possible, then it takes into account
all possible GTs for that instance into the final EBD calculation. Emb-
ley et al. [11] explore both 1:1 and m:n schema mapping techniques
by applying knowledge obtained from domain ontology snippets
and data frames. However, if this method was applied to geospa-
tial schema matching, then it would fail for the same reasons as [9]
would fail. The problem is the assumption that the membership of

an instance value to an attribute is based on a data pattern or a reg-
ular expression. In the geospatial domain, this is often not the case.
Also, the use of domain ontology snippets for schema matching
is highly subjective. The structure of the ontology is often depen-
dent on the specific vision of its designers, which might differ from
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he vision of those individuals who designed the schemas being
apped. Furthermore, the choice of the ontological snippet to use

s inevitably fraught with bias in one form or another.
The most closely related work in the GIS domain discusses

nstance matching over geodatabases, ontologies, thesauri and
ther geographic data sources. Cruz et al. [4] describe Agree-
entMaker, a visual tool that provides a user with the ability

o perform mappings between ontologies using a multi-faceted
trategy involving automated techniques as well as manual speci-
cations. Albertoni et al. [25] devised an instance based similarity
easure that matches instances of ontological concepts based on

wo contextual layers: an ontology context, which is based on a
omparison of the concepts’ depth in a structured hierarchy as well
s the number of attributes and relations they share, and an appli-
ation context, which uses instance paths and set of predefined
omparison operations between concepts to perform a match based
n the specific needs of the user. Janowicz and Wilkes [24] describe
IM-DLA, a DL based instance similarity measure that matches
nstances from a source concept, specified as a user query, with
he instances from all target concepts that can satisfy the query.
his is determined with the help of a context concept that is the
uperclass of all possible target concepts, along with a modified
ersion of the tableau algorithm that is normally used in satisfia-
ility checking. Unlike GSim, each of the above approaches requires
hat the instances of concepts or attributes belong to a sophisticated
ntology replete with numerous relation types between the con-
epts and/or attributes. In a use case involving matching between
wo unstructured geospatial data sources, like flat sets of concepts,
hesauri or an unstructured folksonomy (which might consist of
atellite imagery of a geographic location, along with its keyword
nnotations) consisting of concepts annotated by a community of
sers, the methods above which depend on a defined structure of
oncepts will not be applicable. Karalopoulos et al. [35] outline a
ethod for using POS tagging and subsequent parsing to convert
geographic concept description into a conceptual graph, which

ould then be used for various purposes including semantic sim-
larity. Though this work does not explore semantic similarity, it
lso relies on a strict relation structure between the tagged words
n the concept definition, as well as a strict grammatical struc-
ure of the definition itself. If the concept does not contain any
nnotations, then this method will not work. Furthermore, the suc-
essful creation of a conceptual graph depends on the definition
ontaining an ordered grammatical triple consisting of a genus, dif-
erentia and an illustrative example. Obviously, many ontologies
xist where concepts are annotated differently. Other work related
o instance matching in the geospatial domain is as follows. Ahlqvist
nd Shortridge [34] introduce semantic variograms, which can be
sed to determine the semantic similarity of multi-class land areas
eparated by a series of spatial lags. Paes Leme et al. [1] perform
chema matching over GIS databases containing data represented
y a dialect of OWL. Brauner et al. [2] perform instance matching
ver the exported schemas of geographical database Web services
nd apply their technique over the GeoNames and ADL gazetteers.
rauner et al. [3] leverage instance mapping between distinct terms

n feature type thesauri used to classify data in gazetteers, for the
acilitation of successful thesaurus migration from one gazetteer to
nother. The method described in [34] works well for land cover
lassification, but would not work as well for geospatial schema
atching, since its matching criteria only works over ordinal data.

he methods outlined in [1–3] use co-occurrence statistics of pairs
f keywords or types in order to derive attribute mappings. In many

ases, this is an effective method; however, in order for it to work,
t relies on a syntactic match between either instance names or the
nstance types. Often times, the names and properties of geospatial
ntities contain slight variations which require methods beyond
yntactic matching in order to determine a match with another
Agents on the World Wide Web 9 (2011) 52–70 55

entity. GSim relies on semantic matching by leveraging the GTs and
latlong values of compared instances for geographic type matching.
If geographic matching is not possible, instances can also be com-
pared using a semantic NGT match via GD and K-medoid clustering.

Much work in the GIS community making use of a gazetteer
for information lookup influenced also our work. Zhou et al. [12]
apply a deterministic, density-based clustering algorithm to semi-
automatically discover gazetteers from users’ travel data, as well as
disambiguate between uninteresting and interesting results from
the gazetteer using temporal techniques. Newsam and Yang [13]
integrate a gazetteer with high-resolution remote sensed imagery
to automate geographic data management more completely, and
they also demonstrate how gazetteers can be effectively used as a
source of semi-supervised training data for geospatial object mod-
eling. Pouliquen et al. [14] use a gazetteer lookup, as opposed to
linguistic analysis, to search through natural language text and
produce geographic maps and animations that represent the area
referred to in the text. Despite the novelty of these works, they fail
to address the challenges in geospatial matching that GSim is able
to meet. The work in [12] and [14] depend on performing exact
matches between the user’s data and data found in a gazetteer. A
sophisticated semantic matching algorithm must discover similar-
ity between heterogeneous sources, whether or not an exact word
match exists between the compared data. Thus, the methods out-
lined in [12] and [14] would be ineffective towards the application
of aligning two geospatial ontologies that model the same geo-
graphic area, but using different languages. Meanwhile, the work
in [13] focuses on using remote sensed imagery as training data in
an effort to model geographic objects in a semi-supervised way;
since it works with images as opposed to text, it solves a different
problem than GSim. However, even if it was applied for semantic
matching over compared data sources that also contained repre-
sentative image data, errors resulting from the variability of images,
such as lighting, inclement weather, scale, etc. would cause a fairly
high degree of error in identifying objects (or geographic features,
in this case) from the images. Using GSim’s type matching method,
as long as a GT is associated with a geographic feature in a gazetteer,
there will be no ambiguity about the type of a feature.

Some work in the GIS community involving reverse geocoding
is related to our research. Zhou and Frankowski [15] evaluate the
accuracy of personal place discovery using reverse geocoding and
clustering through a set of evaluation metrics and an interactive
evaluation framework. Joshi and Luo [16] employ reverse geocod-
ing using location coordinates from image data to obtain nearby
points of interest connecting an image with its geographic loca-
tion. Wilde and Kofahl [17] describe the use of reverse geocoding
in retrieving location types as an essential component for a geo-
enabled Web browser. Our work shares some tangential similarities
with the above work (i.e. the use of clustering), but differs funda-
mentally by using latlong information from gazetteers and attribute
weighting to derive a more intelligent means of performing schema
matching across data sources in the GIS domain.

Attribute weighting research has mostly focused on applications
of machine learning, such as estimation by analogy and query rank-
ing. To the best of our knowledge, it has never been applied to
schema matching in the geospatial domain. Li and Ruhe [45] per-
formed a comparative study of five separate attribute weighting
heuristics as a means of measuring software effort estimation. The
heuristics are based on rough set analysis, which uses the notion of
equivalence classes to construct approximations of a given set. This
method, as stated in [45], would not apply very well for our pur-

poses to schema matching for two reasons. First, rough set analysis
is designed to work with ordinal data, such as a list of categories
(i.e.: {Low, Medium, High}). Our data sets consist of non-ordinal
data, such as sets of county names or latlong values. Second, the
methods described in [45] depend on historical data sets to deter-
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ine an analogous weighting scheme suitable to the current data
et. However, there is nothing to suggest that these methods can
andle new data values that have never appeared in any historical
ata set. In geospatial schema matching, it is common to encounter
ntirely new data values with the task of determining their similar-
ty to another data set. Su et al. [46] use attribute weighting to rank
list of results generated from a user query over an e-commerce
atabase without the need for direct user feedback. However, in
heir approach, while it is true that they do not require a user to pro-
ide direct feedback on the attributes most important to him/her,
46] determines the attribute weight largely based on implicit hints
rovided by the user query. For instance, in a web database of used
ars consisting of attributes “Year”, “Price”, “Mileage” and others, if
user specifies a query, “Year > 2009”, then [46] surmises that the
ser prefers a car with low “Mileage”, thus making this attribute
ore important than others. However, in our experiments, no

ser feedback whatsoever is available. Also, [46] assumes that the
Price” attribute is always present in a database. For our experi-
ents, we can never assume that a particular attribute is always

resent.
We seek to compare our schema matching research against

he work of Dai et al. [6]. They present a solution to the schema
atching problem that makes use of N-grams. We argue that GSim

eatures an innovative instance matching algorithm that possesses
number of advantages over the N-gram approach, particularly in

he GIS domain. An N-gram is a substring of length N consisting
f contiguous characters. So for example, if N = 2, then the word

GSim’ has N-grams ‘GS’, ‘Si’ and ‘im’. First, GSim determines GTs
or instances via a gazetteer as part of the process of determin-
ng an overall semantic similarity value between attribute pairs
ontaining those instances. Because GSim uses domain-specific
nformation to determine the GT for a given instance, it is bet-
er equipped than the N-gram approach to solve the information
ntegration problem among geodatabases. N-Grams cannot take
dvantage of domain knowledge, since they are only parts of words.
econd, GSim can retrieve missing instance values in geodatabases
y using associated latlong values to perform reverse geocoding.
his ability is not available using solely the N-gram approach,
ecause they cannot have latlong values associated with them.
hird, in case the geographic lookup component is unsuccessful,
Sim leverages clustering of types for use on distinct keywords

ound between compared attributes via GD. This approach is better
ble to capture the semantics of comparisons between attributes
ecause words contain more implicit semantic information than
-grams. Using words, we can reference external data sources that
llow for distance metrics to determine word relatedness. Finally,
ur new instance matching algorithm does not require a syntactic
atch between its instances, whereas N-grams does. For example,

or two N-gram instances to match, they have to represent the same
tring (i.e.: “ab”). On the other hand, GT matching in GSim would
e able to match instances such as Spring Valley Road and Canyon
reek Drive, based on their common geographic type.

The work presented in this paper is an extension of our pre-
ious work [26,27] in the following ways. First, in addition to the
dentification and leveraging of GTs for the purposes of improving
emantic matching outlined in [27], we now further improve our
atching results through the comparison of latlong values in the

ataset and in a gazetteer. This way, we can guarantee an exact
atch between a particular instance within a compared attribute

nd its correct GT, as long as the gazetteer recognizes the instance’s
eature type. Second, we developed and tested an attribute weight-

ng scheme to allow semantic matching between tables to occur
ased on the importance of the attributes in the compared tables
elative to the subject of the table itself. For instance, if a set of
ttributes from a table called Road are taking part in a match with
ttributes from another table known as Street, then an attribute
Fig. 1. Sample table containing two attributes and six instances per attribute.

such as “RoadName” would contribute far more to the semantic
similarity (or dissimilarity) to the Street table than an attribute like
“rID”, which might have nothing to do with roads at all (this would
be the case if the attribute represented an ID used internally by a
geodatabase). In this case, an attribute pairing of “RoadName” from
the table ‘Road’ with “StreetName’ from the table ‘Street’ would
effectively be more important for determining the true semantic
similarity value between ‘Road’ and ‘Street’ than an attribute pair-
ing of “rID” from ‘Road’ and “sID” from Street. Third, in addition to
the N-gram method, our work compares the performance of our
algorithm, GSim, to two additional widely accepted methods used
for determining semantic similarity: Singular Value Decomposition
(SVD) and Nonnegative Matrix Factorization (NMF). We show in
Section 5 that our algorithm outperforms N-grams, SVD and NMF
over three different multijurisdictional datasets in the GIS domain.

3. Problem statement and proposal

3.1. Definitions

First, we will provide definitions that will assist in defining the
problem and describing GSim.

Definition 1 (attribute). An attribute of a table T, denoted as att(T),
is defined as a property of T that further describes it.

Definition 2 (instance). An instance x of an attribute att(T) is
defined as a data value associated with att(T).

Definition 3 (Keyword). A keyword k of an instance x associated
with attribute att(T) is defined as a meaningful word (not a stop-
word) representing a portion of the instance.

In Fig. 1 above, the two attributes for the given table are road-
Name and City, two instances from the roadName attribute are
“Johnson Rd.” and “School Dr.”, and the two keywords associated
with the instance “School Dr.” are “School” and “Dr.”.

Definition 4 (type). A type t associated with attribute att(T) is
defined as a class of related entities grouped together.

We define two kinds of types:

Definition 4a (Geographic type (GT)). A geographic type GT associ-
ated with attribute att(T) is defined as a class of instances of att(T)
that represent the same geographic feature.

Definition 4b (non-geographic type (NGT)). A non-geographic type
NGT associated with attribute att(T) is defined as a group of key-
words from instances of att(T) that are semantically related to each
other. An NGT is only derived for an instance when it cannot be

associated with any geographic type from a gazetteer.

Definition 5 (geographic type (GT) vector). A geographic type
vector Tx = {GT1, GT2, . . . , GTm} associated with an instance x of
attribute att(T) is defined as a set of GTs.
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Fig. 2. Sample instances of attribute att and their respective sets of GTs.

efinition 6 (geographic weight (GW) vector). A geographic weight
ector Wx = {w1, w2, . . . , wm} associated with a GT vector Tx =
GT1, GT2, . . . , GTm} for an instance x of attribute att(T) is defined
s a list of real numbers between 0 and 1 representing the influence
f a GT on the instance.

Note that for all i, GTi ∈ Tx of any instance x has weight wi ∈ Wx.

efinition 7 (geographic type set of attribute (Tatt)). A geographic
ype set of attribute att(T), denoted Tatt , is the set of GTs derived
rom the union of the types from all GT vectors for the instances of
tt(T).

efinition 8 (non-geographic type set of attribute (NTatt)). A non-
eographic type set of attribute att(T), denoted NTatt , is the set of
GTs associated with keywords from instances of att(T).

efinition 9 (geographic type weight list (Watt)). A geographic type
eight list Watt associated with attribute att(T) is the total type
eights for each type in Tatt .

In Fig. 2 above, the instances are “Victoria”, “Anacortes”,
Clinton” and “Edmonds”. The GT ‘City’ represents the instances
Victoria” and “Clinton”, The GT vector for “Victoria” = {City, State,
eature} and for “Anacortes”, it is = {County}. The GW vector for
Victoria” is {1/3,1/3,1/3}, and for “Anacortes” it is {1}. If these four
nstances make up the entirety of attribute att, then Tatt is {City,
tate, Feature, County}, and the GT weight list Watt is {1/3 + 1/2,
/3, 1/3 + 1/2, 1 + 1}, or in simplified form, {5/6, 1/3, 5/6, 2}. The
ormalized computation of Watt is shown in Section 4.1.2.

As an example of illustrating the weighting of GTs, taking
ll instances from Fig. 2 into account, the total weighting for
he types listed are as follows: “City” = (1/3 + 0 + 1/2 + 0) = 5/6,
State” = (1/3 + 0 + 0 + 0) = 1/3, “Feature” = (1/3 + 0 + 1/2 + 0) = 5/6,
nd “County” = (0 + 1 + 0 + 1) = 2 (Recall that for “County”, 1 is for
nacortes and 1 is for Edmonds).

In Fig. 3 below, given an instance with a value of “Pacific Coast
ighway” from attribute att, there are two NGTs named generic

ype 1 and generic type 2. The NGT set NTatt of attribute att that
ontains this instance would have {generic type 1, generic type 2},
s well as other types from other instances of this attribute.

.2. Problem outline
Given two data sources, S1 and S2, each of which is composed
f a set of tables where {T11, T12, T13 . . . T1M}∈ S1 and {T21, T22,
23 . . . T2N}∈ S2, the goal is to determine the similarity between
he tables of S1 and the tables of S2. This is done by first creat-
ng mappings between attributes of compared tables (say T11 and

ig. 3. Sample keywords from an instance of attribute att and their respective NGTs.
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T21) such that for every mapping, one attribute of T11 is compared
against one attribute of T21, until each attribute of T11 maps to a
single attribute of T21. In the case where T11 and T21 differ in the
number of attributes, we require that the table with the smaller
number of attributes has every attribute map to an attribute in the
compared table. This means that the table with the larger number
of attributes may have one or more attributes not involved in any
comparisons. The final similarity value between the tables is taken
to be the average similarity values of their attribute mappings. S1
and S2 may vary in regards to the number of constituent tables,
and the number of attributes and instances within a given table
may also vary.

3.3. Proposed solution

We present GSim, an instance matching algorithm that gen-
erates semantic similarity values between compared attributes
in different tables of a geodatabase. The derivation of attribute
mappings between a pair of compared tables is created in two
separate stages. First, a preprocessing phase based on data type
matching and attribute name matching determines the pairs of
attributes that are most likely to be similar. These attribute pairs
represent the attribute mappings whose collective similarity values
will determine the similarity value between their tables. Second,
instance-level matching is applied to each attribute pair in order
to determine their similarity. Our instance-level matching is based
on two separate approaches. The primary approach assigns GTs to
instances involved in compared attributes within two tables of the
geodatabase with the help of a gazetteer. This results in a pair of
GT sets, one for each attribute. The semantic similarity between
the compared attributes is then computed using EBD over their
respective GT sets. However, since gazetteers will not contain infor-
mation about every instance, it is possible that attribute matching
via geographic-type extraction will be ineffective. In this case, we
apply a generic matching method, applicable over any knowledge
domain, that is based on the extraction and clustering of instance
keywords into NGTs, based on GD. Further details describing GSim
in its entirety are described in Section 4.1. It is our intention to
clearly show that the use of GSim is better able to capture the
true semantics that exist between compared attributes contained
within GIS tables as opposed to using N-grams.

It is assumed that we perform 1:1 comparisons between
attributes from distinct tables and data sources. After calculating
a similarity value between compared attributes using EBD, we will
repeat the process for all compared attributes between the tables.
This results in a set of 1:1 mappings, or alignments, which display
the attribute correspondences between the tables. Next, a final sim-
ilarity value between the tables is calculated by taking the average
of the EBD values between all attribute pairs. EBD is based on a
comparison of the conditional entropy of the attributes, given a
particular type, with the entropy of the attributes over all types:

EBD = H(A|T)
H(A)

(1)

In this equation, A is the attribute, coming from either one table
or another (since all table comparisons are 1-1), and T stands for the
type of the instances of the attribute. Attributes can also be referred
to as ‘columns’, so in subsequent sentences, H(A) will sometimes be
written as H(C) for entropy (where H(A) and H(C) mean the same
thing), and H(A|T) will sometimes be written as H(C|T) for con-
ditional entropy. (where H(A|T) and H(C|T) mean the same thing.

There may be multiple types per attribute; for geographic match-
ing, T would indicate a GT, such as ‘City’ or ‘County’, while for
non-geographic matching, T would indicate a given generic type.
Intuitively, an attribute A contains a high entropy value if it is
impure; that is, the ratios of types (either GT or NGT) making up
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ig. 4. In (a) on the top, the distribution of types across attributes when EBD is high.
(C) is similar to H(C|T). In (b) on the bottom, distribution of types across attributes
hen EBD is low. H(C) and H(C|T) have dissimilar values.

are similar to one another. On the other hand, low entropy in
exists when one type exists at a much higher ratio than any

ther type. As applied to our research, entropy always measures the
atio of the number of instances of an attribute A and a compared
ttribute A’ regardless of what the GTs or NGTs may be. Conditional
ntropy, on the other hand, measures the ratio of the number of
nstances of A and A’, given a particular type (GT or NGT). Fig. 4a and
provide examples to help visualize the concept. In both examples,

rosses indicate instances originating from A, while squares indi-
ate instances originating from A’. Each distinct type (GT or NGT) is
epresented as a cluster (larger colored circles), each of which con-
ains instances from A and A’ associated with that type. In Fig. 4a,
cross all types, the total number of crosses = 10 and the total num-
er of squares = 11, which implies that entropy is very high. The
onditional entropy is also quite high, since the ratios of crosses
o squares within two of the clusters are equal and nearly equal
ithin the other. Thus, the ratio of conditional entropy to entropy
ill be very close to 1.0, since the ratio of crosses to squares is
early the same across types and within each type. Fig. 4b portrays
different situation: while the entropy is 1.0 (since the number

f crosses is equal to the number of squares overall), the ratio of
rosses to squares within each individual cluster varies consider-
bly. One cluster features all crosses and no squares, while another
luster features a 3:1 ratio of squares to crosses. When comput-
ng the EBD value for this example, we will derive a value that is
ower than the EBD for the first example because H(C|T) will be a

uch lower value. Intuitively, this makes sense because the ratios
f instances associated with a particular type between A and A’ are
issimilar.
. Overview of GSIM

This section describes GSim, our instance similarity algorithm,
nd its two components. The first, detailed in Section 4.1, involves
Agents on the World Wide Web 9 (2011) 52–70

the use of a geographic lookup to determine whether the instances
of compared attributes between two tables share similar GTs. If so,
then an exact match for those instances is made using only GTs. If
not, then the second component of GSim, which exclusively relies
on a non-geographic measure of semantic similarity between
instances of compared attributes, is applied. The rest of the sec-
tion discusses attribute weighting, a more intelligent method of
performing semantic schema matching that relies on the fact that
certain attributes contribute more to the meaning of a particular
table than others. Section 4.2 describes our justification for using
geographic types as our means of applying semantic matching.
For our purposes, we use GD as our non-geographic similarity
measure, but despite the generalized utility of GD, there are
situations when this approach produces inaccurate results. Section
4.2 depicts one such situation. Section 4.3 outlines a proposed
solution to problem described in Section 4.2.

We justify our usage of GSim as a semantic similarity metric
by comparing it against an alternative semantic similarity metric
derived from WordNet, a lexical dictionary for the English language.
We decided against using it because of its shallow coverage of con-
cepts relative to that which is covered by the combination of GSim
for geographic matching and GD for non-geographic matching. For
example, in comparing two street name attributes of the Road-Road
table comparison for the GIS transportation dataset (see Section
5 for more information on the table comparisons), GSim + GD was
able to compute 4776 out of 4992 (95.7%) distinct pairwise distance
values for the extracted keywords between the pair of attributes.
For the same attribute pair, WordNet was only able to calculate
2,068 distinct pairwise values, only 43.3% of the number of val-
ues calculated by GSim + GD. Additionally, for a comparison of a
street name attribute and a port name attribute between the Road
table of S1 and Ferry table of S2 for the GIS transportation dataset,
GSim + GD found 132 out of 161 (81.9%) distinct pairwise values
between extracted keywords while WordNet only found 22 out of
161 (16.7%).

4.1. GSim algorithm

4.1.1. Overview
For Algorithm 1 below, the input consists of the attributes A1 ∈ T

in S1 and A2 ∈ T’ in S2 and gazetteer G. Line 1 initializes Tgaz, the set
of all GTs recognized by gazetteer G, TA1 and TA2, the GT vector lists
for A1 and A2, respectively, NTA1 and NTA2, the NGT vector lists for
A1 and A2 respectively, and WA1 and WA2, the GW vector lists for
A1 and A2, respectively. Lines 2 and 3 extract the distinct instances
from A1 and A2. Line 4 determines whether semantic similarity
can be performed strictly by relying on GTs, or if GD similarity will
be necessary. GT similarity is only possible if a gazetteer is avail-
able, and if it contains sufficient GT information about enough of
the instances. For our purposes, we established a threshold, tmin,
which represents the minimum number of instances that contain
GT information in G. In our experiements, tmin was set to a value
of .5. Therefore, if GT information can be found for a number of
instances greater than or equal to tmin (at least 50% of the instances
in the compared columns), then EBD is calculated using only GTs.
This process is initiated in lines 5–8, where line 5 retrieves all avail-
able GTs, Tgaz, recognized by gazetteer G, lines 6–7 derives a GT
vector list TA1 and its associated GW vector list (WA1 in line 6 and
WA2 in line 7), consisting of GT vectors for each instance of A1 and
A2. If however, in line 4 if geotypingIsPossible() returns false, then
we need to rely on a more generic measure like GD to compute

semantic similarity between the compared instances. This is done
in line 9. The GD component of GSim will be described in Section
4.1.4. Line 11 calculates the final EBD value between A1 and A2 given
the combined type vector lists and weight vector lists of A1 and A2,
and line 12 returns that EBD value.
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ig. 5. Segment of the ADL gazetteer’s feature type hierarchy for manmade features.
he two dashed lines are cutoff points that determine how specific our GTs should
e, which effects the final similarity score between compared attributes.

.1.2. Assigning GTs to instances
We leverage a gazetteer as a way to help determine the GT of

n instance. The gazetteer used for our purposes is GeoNames [18],
ontaining information on over 8 million geographic names. The
azetteer classifies locations into different categories, or types.
ome examples of GTs include city, county, state and a general
eature with several sub-classifications, such as lake, port, school,
tc. Instances with more commonplace names are likely to be listed
nder multiple types in the gazetteer. As a result, a single instance
ay be associated with a list of GTs = {GT1, GT2 . . . GTn}, where
is the number of GTs recognized by the gazetteer. However, as
ill be described in Algorithm 2, because an instance may have
ultiple GTs, the weight of that instance for each of those types

s divided proportionately. Finally, an EBD calculation over the
ifferent GTs is performed.

Formally, let Tgaz = {GT1, GT2, . . . , GTm} be a set of GTs recog-
ized by gazetteer G, with GTi, 0 ≤ i ≤ m, representing one of these
ypes. For example, GTi may be a county, city, state, etc. An arbi-
rary instance x associated with attribute att(T) will be associated
ith a GT vector Tx = {GT ’1, GT ’2, . . . , GT ’n}, n ≤ m and n > 0. Let
= {w1, w2, . . . , wn} be a GW vector, where each wj is associated

ith each GT’j in Tx for instance x, where |W| > 0 and all wk in W
or x have a value of 1/ |W|. For example, if x was associated with
hree GTs, then the weight wj of each type for x would be 1/3.

lgorithm 1. GSim (A1, A2, G)
Input:
-attribute A1 ∈ T in S1, attribute A2 ∈ T’ in S2, gazetteer G
Output: Semantic similarity value between A1 and A2 expressed as EBD
1: Tgaz = ˚, TA1 = TA2 = ˚,NTA1 = NTA2 = ˚,WA1 = WA2 = ˚
2: IL1 = ExtractInstances (A1)
3: IL2 = ExtractInstances (A2)
4: if (geotypingIsPossible (G,IL1,IL2)){
5 : Tgaz = getGezetteerTypes(G)
6 : (TA1,WA1) = lookupGeoTypes(Tgaz, IL1)
7 : (TA2,WA2) = lookupGeoTypes(Tgaz, IL2)
8: } else {
9: (NTA1,NTA2) = NGDSim(IL1, IL2)
10: }//end if
11: EBD[A1][A2]=computeEBD (TA1, TA2,WA1, WA2, NTA1, NTA2)
12: return EBD[A1][A2]

Some gazetteers contain a hierarchical feature type thesaurus.
ne example is the ADL gazetteer [32]; Fig. 5 shows the segment
f the feature type hierarchy that represents manmade features. As

f now, GSim assigns the most general GT to a given instance. For
gazetteer with a flat feature type system, this is not a problem,

s there will be no doubt about the GTs of instances when com-
uting an EBD score between compared attributes. However, for
Fig. 6. GSim’s use of latlong values associated with an instance allows for further
disambiguation among its GTs.

a hierarchical type system, the final EBD score depends upon the
specificity of the GT assignments of the instances. For example, in
Fig. 5, if instances are assigned GTs that are no more specific than
“Manmade Features”, as illustrated by Cutoff 1, then any instance
that is an “Agricultural Site”, “Commercial Site”, etc. will have a
GT of “Manmade Feature”. As a result, the calculated EBD between
compared attributes with these instances is likely to be higher. In
reality, though, the EBD value is more likely to be overestimated.
On the other hand, if we assigned GTs to instances that may be as
specific as “Commercial Sites” or “Capitol Buildings”, as indicated
by Cutoff 2, then it is very possible that many of the instances that
were labeled as “Manmade Features” using Cutoff 1 would now
be labeled as a more specific GT, such as “Capitol Building” or a
“Cemetery”. This would result in a final EBD value between com-
pared attributes that is lower than if Cutoff 1 was used. However,
in reality, the EBD is likely to be underestimated compared to an
EBD score derived from a situation where the user was interested
in assigning GTs no more specific than “Agricultural Site”. Although
this problem is not the focus of our work, we are continuing to study
it by carrying out additional experiments. The goal is to determine
the cutoff that yields the highest EBD value while sacrificing an
acceptable amount of GT specificity.

4.1.3. Using latlong values
GSim also possesses the ability to leverage latlong values

for the purposes of improving the accuracy of the semantic
similarity measurement between two attributes, and ultimately,
between two tables. This is accomplished by comparing latlong
values associated with the instances of compared attributes, and
comparing them against latlong values for those same instances
in the gazetteer. This technique is intended for those instances
associated with multiple GTs; using latlong values, it will be
possible to identify the correct GT out of many within the GT set
for an instance with a common name such as “Clinton”. At the
same time, latlong values can also help disambiguate among the
GTs of instances where the types do not match.

The process of using latlong values for further disambiguation
is illustrated in Fig. 6. Here, two attributes are being compared
against one another for the purposes of deriving a semantic
similarity value. In particular, an instance of the City attribute

from table T named “Clinton” is compared against an instance
from table T’ from the ‘County” attribute, also named “Clinton”.
Since “Clinton” is a common name, a query to a gazetteer by GSim
for both instances is very likely to result in the return of >1 GTs.



6 s and

W
d
a
F
c
s
t
t
t
a
s
b
b
d

l
l
b
v
o
c
v
t
t
t
s
v
s
m
d
m
t
t
l
n
a
A
t
s

a
r
o
a
t
w
t
o
2
t
d
i
i
b
l
x
i
p
v
t

4

t
G
n

0 J. Partyka et al. / Web Semantics: Science, Service

ithout the use of latlong information, we would not be able to
efinitively pare down the number of GTs for each instance, thus
ffecting the accuracy of the semantic similarity calculation. In
ig. 6, the instance “Clinton” in table T is associated with both the
ounty and city GTs, and no further disambiguation is possible. The
ame is true with the instance “Clinton” from table T’. However,
he use of latlong information, both from the instance data and
he gazetteer itself, allows a comparison of the latlong values
o be made so that the correct GT for each instance is chosen in
n automated fashion. The end result of this is a more accurate
emantic similarity calculation between attributes, and ultimately,
etween tables. In Fig. 6, using latlong information, it can now
e determined unequivocally that the Clinton instances represent
ifferent GTs, and thus, should not be matched.

One crucial detail worth mentioning regarding the use of
atlong values for GT identification is the natural variation in
atlong values displayed by gazetteers. This may come about either
ecause of differing numbers of significant digits in the coordinate
alues, cartographic projection, or due to differences in the scale,
r level of detail, of geographic features. For instance, if our data
ontains an instance known as “Example Ave.”, with a latitude
alue of “43.24323”, and our gazetteer contains this instance at
he same level of detail, but with a latitude value of “43.2432332”,
hen in all likelihood, this should be considered a match. To solve
his problem, we use a distance tolerance measure that discounts
ignificant digits to the right of the decimal point in the latlong
alue that are not deemed crucial for the match. The number of
ignificant digits that are discounted depends on the features being
atched, and their level of accuracy. Every time an instance in our

ata set is matched to an instance in the gazetteer, we first deter-
ine the geographic type of the instance. Afterwards, we classify

he instance match according to 9 possible levels of accuracy, with
he lowest level of detail (level 1) being country, and the highest
evel of detail (level 9) being “premise”, which includes building
ames, property names, shopping centers, etc. We modeled our
ccuracy hierarchy after version 2 of Google’s Reverse Geocoding
PI [33]. Using the level of detail of the feature data, in addition to

he feature type of the instance, we can determine the number of
ignificant digits to discount.

Algorithm 2 below outlines the final geographic type lookup
lgorithm, including both the naïve geographic type lookup algo-
ithm and the more sophisticated version which matches exactly
ne type to each instance. It describes the process by which GTs
nd weights are assigned to instances. The input to Algorithm 2 is
he list of available GTs that are recognized by gazetteer G, along
ith IL, the list of instances associated with a given attribute and

he gazetteer G itself, while the output is an ordered pair consisting
f the GT vector list and GW vector list for the given attribute. Line
begins a loop that considers all instances in IL. Line 3 retrieves

he set of GTs from Tgaz that instance x is associated with. Line 4
etermines if instance x contains latlong information. If so, then it

s possible to prune the number of possible geographic types for
nstance x to exactly one while assigning a weight of this type to
e = 1. This occurs on lines 5 and 6. If x does not contain any lat-

ong information, then Lines 8-10 derive all possible types Tx for
and assign the weight of each type associated with the current

nstance. Lines 13–14 aggregate the GT and weight vectors com-
uted for instance x to Tatt and Watt, respectively. Finally, these
ectors are returned as an ordered pair to GSim, which facilitates
he EBD calculation between two compared attributes.
.1.4. Non-geographic matching
If GT matching between compared attributes is not possible,

hen a non-geographic semantic similarity measure is applied by
Sim. The distance metric used for NGT matching is known as the
ormalized Google distance. The EBD is then calculated by extract-
Agents on the World Wide Web 9 (2011) 52–70

ing the keywords making up compared instances and assigning
them generalized semantic types. These types are represented as
clusters of keywords, whose semantic distance from each other is
given by GD.

Section 4.1.4.1 below first gives the definition of GD. Section
4.1.4.2 gives an overview of NGT matching. Section 4.1.4.3 pro-
vides further details on the K-medoid clustering process, which is
instrumental to the success of NGT matching.

4.1.4.1. Google distance. GD is formally defined as follows:

GD(x, y) = max{log f (x), log f (y)} − log f (x, y)
log M − min{log f (x), log f (y)} (2)

In this formula, f(x) is the number of Google hits for search term
x, f(y) is the number of Google hits for search term y, f(x,y) is the
number of Google hits for the tuple of search terms xy, and M is the
number of web pages indexed by Google. GD(x,y) is a measure for
the symmetric conditional probability of co-occurrence of x and y.
In other words, given that term x appears on a web page, GD(x,y)
will yield a value indicating the probability that term y also appears
on that same web page. Conversely, given that term y appears on a
web page, GD(x,y) will yield a value indicating the probability that
term x also appears on that page.

4.1.4.2. Overview of NGT matching. The algorithm for calculating
the EBD between two compared attributes of tables in different
data sources using NGT matching is as follows. The input is two
compared attributes, with each one originating from a separate
table, while the output is an EBD value indicating the seman-
tic similarity between the input attributes. First, the respective
keyword lists for each input attribute are extracted. Second, the
keyword lists are combined into a single list for the compari-
son. This list is dubbed as Lkeywords. Third, all pairwise distances
between the keywords are computed with the help of an external
GD repository, resulting in a pairwise GD dictionary. Fourth, the K-
medoid algorithm, which is described in Section 4.1.4.3, is executed,
yielding a set of clusters, or NGTs, that represent generic types.
Finally, the calculation of EBD proceeds given the NGTs produced by
K-medoid.

Algorithm 2. lookupGeoTypes (Tgaz, IL)

Input:
-Set of geographic types Tgaz recognized by gazetteer
-List of instances IL associated with attribute att(T)
Output: an ordered pair (Tatt,Watt) across all instances of att(T)
1 : Tatt = ˚, Watt = ˚
2: For each instance x ∈ IL {
3 : Tx = typeLookup(Tgaz, x)
4: if hasLatLong(x){
5: prune (Tx)
6 : Wx = w1 = 1
7: }else {
8: For each t ∈ Tx{
9 : wt = 1/|Tx|
10 : Wx = {w1 . . . wlast}
11: }///end for
12: }//end if
13 : Tatt = TattUTx

14 : Watt = WattUWx

15: }//end for
16: return (Tatt,Watt)

4.1.4.3. K-medoid clustering. The algorithm begins by determining
the number of clusters K based on the size of Lkeywords for each

pair of compared attributes. Second, exactly one keyword from
Lkeywords is assigned to each of the K clusters in a process called
initial seeding. Each of these keywords is then considered a medoid
for its particular clustering. Third, we continuously assign each
remaining keyword in Lkeywords that is not a medoid to the cluster
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o which it is most semantically related. Once we have assigned
ll keywords in Lkeywords, the algorithm determines if any cluster
edoids need to be recomputed. To do this, we need to use

he GD values between the keyword to be assigned to a cluster
nd all keywords already assigned to that same cluster. A given
eyword, knew is assigned to the cluster associated with the small-
st summation of the GD values between knew and the cluster’s
onstituent keywords. After all keywords have been assigned to
lusters, finally, we determine if the medoid for any cluster needs
o be recomputed. This is accomplished by examining each of the
eywords in a particular cluster and computing a GD summation
etween a single keyword in that cluster and all other words in
hat cluster. The keyword in that cluster that produces the lowest
D summation will be assigned as the new medoid for that cluster.

f no medoids have changed in any cluster, then the K-medoid algo-
ithm is finished, and control proceeds to the calculation of the EBD
etween the compared attributes. However, if at least one medoid
as changed in a particular cluster, then we begin a new clustering

teration.

.1.5. Attribute weighting
GSim also provides attribute weighting capabilities to penal-

ze strong semantic correspondences between tables resulting
rom attribute mappings where the attributes in the mapped
air commonly occur across all of the tables in their respective
atabases. Doing this allows us to refine the semantic similar-

ty score generated between tables by focusing on the compared
ttributes that are unique relative to attributes found throughout
ll tables. Let S1 = (T11, T12 . . . T1M) be the set of tables belong-
ng to data source S1, and let S2 = (T21, T22 . . . T2N) be the set
f tables belonging to data source S2, and suppose T1J and T2K
re being compared for semantic similarity. Further suppose for
he sake of simplicity that pairings between attributes of T1J
nd T2K have been set such that for all i, attribute i of T1J is
atched with attribute i of T2K, and T1J and T2K have the same

umber of attributes. Before attribute weighting is applied, sim-
larity calculations between attribute i of T1J and attribute i of
2K occur. At this point, the EBD values of each attribute pair
ave equal weight. Recall that attribute-level EBD tells us which
ttributes are similar between compared tables. We will desig-
ate one such value between two attributes as EBDorig (att(T1J),
tt(T2K)).

Realistically, however, some attribute pairs should be weighted
igher than others. For example, given two tables, one called Road
nd another called Street, if the attribute ‘roadType’ in the Road
able (let us call it Road.roadType) was mapped to an attribute
streetType’ in the Street table (let us call it Street.streetType), then
his pair should contribute more substantially to the table similarity
etween Road and Street than a mapped attribute pair consisting of
oad.roadName and Street.streetName. While Road.roadType and
treet.streetType are two attributes that are not likely to be found
n many other GIS tables, Road.roadName and Street.streetName
re indeed likely to appear in other GIS tables, if, for example,
hese tables describe geographic objects that have some kind of
treet address such as a school, port or business. After deciding the
eights of each attribute pair among a set of mappings across com-
ared tables, the end result will be a more accurate EBD score. This

s a result of the discriminative power of attribute weighting in that
t can determine the attribute pairs that are most important to the
able match.

A successful attribute weighting measure ensures that an

ttribute pairing att1-att2 between table T and table T’ is weighted
ore heavily than other attribute pairs between T and T’ because

1: from the pairing att1-att2, att1 and its instances are relevant to
able T, and att2 and its instances are relevant to table T’ (2: each
ttribute in the pairing att1-att2 is unique to its respective table.
Fig. 7. Conceptual diagram of hierarchical agglomerative clustering.

In other words, for att1-att2 to be weighted more heavily, the fre-
quency by which each individual attribute is found in other tables
across both data sources should be small relative to other attribute
pairings. In addition, it should be noted that for attribute weighting
to be successful, it needs to be executed after deriving EBD mea-
sures between all attribute pairings. Section 4.1.5.1 below discusses
attribute uniqueness, the main idea behind attribute weighting,
while Section 4.1.5.2 discusses the final calculation, determining
the weight placed on each attribute pair between compared tables.

4.1.5.1. Attribute uniqueness. The uniqueness of an attribute att1
found within table T for an attribute pairing att1-att2 is known as
attribute uniqueness (AU). It is determined by applying hierarchical
agglomerative clustering over all attribute names in tables present
throughout all data sources. Fig. 7 shows the basic outline of this
method of clustering. In the first step, each attribute that takes part
in an attribute pairing is contained within its own singleton cluster.
Next, two singleton clusters are merged together to form a new one
containing two attributes. Each merger of two distinct clusters is
known as a cluster iteration (CI). Each subsequent step continues
to merge two distinct clusters until ideally, all related attributes
across tables and data sources are grouped into distinct clusters.

The quality of the clustering, and thus the accuracy of AU values
for any given attribute, depends on two factors: (1: the intercluster
distance measure (2: the measure used to determine when to stop
the clustering.

The intercluster similarity (ICS) measure used to determine the
similarity between any two clusters A and B is expressed as follows:

ICSAB

∑
a ∈ A

∑
b ∈ B(SN(a, b) + (SEBD(a, b))

|A| × |B| (3)

where a is an attribute name belonging to cluster A, b is an attribute
belonging to cluster B, SN is the name similarity between the names
of attributes a and b, SEBD is the EBD value generated between
attributes a and b, |A| is the number of attributes in cluster A, and
|B| is the number of attributes in cluster B. If no attribute pairing
exists between attributes a and b, then we assume that the sum of
SN and SEBD in this case is = 0. This measure allows attribute simi-
larity among sets of attributes within clusters to be based not only
on the properties of the attribute names themselves, but also on
their associated instances.

We add our own contribution to the standard hierarchical
clustering technique through a specialized cluster stop criterion.

Stopping the clustering at the most appropriate time is based on an
intracluster distance measure applied after each cluster iteration
over all clusters. We will refer to it as the cutoff point (CP) of the
clustering. It is the average summation of the name and EBD simi-
larity between all valid pairings of attributes within a given cluster,
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Conversely, an attribute pair that produces a PSD value that is .06
above PSDavg is less unique than an attribute pair that produces a
Fig. 8. Cutoff point vs. number of cluster iterations.

aken over all clusters. It is expressed as follows:

P =
∑

A ∈ C (
∑

a1 ∈ A;a2 ∈ A;table(a1) /= table(a2)(SN(a1, a2)) + (SEBD(a1, a2∑
A’∈ C |A’|

In Eq. (4), C indicates the set of clusters, A is the cluster in C that
ontains the attributes a1 and a2 which are being considered for
omparsion, a1 and a2 are distinct attributes within a single cluster
, |A| is the number of attributes in cluster A, A’ indicates an arbi-
rary cluster in C, the binomial coefficient that reads “|A| choose
” indicates the number of possible subsets of attributes from A
hat are of size = 2 (in other words, the number of possible pairings
f attributes within cluster A), K indicates the number of attribute
airings within A that are not possible, due to both attributes being
rom the same table (these do not necessarily include pairings
etween a1 and a2 of different tables that have a value = 0 for SN
SEBD), and |C| is the number of total clusters.

The quantity, (
|A|
2 ) – K, then, represents the total number of

ttribute pairings within cluster A in which the attributes in each
air are not from the same table.

The logic behind Eq. (4) is illustrated in Fig. 8. It displays a graph
f the relationship between the number of cluster iterations (CI),
ocated on the x-axis, and the cutoff point (CP), located on the y-
xis. Once the average summation of SN and SEBD between all valid
ttribute pairs over all clusters reaches a maximum value, then
he clustering is stopped, as we have attained an optimal cluster-
ng. According to Tan et al. [49], typical hierarchical agglomerative
lustering cannot be viewed as globally optimizing an objective
unction. Rather, this type of clustering uses local criteria at each
luster iteration to merge two clusters. While standard hierarchi-
al agglomerative clustering continues to merge clusters until the
reation of one final cluster, encompassing all others, our tech-
ique uses the CP to stop the clustering prematurely, with multiple
lusters remaining. Aside from how the clustering concludes, our
lustering technique is identical to standard hierarchical agglom-
rative clustering. As a result, finding a global maximum for the CP
alue will be computationally infeasible. Hence, we say that the CP
n Fig. 8 represents a local maximum.

One question that naturally arises is the time complexity bot-
leneck that occurs as a result of the binomial coefficient term.
owever, since this process is executed offline, and because of

he iterative algorithm reported by Manolopoulos [50], we imple-
ented this term to run in O(min(k, n − k)). In our case, n = |A|, and

= 2, making the execution time polynomial in the size of the clus-

er. Thus, for the reasons described above, the time complexity of
his step is not a bottleneck.
Agents on the World Wide Web 9 (2011) 52–70

|
) − Kj)

(4)

Once we have completed the clustering, the attribute unique-
ness AUatt of a given attribute is as follows:

AUatt = 1 −
(

|A| − 1∑
A’∈ C |A’|

)
(5)

AUatt always takes on a value between 0 and 1, with 0 indicat-
ing no attribute uniqueness, and 1 indicating the highest attribute
uniqueness. A high AUatt value is achieved when attribute att
appears infrequently across the tables of Satt, while a low value
of AUatt occurs for an attribute that is commonly occurring across
the tables of Satt. An AUatt value of 1 indicates that an attribute is
unique (in its own cluster by itself), while an AUatt value approach-
ing 0 means that an attribute is one of many attributes in its own
cluster. Note that an AUatt value for an attribute value att that has
a value of 1 indicates that att has no other matching attribute in its
cluster. As a result, att should not be involved in any match.

Recall that a single EBD value is between two attributes, and
thus, to measure pairwise uniqueness, we need a measure that
accounts for the AUatt value for both attributes in a pair. This

measure is called pair uniqueness and designated as PUatt1,att2. It
may be calculated by taking the arithmetic mean of the AUatt values
for each attribute in a pair, the minimum AUatt value out of the pair,
the maximum AUatt value out of the pair, and in a number of other
ways. For our purposes, we achieved the most promising results
when calculating PUatt1,att2 as the average of AUatt1 and AUatt2. Like
AUatt, the range of possible values for PUatt1,att2 is that between 0
and 1, since it is based on AUatt1 and AUatt2, both of which have
values between 0 and 1.

4.1.5.2. Deriving a final weighting. Pair uniqueness is then multi-
plied by the EBDorig value produced by the pair to give a corrected
value called EBDcorr:

EBDcorr(att1, att2) = EBDorig(att1, att2) × PUatt1,att2 (6)

Note that EBDcorr must be less than or equal to than EBDorig,
because PUatt1,att2 takes on a value in the range [0,1]. The differ-
ence between EBDcorr(att1,att2) and EBDorig(att1,att2), called pairwise
semantic disparity (PSDatt1,att2), is then found between att1 and
att2, and for all pairs of matching attribute pairs between two
compared tables:

PSDatt1,att2 = EBDorig(att1,att2) − EBDcorr(att1,att2) (7)

Next, the arithmetic mean of the PSD values, dubbed PSDavg,
among all of the attribute pairs for a table comparison is found. An
attribute pair with a PSD value greater than PSDavg indicates that a
greater discrepancy exists between EBDorig and EBDcorr relative to
other attribute pairs. As a result, this pair should have the weight of
its EBDorig value reduced. In contrast, an attribute pair with a PSD
value below PSDavg indicates that relative to other pairs, its EBD
discrepancy was less, and because of this, its attributes are more
unique. Thus its EBDorig value should contribute more substantially
to semantic similarity between the tables. The new weight assigned
to the attribute pair depends upon how far above or below the
PSD value is relative to PSDavg. For instance, an attribute pair that
produces a PSD value that is .06 below PSDavg is more unique than
an attribute pair that produces a PSD value that is .03 below PSDavg.
PSD value that is .03 above PSDavg.
Attribute weighting, as described above for a single table com-

parison, is illustrated in Algorithm 3 below. Line 1 stores the
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Fig. 9. (a) (top) is an example of how GD can produce an incorrect attribute map-
ping based on a high semantic similarity score if the instances being compared are
geographically proximate. (b) (bottom) shows a situation where a high semantic
s

a
t
4
a
a
v
c
a
A
p
w
d
p
f
m
t
p
a
g
o
t
t
t
v

4

p
c
c
o
i

imilarity score from GD produces a correct mapping.

ttribute mappings that were generated by GSim. Line 2 performs
he hierarchical agglomerative clustering described in section
.1.5 and assigns the derived set of clusters and their associated
ttributes taken from Matt(T),att(T′) to C. Lines 3–9 analyze each
ttribute mapping in Matt(T),att(T′) and ultimately calculate the PSD
alue between the attributes in the given mapping. Lines 4–5 cal-
ulate AUatt1 and AUatt2 for an attributes att1 and att2, respectively,
nd line 6 calculates the pairwise uniqueness between AUatt1 and
Uatt2. Line 7 calculates the corrected EBD value, EBDcorr for the
air att1-att2, and this value is used in line 8 to calculate the pair-
ise semantic distance, or PSD, for the pairing att1-att2. Line 10
etermines the average of the PSD values taken over all attribute
airs. Lines 11–15 compare PSDavg against the PSD value generated
or a given attribute pair. If the PSDavg is a higher value, then this

eans that the disparity in EBD values for this pair was less than
he average, thus indicating that the pair is unique relative to other
airs. This results in the pair’s EBD value having a higher weight rel-
tive to other pairs in its table. On the other hand, if the PSD value
enerated between the attribute pair is higher, then the disparity
f EBD values for this pair was more than average, indicating that
he pair is not unique relative to other pairs. This results in a deduc-
ion of weight for the pair’s EBD value relative to other pairs in the
able. Finally, line 17 returns the weights of all attribute pairs as a
ector.

.2. Problem with using GD

Despite the utility of GD over a number of domains, it tends to

roduce inaccurate results with regards to the GIS domain when the
ompared instances are geographically proximate, despite being
ompletely different types. Fig. 9a describes one particular example
f this phenomenon. It serves as a justification of why GT matching
s performed.
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Algorithm 3. attributeWeighting (T,T’)
Input: Tables T and T’, which are being semantically compared
Output: A weight vector Watt(T)-att(T′) containing normalized weights for each
attribute pair among T and T’.
1: Matt(T),att(T)’ = getattributeMappings(T, T’)
2: C = performClustering (Matt(T),att(T’))
3: For each attribute pair (att1(T),att2(T’)) �
For each attribute pair (att1(T), att2(T’)) ∈Matt(T),att(T’) {
4: AUatt1(T)=calculateAU(att1(T), C)
5: AUatt2(T)=calculateAU(att2(T’), C)
6: PUatt1(T),att2(T′) = (AUatt1(T)+AUatt2(T′+))/2
7: EBDcorr(att1(T), att2(T’)) = EBDorig(att1(T), att2(T’)) × PU(att1(T), att2(T’))
8: PSDatt1(T), att2(T′) = EBDcorr(att1(T), att2(T′ )) − EBDorig(att1(T), att2(T’))
9: }//end for
10: PSDavg = computeAvg (Matt1(T), att2(T’),PSDatt1(T), att2(T’))
11: For each attribute pair (att1(T), att2(T’)) ∈Matt1(T), att2(T’) {
12: if (PSDatt1(T),att2(T′)-PSDavg > 0)
13: Watt1(T),att2(T′) = reduceWeight(att1(T),att2(T’))
14: else
15: W(att1(T),att2(T′)) = increaseWeight(att1(T),att2(T’))
16: }//end for
17: return Watt(T),att(T′)

The attribute “City”, associated with table RoadS1 is compared
against the attribute “County” from table RoadS2. Although the
instances are of different types, they are geographically proximate,
as both the cities from “City” and the counties from “County” both
describe the Dallas-Fort Worth area. As a result, even though the
types are totally different, the exclusive usage of GD for NGT match-
ing will deem that the “City” attribute is semantically similar to the
“County” attribute. This happens because GD, by definition, is com-
puted based on the probability of the co-occurrence of search terms
x and y on a given web page indexed by the Google search engine.
In many situations, a high probability of co-occurrence between x
and y indicates that the terms are likely to be semantically similar
to one another. However, as Fig. 9a shows, co-occurrence does not
always imply similarity.

4.3. Proposed solution to GD inaccuracies

We propose a solution to overcome the matching problem
inherent in the GD method outlined in Section 4.2.

The proposed idea can be split into two separate parts. First, we
try to resort to alternative means of acquiring the GT of an instance,
if we cannot determine its type from GeoNames. We may use any
number of other gazetteers to directly acquire the type from their
type thesauri, use Wikipedia to determine the type based on the
Wikipedia category associated with the instance, or retrieve the top
M highest-ranking Web pages from Google, where M is a threshold
indicating a maximum number of Web pages, and use geotagging
on the names of the instances. We could also integrate this step as
part of our GT matching algorithm; this way, if we need to resort
to NGT matching, then we know that we have tried all possible
geographic repositories to make GT matching work.

The second part of the solution would be executed if GT simi-
larity was attempted, but was not able to determine the types of
a sufficient number of instances (In our experiments, 50% of the
total number of instances between the compared attributes having
GTs is sufficient for GT matching). In this case, we resort to NGT
matching and group the instances of the compared attributes into
NGTs based on GD. Each NGT would be represented as a cluster of
semantically related instances from both attributes. Among these
instances in each cluster, some would have GTs that were explic-
itly determined from the previously attempted GT matching, and

some would not have any GTs. During each 1-1 attribute mapping
over NGTs, we would be able to use the instances with GTs from
the previously attempted GT matching to verify whether GD has
correctly clustered instances together, and thus, if NGT matching
has produced a correct attribute match.
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Fig. 10. NGTs containing instances whose GTs were explicitly determined, and
instances whose GTs are unknown. The left NGT corresponds to Fig. 9a, an incorrect
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apping. The right NGT corresponds to Fig. 9b, a correct mapping.

For each NGT, we are using those instances with GTs to guide
s in determining its quality. Informally, if an NGT contains mostly

nstances associated with > 1 GT, then the NGT is deemed impure.
owever, if an NGT contains mostly instances with associated with
single GT, then the NGT is deemed pure. If an acceptable number
f the instances throughout all of the NGTs have been deemed pure
equal to or exceeding a predefined threshold), then the attribute

atch is verified to be correct. However, if too many instances
cross all NGTs have been deemed impure (below a threshold
alue), then the attribute match is verified as being incorrect. The
esult of this is a readjustment of the final EBD score between the
ttributes by changing the contribution that each NGT makes.

Fig. 10 illustrates an impure NGT (on the left) and a pure NGT
on the right). As can be seen, each NGT represents instances of
n attribute comparison between two attributes. The left NGT is
erived from the attribute comparison depicted in Fig. 9a, while
he right NGT is derived from the attribute comparison depicted
n Fig. 9b. We will assume that in Fig. 9a, any instances in the City
ttribute with GTs have a GT of type “City”, while any instances in
he County attribute with GTs have a GT of type “County”. In Fig. 9b,
e will assume that all instances from both attributes that have GTs

re of type “City”. In both NGTs of Fig. 10, an instance labeled by
gazetteer with “Ci” represents the GT “City”, while an instance

abeled by a gazetteer with “Co” represents the GT “County”. The
mpty white circles indicate instances whose GT could not be deter-
ined explicitly by GSim. The NGT on the left, which results from

he attribute comparison of Fig. 9a, is impure. To understand this,
e first can see four city instances from the “City” attribute and

hree county instances from the “County” attribute. We also have
number of instances from both attributes whose GT cannot be

etermined. Since the instances collectively refer to more than one
T, we can infer that the NGT is impure. We may infer this even

f the GD similarity between the two says otherwise. As a result
f the impurity of the NGT, we may lower its weight in the EBD
alculation between the attributes. For the NGT on the right pro-
uced from the attribute comparison of Fig. 9b, all instances whose
ypes are known share a single GT of type “City”. Thus, the NGT is
ure. If this is the only NGT between the compared attriburtes, we
ould conclude that the mapping between attributes in this case

s correct.

. Experiments

We now present six separate experiments that we conducted
egarding matching between distinct data sources in the GIS
omain. The first experiment measured GSim’s ability to compute
emantic similarity between two pairs of GIS databases. The second

xperiment applied the use of latlong techniques to disambiguate
etween the GTs of instances in an attempt to improve our results.
he third experiment illustrates GSim’s NGT matching component,
n a situation where GT matching is not possible, and we com-
are the results generated with those from the prior GT matching
Fig. 11. Description of GIS transportation dataset (top), GIS location dataset (mid-
dle) and GIS POI dataset (bottom).

experiments. The fourth experiment illustrated GSim’s attribute
weighting feature, which gives it the ability to penalize table
matches involving commonly occurring and irrelevant attributes
found through the GIS database and reward table matches contain-
ing attribute pairs that were unique and relevant to their respective
tables. The fifth experiment illustrates the results generated by
GSim when all of its approaches are applied to tables of a par-
ticular dataset, one at a time. Doing this more clearly shows the
contribution that each individual matching method makes towards
the generated final similarity value between compared tables. The
final experiment compares the results of GSim against two other
popular methods used in the data mining community to deter-
mine semantic correspondence between data sources: nonnegative
matrix factorization (NMF) and singular value decomposition.

5.1. Dataset details

Fig. 11 above lists the details of three separate datasets to which
we applied the GSim algorithm, along with some baseline methods
of calculating semantic similarity. In Fig. 11, tables from differ-
ent data sources are listed either individually or in pairs. When
they are listed in pairs, this implies that the tables are semantically
similar, whereas if a table is listed individually (such as the table
‘Indian Lands’ in the GIS Location Dataset), then this implies that the
table does not semantically match with another table. Also, for each
table(s), the number of attributes and instances reflects the number
involved in semantic matching, as opposed to the actual num-
ber of attributes or instances that exist within the table(s). Most

of the attributes for each table remained unused either because
they did not contain string data (and thus were not eligible for
a match), or because they were not relevant enough to be used
in our semantic matching experiments. Now the details of each
data set will be described. The first dataset, which we dubbed
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he GIS Transportation Dataset, was created from instance data of
he Road and Ferries package of a GIS data model known as GDF
Geographic Data Files) [21]. The tables vary in regards to num-
er of attributes (with the smallest being in Ferry(S1), 3, and the

argest being in Traffic Area(S2) with 5), number of instances (small-
st being Ferry(S1) with 24, and the largest being Road(S1) with
970), and in regards to geographic area (data models six differ-
nt states spread across the lower 48 states). We preferred data
eaturing a wide geographic dispersion with no shared instances.
herefore, similarity between tables would only be possible via
semantic match, as opposed to simple keyword matching. Fur-

hermore, we considered this dataset to be multijurisdictional. The
econd dataset, which we dubbed the GIS Location Dataset, details
wider assortment of location features across the United States

nd their associated data beyond merely transportation networks.
ome of the location features in this dataset include flight schools,
iers, navigable waterways and Indian lands. As with the GIS Trans-
ortation Dataset, the number of attributes and instances vary;
or example, in the GIS location dataset, the Flight Schools table
or S2 has the largest number of attributes taking part in match-
ng (8) and the both Schools tables and the Indian Lands table has
he fewest (3). In regards to instances, Schools(S2) contains 11,890
nstances, the most in the dataset, whereas Ports(S2) contains the
ewest number of instances at 907. As with the GIS Transportation
ataset, the instances in the tables of this dataset are multijurisdic-

ional in nature. The third dataset, which we dub the GIS Point of
nterest (POI) Dataset, contains instances that extend beyond road
etworks and which are multijurisdictional in nature, much like the
IS Location dataset. The number of instances and locations mod-
led vary widely, which results in a dataset that requires semantic
ethods by an algorithm for any meaningful schema matching to

ccur.

.2. Similarity without using latlong values

.2.1. Measurements and parameters
The results of the alignment of S1 and S2 of the compared tables

or both the transportation dataset and the GIS location dataset
sing GSim and the N-gram method are shown in Fig. 12a and b,
espectively. For each table comparison, there are four values. From
eft to right, the first two are the precision and recall (denoted as P
nd R, respectively) produced using N-grams between an attribute
rom a table in data source S1 and an attribute from a table in
ata source S2. The last two values are the precision and recall val-
es produced by GSim between an attribute from a table in data
ource S1 and an attribute from a table in data source S2. As an
xample, for the comparison of Road from S1 and Ferry from S2
n Fig. 12a, the precision and recall generated using N-grams are

and 0, respectively, while the precision and recall generated for
Sim is .50 and 1.00, respectively. Also, for each cell containing a
recision or recall value, there is a ratio. For precision, the top num-
er of the ratio indicates the number of correct attribute mappings
etween the compared tables that were identified by the similar-

ty method, while the bottom number indicates the total number
f attribute mappings (both correct and incorrect) between the
ompared tables identified by the matching method. For recall, the
op number of the ratio indicates the number of correct attribute

appings between the tables that were returned by the similarity
ethod, while the bottom number of the ratio indicates the total

umber of correct attribute mappings that exist between the tables.
or instance, in Fig. 12a, for the comparison of the Road table from

1 with the Road table from S2, the ratio in the cell for the precision
f the N-gram method is “1/2”, meaning that the N-gram method
eturned two attribute mappings between these two tables, but
nly one was correct. The cell to its right, which is the recall value
roduced by the N-gram method for the Road-Road table compar-
Fig. 12. Precision, recall and F-measure values between tables of S1 and S2 using
N-grams and GSim relative to ground truth for (a: transportation dataset (top) (b:
GIS location dataset (bottom) These do not use latlong values.

ison, reads “2/4”. This means that two correct attribute mappings
were returned by the N-gram method, while there exists a total of
4 correct attribute mappings between the tables.

The values produced by both methods depend on a reference
alignment, or ground truth, which contains the attribute pairs that
are supposed to be semantically similar. The ground truth for both
datasets was created by human experts knowledgeable in the area
of GIS. For our experiments, we set two standards that affected the
results. First, we decided that whenever an attribute pair produced
a similarity value (an EBD value) measured to be greater than or
equal to .6, then the method determined that pair to be a match.
Second, we set N-grams to be of size = 2, since any size > 2 would
increase the number of possible N-grams by a margin significant
enough such that the precision and recall values would almost
always be too low to meet the match threshold for any dataset,
thus rendering this method virtually useless as a semantic simi-
larity measure for our experiments. Overall, the ground truth for
the transportation dataset contained 29 correct mappings across
all table comparisons, while the ground truth for the GIS location

dataset contained 52 correct mappings across all table compar-
isons.

It should also be noted that in our experiments, valid attribute
mappings were found even between tables that do not naturally
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orrespond. For instance, in the GIS POI dataset, valid attribute
appings exist between disparate tables like Streets1 and Schools2

the City attribute, in this case). These mappings, and others which
xist among the other datasets that we experimented upon, were
ncluded in our reference alignments.

.2.2. Analysis of results
Fig. 12a shows the comparison of precision, recall and F-measure

alues using both GSim and the N-gram method for the transporta-
ion dataset. Note that the precision and recall values generated by
Sim are never lower than those produced by N-grams for any table
omparison. In total, the average precision produced by GSim was
70, and its average recall was .72. In contrast, the average precision
f N-grams was .38, and its average recall was .52. GSim achieved a
2% improvement over N-grams in precision, and a 20% improve-
ent in recall. Fig. 12b depicts even more dramatic improvements
ade by GSim. The precision and recall values for GSim are always

igher than those produced by the N-gram method for any table
omparison. In total, the average precision produced by GSim was
80, and its average recall was .61. In contrast, while the average
recision of N-grams is .80, the average recall is a staggeringly low
alue of .06. In fact, the reason why N-grams’ precision was able to
atch GSim’s precision was due to the extremely low recall. The

eason for the low recall value was primarily due to the lack of
dentical instances between the compared attributes. As a result,

ost of the comparisons using the N-gram method were not able
o reach the .60 threshold in semantic similarity. We did not lower
he match threshold below .60 because we felt that a match thresh-
ld of a value that was lower, such as .50, would not be a realistic
atch threshold for determining whether two schemas were sim-

lar or not. The reason is that at lower thresholds, the precision and
ecall values generated by sophisticated and simplistic algorithms
like are not significantly different. As a result of the higher thresh-
ld, GSim more clearly illustrates its more sophisticated semantic
apabilities, largely resulting from GT extraction. This allows it to
chieve a 55% improvement on recall versus a syntactic method
uch as N-grams.

In Fig. 12a, the only reason why N-grams even performed some-
hat competently was because of the large number of identical

nstances between many attribute pairs that happened to be sim-
lar. For the N-gram method to derive an attribute mapping, the
nstances between the compared attributes must share strings
f length N. As an example, with N = 2, the instances “Pasadena”
nd “El Paso” (from different attributes) would share a single 2-
ram match on “Pa”. Given enough matches of this sort between
nstances of two compared attributes, the N-gram method will
erive a similarity score that meets the threshold of .60, registering
s an attribute mapping. In table comparisons where the N-gram
ethod derived a precision or recall value that was extremely low,

he instances in the compared attributes shared few strings. This
s what makes the N-gram method a syntactic method, as opposed
o GSim. In Fig. 12b, the N-gram method creates very few map-
ings that even reach the threshold of .60, because the GIS location
ataset contains very few shared strings between valid attribute
appings of two tables.
Notice that when applying GSim to pairs of tables which seem

ncompatible (i.e.: Road-Address Area), it still yields some attribute
atches, as evidenced by nonzero precision and recall scores.

his is because valid attribute matches can exist between tables
hich are not compatible. An example of this is Road(S1). County-
ddressArea(S2). Areaname – even though these tables are not

elated, they share this attribute, and thus, a match should exist.
Sim is able to identify these kinds of attribute mappings, regard-

ess of whether the compared tables seem compatible or not. This
s evidenced by the 1.0 precision values between tables as differ-
nt as Residential Area (S1) and Ferry (S2) in the GIS transportation
Fig. 13. Precision, recall and F-measure values between tables of S1 and S2 in POI
dataset generated using N-grams and GSim without latlong values. To the right of
these are Precision, recall and F-measure values between tables of S1 and S2 in POI
dataset generated by GSim using latlong values.

dataset, and between Schools (S1) and Ports (S2) in the GIS location
dataset.

5.3. Similarity using latlong values

5.3.1. Measurements and parameters
Fig. 13 above displays precision, recall and F-measure values in

a dataset known as the GIS POI (point of interest) dataset compar-
ing semantic similarity generated by the baseline N-gram method,
GSim without the use of latong values, and GSim with the use of
latlong values. The GIS POI dataset represents, as the name implies,
a multijurisdictional collection of streets, schools and hospitals that
are identified as points of interest in GeoNames. As with our previ-
ous experiments, the values produced by both N-grams and GSim
in this dataset depend on a reference alignment which contains
the attribute pairs that are supposed to be semantically similar.
The ground truth for both datasets was created by human experts
knowledgeable in the area of GIS. However, in this experiment,
we also directly compare the benefits that latlong values have on
deriving similarity.

5.3.2. Analysis of results
As Fig. 13 shows, not only does GSim produce markedly better

results versus the N-gram approach, but when GSim has access to
latlong values for the purposes of further disambiguating between
the GTs of instances, the results are even better. As can be seen,
GSim without latlong values has an average precision of 1.00, while
the average precision value for N-grams is .86. This amounts to a
16% improvement in precision by using GSim. As for average recall,
GSim without latlong values produces a value of .76, while N-grams
produces a value of .29. This represents a nearly threefold improve-
ment in recall for GSim over N-grams.As for the average F-measure,
GSim produces a value of .86, while N-grams produces a value of
.43. In other words, GSim produces an F-measure that is twice as
good as the F-measure for N-grams. In addition to this, Fig. 13 shows
that the use of latlong values in GSim produces further improve-
ment. Using GSim with latlong values, average recall is measured
at .90, an 18.4% increase over GSim without latlong values (.76). As
for average F-measure, GSim with latlong values produces a value
of .95, a 10.4% improvement over GSim without using latlong val-
ues (.86). Before the use of latlong values, a number of instances
(especially those with common names) between any two compared
attributes might possess GT sets of a size > 1. The end result of this
was that instance that were genuinely of the same GT but were

tagged with multiple semi-overlapping GTs would have their simi-
larity diminished unfairly, while instances that were genuinely not
of the same GT but were tagged with multiple semi-overlapping
GTs would have their similarity bolstered unfairly. However, using
latlong values, if the instance is recognized by the gazetteer, then
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Fig. 15. Two separate EBD values computed between a table from S1 and a table from
S2 for the (a: GIS Transportation Dataset (top) (b: GIS Location Dataset (bottom) For

GD between N instance values associated with att1 and the name
of the containing table T. We set ˛ = .90 for all attribute weighting
experiments.

Fig. 16. (a) (top) depicts the results of executing GSim on the POI dataset with
latlong values but no attribute weighting. For each cell, the value in bold (left of
ig. 14. Precision, recall and F-measure values produced by the NGT matching com-
onent of GSim.

1:1 mapping between it and its correct GT is guaranteed to exist.
ecause of this, correct correspondences have their score raised,
hus explaining the improved scores.

.4. NGT matching experiment

To illustrate the effectiveness of GSim’s NGT matching compo-
ent and to compare it to its GT matching component, we replaced

nstances from the GIS transportation dataset that were previously
dentified by a gazetteer with new instances whose type could not
e discerned. Fig. 14 shows the results of NGT matching applied to
he GIS transportation dataset. The precision, recall, and F-measure
alues are all better than what the N-gram method produced, but
hey are not as good as the results of GT matching on this dataset, as
een in Fig. 12a. Specifically, the average precision produced by NGT
as 45% higher than the precision produced by N-grams, but 21%

ower than the precision produced using GT matching. The recall
roduced by NGT was 17% higher than that produced by N-grams,
ut 18% lower than the recall attained by GT matching.

.5. Attribute weighting experiment

.5.1. Measurements and parameters
To better illustrate the benefits of attribute weighting on match-

ng tables, we preprocessed the attributes from tables of the
IS Transportation dataset and the GIS Location dataset to opti-
ize GSim’s ability to distinguish between commonly occurring

ttributes and attributes that are more unique. The results of apply-
ng GSim’s attribute weighting algorithm to the tables from the
IS Transportation dataset and the GIS Location dataset are shown
elow in Fig. 15a and b, respectively. Fig. 16a below illustrates EBD
alues produced between tables of the GIS POI dataset where all
ttribute mappings share equal weight while Fig. 16b illustrates
he EBD values produced between these same tables where the
ttribute mappings now have attribute weighting applied to them.
he table names along the vertical axis of the table belong to S1,
hile the tables across the horizontal axis of the table belong to S2.

One last experimental parameter that should be mentioned is an
ttribute relevance parameter ˛ that was applied to all attributes
n tables from S1 and S2. Attribute relevance in GSim is executed as

preprocessing step that prevents any attribute that has a name or

nstance data which is not relevant to its containing table from tak-
ng part in a match with an attribute of another table. For instance, if
able “Road” from S1 is being compared with a table “Street” from
2, then an attribute “Road.roadName”, along with instance data
each cell, the value right of the slash indicates the EBD value produced without
attribute weighting, while the bolded value left of the slash is the EBD produced
with the help of attribute weighting.

containing road names, would be considered an attribute that is rel-
evant to its containing table “Road”. On the other hand, an attribute
known as “Road.internalID”, along with instances containing ID val-
ues of unknown significance, would likely not have any relevance
to its containing table, “Road”. The enforcement of attribute rele-
vance is accomplished by taking the GD between the attribute name
att1 and the name of the containing table T, added to the average
slash) is the EBD score produced using latlong values, while the value to the right
of the slash does not use latlong values. (b) (bottom) shows the results of executing
GSim on the POI dataset with both latlong values and attribute weighting. For each
cell, the value in bold (left of slash) is the EBD produced using both latlong values
and attribute weighting, while the value to the right of the slash uses neither latlong
values nor attribute weighting.
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Fig. 17. EBD scores produced by GSim over the tables of the POI dataset. For each
cell, there are four values, with the value in the top row left of slash designated as (1),
the value in the top row right of slash designated as (2), the value in the bottom row
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.5.2. Analysis of results
The results of Fig. 15a and b shows the effect that attribute

eighting by itself has on the EBD scores produced between tables
n the GIS transportation dataset and GIS location dataset, respec-
ively. The key observation in the results is that while attribute
eighting consistently increases the EBD values between corre-

ponding tables, it produces more arbitrary results among tables
hich do not naturally correspond. For these tables, latlong val-
es in the data were not available, so the improvement in EBD

s entirely the result of attribute weighting. In Fig. 15a, the use
f attribute weighting increased the EBD between pairs of cor-
esponding tables (Road–Road, Residential Area–Address Area,
raffic Area–Enclosed Traffic Area, Ferry–Ferry) by 8.3%, 5.6%, 0.5%
nd 4.4%, respectively, when compared against GSim without lat-
ong values and without attribute weighting. In Fig. 15b, the use
f attribute weighting increased the EBD between pairs of corre-
ponding tables (Flight Schools–Flight Schools, Schools–Schools,
iers-Ports, Piers-NavWaterways) by 6.1%, 3.0%, 1.0% and 1.6%,
espectively, when compared against GSim without latlong val-
es and without attribute weighting. However, in both figures,
BD values neither consistently increased nor decreased when it
ame to pairs of tables that do not naturally correspond. The best
esults with attribute weighting were achieved in Fig. 16b with
he POI dataset. Here, we also include Fig. 16a and b as a way to
ompare the improvement in EBD scores that resulted solely from
he inclusion of latlong values (16a) and the improvement gar-
ered with the addition of attribute weighting (16b). In Fig. 16a,

n each cell, the value in bold, to the left of the slash, indicates
he EBD produced when taking into account latlong values only
without attribute weighting), while the value to the right of the
lash indicates the EBD produced by GSim without latlong values
r attribute weighting. In Fig. 16b, in each cell, the value to the
eft of the slash indicates the EBD score produced by GSim when
sing both latlong values and attribute weighting, while the value
o the right of the slash, indicates the EBD produced when using
either latlong values nor attribute weighting. As can be seen in
ig. 16a and b, the use of both latlong values and attribute weighting
aused the EBD between corresponding tables to be strengthened
ore significantly and the EBD between dissimilar tables to be
eakened consistently. The use of attribute weighting increase

he EBD between pairs of corresponding tables (Streets1–Streets2,
chools1–Schools2, Hospitals1–Hospitals2) by 22.9%, 18.5% and
0.5%, respectively, when compared against GSim without latlong
alues and without attribute weighting. Additionally, the combina-
ion of latlong values and attribute weighting was used to reduce
he semantic similarity between dissimilar table pairs by an aver-
ge of 19.1%. In analyzing the sole effects of attribute weighting, we
an see that the EBD between Streets1–Streets increased by 3.5%,
he EBD between Schools–Schools2 increased by 3.4%, and the EBD
etween Hosptals1–Hospitals2 increased by 2.6%. Furthermore, it
an be seen that attribute weighting by itself also decreased the
BD values between non-corresponding tables in every case; the
verage reduction in EBD value due to attribute weighting for these
ables was 11.7%.

.6. Results of combining all approaches in GSim

Fig. 17 above shows the progression of EBD scores when all of the
pproaches available in GSim are applied one at a time over tables
f the POI dataset. For each cell (which represents a table compari-
on) there are four values. The value in the top row left of slash will

e designated as (1), the value in the top row right of slash will be
esignated as (2), the value in the bottom row left of the slash will
e designated as (3), and the value in the bottom row right of the
lash will be designated as (4). The values are produced in the fol-
owing ways: (1) GT matching + latlong + NGT matching + attribute
left of the slash designated as (3), and the value in the bottom row right of the slash
designated as (4). The values are produced in the following ways: (1): GT match-
ing + latlong + NGT matching + attribute weighting (2): GT matching + latlong + NGT
matching (3): GT matching + latlong (4): GT matching.

weighting, (2) GT matching + latlong + NGT matching, (3) GT match-
ing + latlong, (4) GT matching. It should be noted that typically,
GSim only applies NGT matching if insufficient GT information
exists within the data. When it does, it is assumed that GT match-
ing will not be applied, and that NGT matching is applied over all
of the instances, including those that do possess GT information.
However, for this experiment, we have adapted the NGT match-
ing component of GSim such that it applies only to those instances
without a GT. Doing this allows NGT matching to be applied directly
on top of GT matching in a cumulative way. The cells contain-
ing boldface numbers correspond to semantically compatible table
comparisons.

As can be seen, taken over all cells, the largest average change
in EBD occurs when latlong values are applied to disambiguate
between multiple instances of the same name but different GTs.
This accounts for an average of 62.2% of the total EBD change from
value (4) to value (1) over all cells. Another trend that can be
observed in this experiment is that NGT matching is only beneficial
when applied to comparisons involving semantically compatible
tables. In these cases, NGT matching proves very useful. However, in
situations involving semantically incompatible table comparisons,
NGT matching either produces no effect, or in some cases, such
as Streets1–Hospitals2 and Hospitals1–Streets2, it actually slightly
increases the EBD score. We believe that this occurs for two rea-
sons. First, nearly all instances (about 98.3%) in the POI dataset
have a GT identifiable by a gazetteer. Out of the three datasets we
have experimented on with GSim, the POI dataset is the only one
that contains latlong values associated with its instances. The fact
that nearly all instances in the POI dataset having GTs and latlong
values guarantees that NGT matching cannot make much of a con-
tribution to the final similarity score. Second, in the cases where
NGT matching slightly increases the EBD score between incompat-
ible tables, this occurs because of the tendency of NGT matching
to group together instances with more semantic disparity between
them than GT matching would allow. NGT matching is based on
co-occurrence embedded in the formula for GD. As a result, as long
as two instances co-occur on a web page, regardless of their actual
types, then they will be grouped together as part of the same generic
type. Attribute weighting is responsible for 23.7% of the average
change in EBD from value (4) to value (1) over all cells.

5.7. Comparing GSim to NMF and SVD
We also sought to compare the effectiveness of GSim relative
to two other widely accepted methods for determining the seman-
tic similarity of sets of documents (or data sources) using keyword
frequency. These methods are known as nonnegative matrix fac-
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ig. 18. Precision, recall and F-measure values between the three datasets in our
xperiments over N-grams, SVD, NMF and GSim. Here, GTD = GIS Transportation
ataset, GLD = GIS Location Dataset, and GPD = GIS POI Dataset.

orization (NMF) [26] and singular value decomposition (SVD)
27].

NMF is an algorithm in linear algebra where a matrix X is fac-
orized into two matrices, W and H. Formally, this is stated as:
MF(X) = WH. NMF differs from other matrix factorization methods

n that all entries of W and H are to be nonnegative; this is espe-
ially applicable for applications of semantic similarity via keyword
requency, since the minimum frequency of any given keyword
n a data source is 0. In SVD, the equation M = U�V* is satisfied,

here U is an mxm unitary matrix over a field K, � is an nxm
iagonal matrix with nonnegative real numbers along the diago-
al, and V* is the conjugate transpose of V, a nxn unitary matrix
ver the field K. Though SVD has many uses, in regards to seman-
ic similarity, it can be applied towards the implementation of
atent semantic indexing (LSI). LSI uses SVD to identify patterns
n the relationships between the terms and concepts contained
n an unstructured collection of text. LSI is based on the principle
hat words that are used in the same contexts tend to have similar

eanings.
We have applied SVD (Singular value decomposition) and NMF

n the same datasets that were being used in our experiments to
nd out the semantic similarity between the attribute pairs of any
wo tables. For this, first, we have generated a matrix XMxN with m
ows and n columns where the row represents distinct words and
he column represents its attribute name from these two tables.

e have two different implementations. In the frequency variant,
ach entry (i,j) of the matrix represents how many times the word
appears under a particular attribute j. On the other hand, in the
inary variant, each entry (i,j) of the matrix represents the presence
f word i under the particular attribute j. Thus if a word i appears
nder an attribute j, in the binary case, the value of the entry (i,j)

s set to 1, whether word i appears one time or one-hundred times
nder attribute j.

We have used SVD to reduce the dimension of the matrix from
to k where k « n. SVD decomposes XMxN into a product of three
atrices as XMxN = USVT where U is an m x n matrix, S is an n x n

iagonal matrix, and VT is also an n × n matrix.

= diag(�1, �2, . . . , �min(m,n)) �1 > �2> . . . �min(m,n) and �j

> 0 for all j > rank (XM×N)

To reduce the dimension we generate a new matrix Sk by keep-
ng the k largest singular values. Next, we have calculated the cosine
imilarity between attribute pairs by exploiting vectors in these
educed dimensional spaces. If the similarity is above a threshold
.5 for our experiments), we declare that to be a match for a 1-1
ttribute comparison.

We compared the effectiveness of GSim to NMF and SVD over the
hree datasets we experimented on (GIS Transportation Dataset,

IS Location Dataset, GIS POI Dataset) and obtained the follow-

ng results. These are displayed in Fig. 18 above. The effectiveness
f each semantic similarity measure with respect to a particular
ataset was quantified using F-measure. Since F-measure takes into
ccount both precision and recall, it represents the best overall met-
Agents on the World Wide Web 9 (2011) 52–70 69

ric to measure the effectiveness of semantic similarity algorithms
over a common dataset.

In Fig. 18, it can be seen that for the GIS Transportation Dataset,
the F-measure generated by GSim outperforms that from the N-
gram method by 61% (.71 to .44). The difference is even greater
versus SVD and NMF, as GSim outperforms SVD .71 to .13 and
outperforms NMF .71 to .25. For the GIS Location Dataset, GSim
outperforms N-grams in terms of F-measure .68 to .09. The stark dif-
ference in similarity values between GSim and N-grams is a direct
result of this dataset not containing any shared syntactic instances.
As a result, only a method that can effectively measure semantic
correspondences between instances is likely to be successful over
this dataset. For this same dataset, GSim outperforms SVD in F-
measure .68 to .17, and GSim outperforms NMF .68 to .22. As for the
GIS POI Dataset, GSim outperforms its nearest competitor, NMF, in
F-measure .86 to .49. Over the three datasets, GSim outperforms
N-grams .75 to .32, SVD by .75 to .23 and NMF .75 to .37.

6. Conclusion and future work

In this paper, we described GSim, an algorithm that computes
the semantic similarity of two tables belonging to distinct GIS
data sources. It computes semantic similarity using two separate
approaches. The first uses a gazetteer to extract GTs for all possi-
ble instances within the compared attributes. The weights of the
GTs taken over all instances results in GT sets and GT weight lists,
where each attribute features its own GT set and GT weight list. In
the more advanced geotyping algorithm featured by GSim, every
instance is associated with exactly one GT by comparing the lat-
long information of the instance against the latlong values for all
matching instances found in the gazetteer. The instance in the
gazetteer that yields the smallest difference in latlong values with
the instance in the data is selected, and its GT is taken to be the final
GT of the instance in the data. The similarity of the GT distributions
between compared attributes determines the similarity between
the attributes, and the average over all attribute pairs determines
the table similarity. GSim also compensates for situations when a
lack of GT information for the instances is available by executing a
domain independent semantic similarity algorithm leveraging nor-
malized google distance. This results in the extraction of NGTs from
the instances of the attributes, and semantic similarity is subse-
quently computed. Additionally, GSim provides attribute weighting
capabilities across tables in a GIS database that penalizes the simi-
larity between table matches involving a high number of commonly
occurring attributes and/or irrelevant attributes found throughout
the database, while enhancing table matches containing unique
and relevant attribute mappings.

Future efforts to improve GSim will focus on the following. First,
we will refine our GT extraction techniques. This can be done in
two ways. The first is to leverage multiple gazetteers making use
of heterogeneous feature type thesauri while enhancing our recall
of the correct type information. The second way is to apply prun-
ing techniques to a given EBD calculation between two compared
attributes. This way, geographic types represented by a very small
number of instances are not considered in the final EBD calcula-
tion. The idea behind this is to correlate high EBD scores with high
frequencies of instances across all present GTs. Second, we will
work on supporting gazetteers, like ADL, that organize their feature
type thesauri in an ontological fashion. Third, we plan on extend-
ing GSim such that geo-ontologies can be just as easily compared

for similarity as geodatabases. To this end, we also plan on adapt-
ing suitable algorithms for comparing ontologies, such as structural
and neighborhood matching techniques. We would then integrate
them into a more sophisticated GT matching algorithm. Fourth,
we plan on implementing the algorithm outlined in Section 4.3 to
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vercome inadequate attribute mappings produced by NGT match-
ng by using the available GT information from instances. Finally,

e plan on expanding our study of attribute weighting to formal-
ze and measure its contribution under a variety of experimental
onditions, and in various domains.
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