Discovering and Maintaining Semantic Mappings
between XML Schemas and Ontologies

Yuan An
Drexel University, USA
yuan.an@ischool.drexel.edu
and
Alex Borgida
Rutgers University, USA
borgida®@cs.rutgers.edu
and
John Mylopoulos
University of Toronto, Canada
jm@cs.toronto.edu

There is general agreement that the problem of data semantics has to be addressed for XML
data to become machine-processable. This problem can be tackled by defining a semantic mapping
between an XML schema and an ontology. Unfortunately, creating such mappings is a tedious,
time-consuming, and error-prone task. To alleviate this problem, we present a solution that
heuristically discovers semantic mappings between XML schemas and ontologies. The solution
takes as input an initial set of simple correspondences between element attributes in an XML
schema and class attributes in an ontology, and then generates a set of mapping formulas. Once
such a mapping is created, it is important and necessary to maintain the consistency of the
mapping when the associated XML schema and ontology evolve. In this paper, we first offer a
mapping formalism to represent semantic mappings. Second, we present our heuristic mapping
discovery algorithm. Third, we show through an empirical study that considerable effort can be
saved when discovering complex mappings by using our prototype tool. Finally, we propose a
mapping maintenance plan dealing with schema evolution. Our study provides a set of effective
solutions for building sustainable semantic integration systems for XML data.

Categories and Subject Descriptors: Database Management [Heterogeneous Databases]|:

General Terms: Algorithm and Experiment

Additional Key Words and Phrases: Schema Mapping, XML Data, Ontology, Data Integration,
Semantic Web

Copyright(©2007 by The Korean Institute of Information Scientists and Engineers (KIISE). Per-
mission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than KIISE must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee. Request permission to republish from: Publicity Office,
KIISE. FAX 4-82-2-521-1352 or email hjlee@kiise.org.

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007, Pages 1-29.

1. INTRODUCTION

There is explosive growth in the amount of XML data published on the Web since
XML is becoming a standard format for information exchange on the Web. How-
ever, because of the heterogeneity in structures and vocabularies, XML does not
support well data integration. To resolve the heterogeneity problem, we need to
understand the semantics of XML data. Formal ontologies, as shared conceptual-
izations of specific domains, carry precise semantics. Capturing the semantics of
XML data in terms of ontologies therefore provides a means for integrating heteroge-
neous XML data sources. For many XML documents satisfying patterns expressed
in DTD or XML schema, the semantics can be captured in a formal way, through a
semantic mapping relating parts of the schema with logical formulas over predicates
introduced by an ontology. In this paper, we study a heuristic solution to defining
and maintaining complex semantic mappings from XML schemas to ontologies.

Although mappings from XML schemas to ontologies could be as simple as one-to-
one correspondences between their constituent parts, in most applications, complex
expressions are needed to relate non-trivial structures within corresponding XML
schema and ontology. For example, mappings in [Amann et al. 2002; Lakshmanan
and Sadri 2003] essentially connect paths in XML to chains of properties in an
ontology. More interesting applications of complex mappings can be found in areas
such as data integration, as well as peer-to-peer data management systems [Halevy
et al. 2003]. Until now, it has been assumed that humans specify these complex
mapping formulas — a highly non-trivial process, especially since the specifier must
be familiar with both the XML schema and the ontology. Since many XML schemas
and ontologies are very complicated artifacts, often containing thousands of terms,
the entire process is time-consuming and error-prone, and hence calls for support
in the form of automated tools.

In an open, dynamic, and distributed information environment such as the Web,
information sources are constantly evolving. After semantic mappings between
XML schemas and ontologies have been created, it is important and necessary to
maintain the consistency of the semantic mappings when schemas or ontologies
evolve.

In this paper, we propose a tool that assists users in the construction of complex
mapping formulas between XML schemas and ontologies, expressed in a subset
of First Order Logic. We elaborate on the mapping algorithm presented in our
earlier paper work [An et al. 2005a], and then present strategies for maintaining
the mappings under the evolution of XML schema.

Inspired by the success of the Clio tool [Miller et al. 2000; Popa et al. 2002], our
tool takes three inputs: an ontology, an XML schema (actually, its unfolding into
tree structures that we will call element trees), and simple correspondences between
XML attributes/”leafs” and ontology datatype properties, of the kind possibly
generated by already existing tools (e.g., [Dhamankar et al. 2004; Madhavan et al.
2001; Melnik et al. 2002]). The output is a list of complex formulas representing
semantic mappings. The following example illustrates the input/output of the
proposed tool.

Example 1.1. Consider an XML document containing information about arti-
cles, authors, and contact authors of articles as shown in Figure 1. The document

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

satisfies the XML Schema specification given in Figure 2 (omitting the definition
for the docs element). We want to discover and express the semantic of the XML
schema in terms of the ontology in Figure 8. The ontology is described as a UML
class diagram.

<docs>
<article title=“The Semantic Web”>
<author id=“001">
<name fn=“Tim” 1ln=“Berners-Lee”/>
</author>
<author id=“002">
<name fn=“James” 1ln=“Hendler”/>
</author>
<author id=“003">
<name fn=“Ora” ln=“Lassila”/>
</author>
<contactauthor authorid=“001"/>
</aritle>
<article title=“Toward Principles for Design of Onto. used for
Knowl. Sharing”>
<author id=“004">
<name fn=“Thomas” 1ln=“Gruber”/>
</author>
<contactauthor authorid=“004"/>
</article>
</docs>

Fig. 1. An XML Document

Our goal is to produce a logic formula that defines the semantics encoded in
the structure of the XML schema. This semantics is expressed by the concepts,
attributes, and associations in the ontology. To increase the likelihood of discovering
the correct semantics, we assume that some extra information is available as part of
the input. This information is specified as a set of simple correspondences between
attributest in the XML schema and datatype properties/attributes in the ontology.
The correspondences can be specified by a user or generated by schema matching
tools.

Specifically, we use the following notation to represent the simple correspondences
between attributes of the XML schema and datatype properties of the ontology, where
the prefires X and O distinguish terms in the XML schema and the ontology.

X :article.Qtitle«~QO:Article.hasTitle

X :article.author.@Qide~QO :Author.hasID

X :article.author.name.Q fne~QO :Author.hasFirstname

X :article.author.name.Qlne~QO :Author.hasLastname

X :article.contactauthor.Qauthoride~~QO :Author.hasID
The expression on the left-hand side of a correspondence is a path from the root to an
attribute in the XML schema, while the right-hand side indicates a datatype property

nclude simple type elements, see Section 3.1.

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

of a concept in the ontology. We will give a formal definition of a correspondence
in Section 3.

Having as input the XML schema, the ontology, and the set of such simple corre-
spondences, we expect our tool to generate a set of logical formulas which includes
the following one, expressing a possible semantics of the XML schema in terms of
the ontology:

article(Qtitle = z1)[
author (Qid = x3)[
name (Qfn=x3, Qln = x,4)],

contactauthor (Qauthorid = x5)]] — Article(Y7),hasTitle (Y1, z1),
Author (Y3), hasID (Y, a2),
hasAuthor (Y1, Y3),
hasFirstname(Ys, z3),
hasLastname (Y5, 24),

Author(Y3), hasID (Y3, x5),
Contactauthor (Y7, Y3).

In the above mapping formula, the left-hand side expression is a tree-pattern
formula which is defined in Section 3.3. |

The following example illustrates the problem of maintaining a semantic mapping
when the associated XML schema evolves and provides a glimpse of our maintenance
plan.

Example 1.2. A semantic mapping such as the one created in the previous ex-
ample relates a subgraph of an XML schema with a subgraph of an ontology graph.
These two subgraphs should be semantically consistent, i.e., the constraints speci-
fied among a set of elements in the XML schema are consistent with the constraints
specified among the corresponding set of elements in the ontology.

Once such a mapping is created, it is important to maintain the consistency when
the related schema or ontology evolves. Changes to schemas and ontologies include
deletion and addition of elements, restructuring, and constraint update. We aim
at incrementally maintaining the consistency of a semantic mapping instead of re-
discovering a new semantic mapping when changes happen. For example, for the
schema in Figure 2, if a new element title is added under the article element and
the Qtitle attribute becomes an attribute of the title element, we only need to update
the left-hand side of the existing semantic mapping formula and keep the right-hand
side intact. There is no need to execute the mapping discovery algorithm to generate
a new mapping formula. A systematic mapping maintenance strateqy is presented
later. |

The main contributions of this work are as follows: (i) we propose a mapping
formalism to capture the semantics of XML schemas based on tree-pattern formulas
[Arenas and Libkin 2005a]; (ii) we propose a heuristic algorithm for finding semantic
mappings, which are akin to a tree connection embedded in the ontology; (iii) we
enhance the algorithm by taking into account information about (a) XML Schema
features such as occurrence constraints, key and keyref definitions, (b) cardinality
constraints in the ontology, and (¢) XML document design guidelines under the
hypothesis that an explicit or implicit conceptual model existed during the process

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

<xsd:element name=“article” type=‘“articleType”/>
<xsd:complexType name=“articleType”>
<xsd:sequence>
<xsd:element name=‘“author”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=‘“name” minOccurs=“1"
maxOccurs=“1">
<xsd:complexType>
<xsd:attribute name=“fn”
type=“xsd:string” use=‘“required”/>
<xsd:attribute name=“ln”"
type=“xsd:string” use=“optional”/>
</xsd:complexType>
</xsd:element>
</sequence>
<xsd:attribute name=“id” type=“xsd:integer”
use=‘“required” />
</xsd:complexType>
</xsd:element>
<xsd:element name=“contactauthor” minOccurs=“1”
max0Occurs=“1">
<xsd:complexType>
<xsd:attribute name=“authorid”
type=‘“xsd:integer” use=“required” />
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name=“title” type=“xsd:string’
use=“required” />
</xsd:complexType>
</xsd:element>

Fig. 2. An XML Schema Definition

Article 1.* Authorship 1.* Author
-hasDoclID -hasID
-hasTitle -hasFirstname

1.* 1..1
- -hasLastname
Contactauthor

Fig. 3. An Ontology

of XML document design; (iv) we adopt the accuracy metric of schema matching
[Melnik et al. 2002] and evaluate the tool with a number of experiments; (v) we
develop strategies for maintaining the consistency of a semantic mapping when
associated XML schema evolves.

The rest of the paper is organized as follows. Section 2 discusses related work,
while Section 3 presents formal notations used later on. Section 4 describes some
principles, as well as the mapping discovery algorithm. Section 5 reports on em-

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

pirical studies. Section 6 studies how to maintain the consistency of a semantic
mapping under schema evolution. Finally, Section 7 summarizes the results of this
work and suggests future directions.

2. RELATED WORK

Much research has focused on converting and storing XML data into relational
databases [Shanmugasundaram et al. 1999]. It is natural to ask whether we could
utilize the mapping algorithm we have developed in [An et al. 2005b] — for discov-
ering mappings from relational schemas to ontologies — by first converting XML
DTDs/schemas into relational tables. Unfortunately, this approach does not work.
Among others, the algorithms that generate a relational schema from an XML DTD
use backlinks and system generated ids in order to record the nested structure, and
these confuse the algorithms in [An et al. 2005b], which rely heavily on key and
foreign key information.

The schema mapping tool Clio [Miller et al. 2000; Popa et al. 2002] discovers
formal queries describing how target schemas can be populated with data from
source schemas, given sets of simple value correspondences. The present work can
be viewed as extending Clio to the case when the target schema is an ontology
treated as a relational schema consisting of unary and binary tables. However,
as argued in [An et al. 2005b], the chase algorithm of Clio would not produce the
desired mappings due to several reasons: (i) the chase only follows nested referential
constraints along one direction, while the intended meaning of an XML element tree
may follow a binary relationship along either direction (see also Section 4.1); (ii)
Clio does not exploit occurrence constraints in the XML schema. These constraints
carry important semantic information in searching for “reasonable” connections in
the ontology.

The Xyleme [Delobel et al. 2003] project is a comprehensive XML data integration
system which includes an automatic mapping generation component. A mapping
rule in terms of a pair of paths in two XML data sources is generated based on term
matching and structural, context-based constraints. Specifically, terms of paths are
first matched syntactically and semantically. Then the structural information is
exploited. Our work differs from it significantly in that we propose to discover
the mappings between tree structures in XML data and that in ontologies. The
discovery is guided by a forward engineering process.

The problem of reverse engineering is to extract a conceptual schema (UML
diagram, for example) from an XML DTD/schema [Jensen et al. 2003]. The major
difference between reverse engineering and our work is that we are given an existing
ontology, and want to interpret the XML data in terms of it, whereas reverse
engineering aims to construct a new one.

Finally, Schema Matching [Dhamankar et al. 2004; Madhavan et al. 2001; Melnik
et al. 2002] identifies semantic relations between schema elements based on their
names, data types, constraints, and structures. The primary goal is to find the
one-one simple correspondences which are part of the input for our algorithm.

3. FORMAL PRELIMINARIES
In this section, we define some formal notations used in later sections.

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

3.1 XML Data Model and XML Schema

An XML document is typically modeled as a node-labeled graph. For our pur-
pose, we assume that each XML document is described by an XML schema con-
sisting of a set of element and attribute type definitions. Specifically, we assume
the following countably infinite disjoint sets: Ele of element names, Att of at-
tribute names, and Dom of simple type names including the built-in XML Schema
datatypes. Attribute names are preceded by a”@” to distinguish them from element
names. Given finite sets £ CEle and A CAtt, an XML schema § = (E, A, T, p, k)
specifies the type of each element ¢ in FE, the attributes that ¢ has, and the
datatype of each attribute in A. Specifically, we use the following abstract syn-
tax to define an XML schema. An element type 7 is defined by the grammar
T := €|Sequencelly : Ty, ...Ly : T,]|Choice[ly : T1,.., ¢y i T,] for £y,.., L, € E, where
e stands for the empty type, and Sequence and Choice are complex types. Each
element has associated two occurrence constraints: minOccurs, indicating the min-
imum number of occurrence, and maxOccurs, indicating the maximum number.
(We mark with * multiply occurring elements.) The set of attributes of an ele-
ment ¢ € E is defined by the function p : E — 24; and the function x : A -Dom
specifies the datatypes of attributes in A. Each datatype name associates with a
set of values in a domain Dom. In this paper, we do not consider the simple type
elements (corresponding to DTD’s PCDATA), assuming instead that they have
been represented using attributes?. As usual in XML, attributes are single-valued.
Furthermore, a special element r € E is the root of each XML schema, and we
assume that for any two element ¢;,¢; € E, p(¢;) N p(¢;) = 0.

For example, the XML schema describing articles and authors in Figure 2 has

the following specification, where (¢)7 represents the type of an element ¢:

E ={article, author, contactauthor, name},

A ={Qtitle, Qid, Qauthorid, Qfn, Qln},

(article)™ = Sequence[(author)x :(author)™, contactauthor:e],

(author)™ = Sequence[name:é],

plarticle) = (Qtitle), p(author) = (Qid), p(contactauthor) = (Qauthorid),
p(name) = (Qfn,Qln), k(Qtitle) = String, x(Qauthorid) = Integer, x(Qid)= In-
teger, k(@Qfn)= String, x(Q@Qin)= String, and the element article is the root. Note
that for the article element, contactauthor only occurs once, while author may oc-
cur many times. For the author element, name occurs once. The XML Schema
Language [Fallside and Walmsley 2004] is an expressive language that can also
express key and keyref constraints.

Unlike relational databases where data are stored in relations comprising tuples
of values, data in XML documents are organized in graph (tree) structures. An
XML document X = (N, <,r,A,n) over (E, A) consists of a set of nodes N, a child
relation < between nodes, a root node 7, and two functions:

—a labeling function A:N — E U A such that if A(v) = £ € E, we say that v is in
the element type ¢; if A(v) = Qa € A, we say that v is an attribute Qq;

—a partial function 7:N — Dom for every node v with A(v) = @Qa € A, assigning
values in domain Dom that supplies values to simple type names in Dom.

2Multivalued PCDATA elements are encoded by adding an additional element with one attribute

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

An XML document X = (N, <,r, A,n) conforms to a schema S = (E, A, T, p, k),
denoted by X = S, if:

(1) for every node v in X with children vy, .., v,, such that A(v;) € E fori =1, ..., m,
if AM(v) = ¢, then A(v1),..., A(vy,) satisfies 7(¢) and the occurrence constraints.

(2) for ever node v in X with children wuyq, ..., u, such that \(u;) = Qa; € A for
i=1,..,n, if A(v) = ¢, then A(u;) = Qa; € p(¢), and n(u;) is a value having
datatype k(Qa;).

An XML schema can be viewed as a directed node-labeled graph called schema
graph consisting of the following edges: parent-child edges e = £ — /¢; for elements
¢,¢; € E such that if 7(¢)= Sequence]...¢; : 7;...] or Choice]...¢; : 7;...]; and attribute
edges e = £ = « for element ¢ € F and attribute o € A such that « € p(¢). For
a parent-child edge e = ¢ — ¢, if the maxOccurs constraint of ¢; is 1, we show
the edge to be functional, drawn as ¢ = ¢;. Since attributes are single-valued, we
always draw an attribute edge as £ = «. The schema graph corresponding to the
XML schema in Figure 2 is shown in Figure 4.

article

“—
author @title
4 contactauthor
@id \\J

name

L// _, @authorid

@fn @In

Fig. 4. An XML Schema Graph

Elements and attributes as nodes in a schema graph are located by path expres-
sions. For our purposes, we use a simple path expression @ = €|(.Q) and introduce
the notion of element tree.

A semantic mapping from an XML schema to an ontology consists of a set of
mapping formulas each of which is from an element tree (not a graph!) to a conjunc-
tive formulas in the ontology. An element tree can be constructed through a depth
first search (DFS), for every node in the element graph. The DFS process first
creates an empty element graph, and creates a new node for each unmarked node
during the traversal of the original schema graph. Mark each node in the schema
graph as “visited” when it is reached the first time and unmarked when all of its
descendent’s have been traversed. (This has the effect of duplicating subgraphs
pointed at from multiple nodes.) Regular edges are created in the element graph
whenever there is a traversal from a DFS parent node to its unmarked children in
the original schema graph. If an already marked node is reached, then a “back”
edge (using dashed line) is added in the element graph from the DFS parent to
this marked child, but the DFS does not follow this edge. For example, Figure 5

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

(a) shows a schema graph with a cycle and a node with multiple parents. Figure
5 (b), (c), and (d) are the element graphs created by the DFS process starting at
the elements controls, employee, and manager, respectively.

controls controls
department project department project

I/ \4 / /l \\l- employe% anager

@pid
@did employee @pid @did employee employee /JL ! lL

"//m;l’agg ! 3,’1 LYy o manaﬂef emjlfyee v

@eid . @eidl managet manager @eid2 _
JL lL lL @mid @eid
@mid @mid1 @mid2
@ ®) ©)

Fig. 5. Schema Graph and Element Graphs

Next, we convert the element graphs into element trees by ignoring or unfolding
the back edges, depending on our needs. To unfold a back edge from a node #¢; to
a node ¢;, we connect ¢; and all the contents descending ¢; until ¢; to ¢;, and then
remove the back edge. The occurrence constraint of the newly created edge from
¢; to ¢; is the same as that of the back edge. Figure 6 (c) and (d) are the element
trees obtained from the element graphs in Figure 5 (c¢) and (d), respectively, by
unfolding the back edges, while Figure 6 (b) is the element tree obtained from
the element graph in Figure 5 (b) by ignoring the back edge. For the sake of
simplicity, we specify each element tree as rooted at the element from which the
tree is constructed, ignoring the path from the root to the element in the original
schema graph.

controls controls employee manager
/ \ . '/ \ . / lL emplo ee JL
department prolect department proiect @eid1 manager noy i

t/ \4 / / l \gpid employee JL @leLKijanager

@pid

@did employee @did employee employee iL JL
/ ﬂ /ll lL \\«l , @eid2 @mid2
@eid managzr> @eidl manager manager @eid2
@mid @midl @mid2

@) (b) (¢) (d)

Fig. 6. Schema Graph and Element Trees

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

10

3.2 Ontologies and the Ontology Graph

In this paper, we do not restrict ourselves to any particular language for describ-
ing ontologies. Instead, we use a generic conceptual modeling language (CML),
which contains common aspects of most semantic data models, UML, ontology lan-
guages such as OWL, and description logics. Specifically, the language allows the
representation of classes/concepts (unary predicates over individuals), object prop-
erties/relationships (binary predicates relating individuals), and datatype proper-
ties/attributes (binary predicates relating individuals with values such as integers
and strings); attributes are single valued in this paper. Concepts are organized
in the familiar ISA hierarchy, and subclasses of a superclass can be either disjoint
or overlapping. Relationships, and their inverses (which are always present), are
subject to constraints such as specification of domain and range, plus cardinality
constraints, which here allow 1 as lower bounds (called total relationships), and 1
as upper bounds (called functional relationships).

We shall represent a given ontology using a labeled directed graph, called an
ontology graph. We construct the ontology graph from an ontology as follows: We
create a concept node labeled with C for each concept C, and an edge labeled with
p from the concept node C to the concept node C5 for each object property p with
domain C7 and range Cs; for each such p, there is also an edge in the opposite
direction for its inverse, referred to as p~. For each attribute f of concept C, we
create a separate attribute node denoted as Ny, whose label is f, and add an
edge labeled f from node C' to Ny . For each ISA edge from a subconcept C; to
a superconcept Cs, we create an edge labeled with ISA from concept node Cj to
concept node Cy with cardinality 1..1 on the Cj side (a C; must be a C3), and 0..1
on the C; side. For the sake of succinctness, we sometimes use UML notations, as
shown in Figure 3, to represent the ontology graph. Note that in such a diagram,
instead of drawing separate attribute nodes, we place the attributes inside the
rectangle concept nodes; and relationships and their inverses are represented by a
single undirected edge. The presence of such an undirected edge, labeled p, between
concepts C' and D will be written in text as|C|---p——- @ It will be important for
our approach to distinguish functional edges — ones with upper bound cardinality
of 1, and their composition: functional paths. If the relationship p is functional
from C to D, we write —-——p->-- @ For expressive CMLs such as OWL, we
may also connect C' to D by p if we find an existential restriction stating that each
instance of C' is related to some instance or only instances of D by p.

3.3 The Mapping Formalism

In this paper, we attempt to discover a semantic mapping from an XML schema to
an ontology, given a set of simple correspondences. A correspondence X:P.Qce~rsO:D.f
relates the attribute “@Qc¢” of an element ¢ reached by the simple path P in an el-
ement tree to the datatype property f of class D in an ontology. A simple path P
is always relative to the root of a tree. For example, we can specify the following
correspondences for the element tree in Figure 6 (c):

X:employee.Qeidl «~ O:Employee.hasld,
X:employee.manager.@mid«~ O:Employee.hasld.
X:employee.manager.employee.Qeid2«~+ O:Employee.hasld

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

11

where Employee is a concept in an ontology and hasld is an attribute of the concept
Employee. Formally, a correspondence L will be a mathematical relation L(P, Qc,
D, f, N¢p), where the first two arguments determine unique values for the last
three.

We now turn to the mapping language relating a formula representing an ele-
ment tree with a conjunctive formula in an ontology. On the XML side, the basic
components are attribute formulas [Arenas and Libkin 2005b], which are specified
by the syntax a ::= £|¢{(Qa; = z1,..,Qa, = x,), where £ € E, Qay,..,Qa, € A;
E and A are element names and attribute names, respectively, while variables
ri,.., T, are the free variables of a. Tree-pattern formulas over an XML schema
S = (FE, A, T,p, k) are defined by ¢ ::= a|afp1, .., pn], where a ranges over attribute
formulas over (E, A). The free variables of a tree formula v are the free variables
in all the attribute formulas that occur in it. For example,

employee(Qeidl = x1)[manager(@Qmid = x2)[employee(Qeid2 = x3)]]
is the tree formula representing the element tree in Figure 6 (c).

A mapping formula between an element tree and an ontology then has the form
U(X) — ¢(X,Y), where U(X) is a tree formula in the XML schema and ®(X,Y)
is a conjunctive formula in the ontology. For example, given an ontology containing
a concept Employee, with an attribute hasld, and a functional property hasManager
(whose inverse is manages, which is not functional), the following mapping formula
ascribes a semantics of the element tree in Figure 6 (c):

employee(Qeidl = x1)[
manager (Qmid = x3)]
employee (Qeid2=xz3)]] — Employee(Y),hasld(Y7, z1),
Employee(Y3), hasld(Ys, z2),
hasManager (Y7, Y2), Employee(Y3),
hasld(Y3, z3),manages(Y3, Y3).

Since we maintain the unique name assumption for attributes, we can drop the
variable names x;s, and just use attribute names in formulas. The variables Y}s are
implicitly existentially quantified and refer to individuals in the ontology.

3.4 The Mapping Discovery Problem

Having the formalism for specifying mappings between XML schemas and ontolo-
gies, we now turn to the problem of discovering such mappings.

Semantic Mapping Discovery Problem (X-to-O problem). Given an XML
schema S = (E, A, 7, p, k), an ontology O, and a set of correspondences L from at-
tributes of elements in S to attributes of concepts/classes in O. For an element tree
T, find an association d1 in the ontology O such that T and 61 are “semantically
similar” in terms of modeling a subject matter.

The input of the X-to-O problem is an XML schema, an ontology, and a set of
correspondences from attributes of elements in the schema to attributes/datatype
properties of concepts in the ontology. An XML document stores attribute values
organized into a graph, while an ontology specifies concepts, attributes of concepts,
and relationships between concepts. Our solution for discovering the semantic map-

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

12

ping from an XML schema to an ontology exploits the principles that convert a
conceptual model into a “good” XML schema. Focusing on semantics discovery, we
assume the input XML schema has been transformed into element tree(s).

4. MAPPING DISCOVERY ALGORITHM

Now we turn to the algorithm for discovering semantic mapping from an element
tree to an ontology. The algorithm assumes a set of correspondences have been
given. First, we analyze the structure of an XML element tree to lay out several
principles for the algorithm.

4.1 Principles

We start from a methodology presented in the literature [Embley and Mok 2001;
Kleiner and Lipeck 2001] for designing XML DTDs/schemas from a conceptual
model (CM). We begin with the basic modeling constructs for concepts, attributes,
and binary relationships.

4.1.1 Basic Conceptual Models. As with relational schemas, there is a notion of
XML normal form (XNF) for evaluating the absence of redundancies and update
anomalies in XML schemas [Embley and Mok 2001]. The methodology in [Embley
and Mok 2001] claims to develop XNF-compliant XML schemas from conceptual
models (CMs). It turns out that these “good” XML schemas are trees embedded
in the graph representations of the CMs. Using the term “element tree” instead
of “schema tree” in [Embley and Mok 2001], we briefly describe the algorithm of
[Embley and Mok 2001] (called EM-algorithm,).

Example 4.1. A CM containing only binary relationships between concepts is
referred to as a “binary and canonical hypergraph” in [Embley and Mok 2001]. For
such a CM H, the EM-algorithm derives an element tree T' such that T is in XNF
and every path of T reflects a sequence of some connected edges in H. For ezample,
starting from the Department node of the CM in Figure 7 the following element tree
(omitting attributes) T is obtained by the EM-algorithm:

Department]
(FacultyMember|
(Hobby)*, (GradStudent|
Program, (Hobby)x])*])*],

where we use [] to indicate hierarchy and ()* to indicate the multiple occurrences
of a child element (or non-functional edges) in element trees.

In essence, EM-algorithm recursively constructs the element tree T as follows: it
starts from a concept node N in CM, creates tree T rooted at a node R correspond-
ing to N, and constructs the direct subtrees below R by following nodes and edges
connected to N in CM. Finally, a largest hierarchical structure embedded within
CM is identified and an edge of T reflects a semantic connection in the CM.]

Given an XNF-compliant element tree 7" and the CM from which T was derived,
we may assume that there is a semantic tree S embedded in the CM graph such that
S is isomorphic to T'. If the correspondences between elements in 7" and concepts
in the CM were given, we should be able to identify S.

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

13

Hobby | * 0.x [Faculty Member| , Department
1.1
0.* 1.1
1.*
GradStudent 1 * Program
0.*
1.1

Fig. 7. A Sample CM graph.

Example 4.2. Suppose elements in the element tree T of Example 4.1 corre-
spond to the concepts (nodes) in Figure 7 by their names. Then we can recover the
semantics of T recursively starting from the bottom. For the subtree T’

GradStudent|
Program, (Hobby)#],

the edge X :GradStudent® = X :Program in T' is functional and X :GradStudent
— X :Hobby is non-functional. In the CM graph, we can take the concept GradStudent
as the root. Then we seek for a functional edge from the concept GradStudent to
the concept Program and a 1 : N or M : N edge from GradStudent to the concept
Hobby. The result is the semantic tree S’ consisting of two edges:

--->--|Program | and | GradStudent | -~——-- ,

Having identified S’, we now move one layer up to search for a semantic tree S”
corresponding to the following subtree T"

FacultyMember|
(Hobby)*, (GradStudent|
Program, (Hobby)x|)x].

The edge X :FacultyMember — X:Hobby in T" is non-functional, and the edge
from X :FacultyMember to X :GradStudent, the root of tree S’, is non-functional
as well. Hence, in the CM, we build the tree S” using the M : N edge from the
concept FacultyMember to the concept Hobby and the 1 : N edge from FacultyMember
to the concept GradStudent.

Finally, we are ready to build a semantic tree S corresponding to the entire tree

T

Department|
(FacultyMember|
(Hobby)x, (GradStudent|
Program, (Hobby)x])*])*].

3We use the notation X:FElement to distinguish an element in an XML schema.

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

14

Since we have identified a semantic tree S corresponding to T", what we have to
do now is to connect the concept Department to the root of S”, which is the concept
FacultyMember. The connection should be a 1: N or N : M edge according to the
occurrence constraint of the FacultyMember element.

Figure 8 shows the final semantic tree S identified from the CM in Figure 7,
where we use a line with arrow to indicate a functional edge. Notice that the shared
concept Hobby gets duplicated in the CM graph.

Department

Faculty Member

Hobby

GradStudent

=

Program

Hobby

Fig. 8. The Identified Semantic Tree

In an element tree T, attributes are the leaves of T" and often correspond to
the datatype properties of concepts in a CM. Our algorithm assumes that the
user specifies the correspondences from XML attributes to datatype properties in
an ontology, i.e., a CM, manually or using some existing schema matching tools.
Given an element tree, an ontology, and a set of correspondences, the algorithm
attempts to identify the root of a semantic tree corresponding to the element tree
and use “semantically matched” edges to connect the root to remaining nodes. This
process is recursive and in a bottom-up fashion.

Example 4.3. Given an element tree T

GradStudent(Qln, Qfn)[
Program(@pname)],

and an ontology/CM shown in Figure 9. Suppose the user specifies the following
correspondences from attributes of elements in T to datatype properties of concepts
in the ontology

v1: X:GradStudent.Qln«~QO :GradStudent.lastname,
vo: X:GradStudent.Q fne~QO:GradStudent.firstname,
vg: X:GradStudent.Program.Qpname«~QO:Program.name.

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

15

GradStudent| 0.* registersin 1.1 | Program
-lastname -name
irstname *
T .)
’/ |' 0..* appliedFor 0..* \‘
| '
v !
\ \]
*)
\ v GradStudent
v, 2N Vs
\ N\ -
\\ \ !
\\ ,/
\\ *@fn Program /
-\‘ @In
@pname

Fig. 9. A Small Ontology and An element Tree

In a recursive and bottom-up fashion, we build a semantic tree S corresponding to
T starting from the leaf Qpname. The correspondence vs gives rise to the semantic
tree S’ for the leaf Qpname, where S’ is the concept Program. For the subtree
Program(@pname), the semantic tree is S’ as well because there are no other
correspondences involving the element X :Program. At this level, there are two
other subtrees: Qfn and Qln. The semantic tree for both Qfn and Qln is the
concept GradStudent according to the correspondences v1 and vy. Let us refer to
this semantic tree as S”. In connecting S” to S’, a possible solution is to assume
that the root of 8" corresponds to the element tree root X :GradStudent. Therefore
the connection is a functional edge from the root of S”, GradStudent, to the root
of S’, Program, because the connection from the element X :GradStudent to the
element X :Program is functional (the occurrence constraint on X :Program is 1).

Consequently, we identify the semantic tree S as the connection | GradStudent
--registersIn->- in the ontology. |

The first principle of our mapping discovery algorithm is to identify the root of
a semantic tree and to construct the tree recursively by connecting the root to its
direct subtrees using edges in the ontology graph. More precisely, for the node vy
and its child v in an element tree, if a node N; in an ontology is identified for the
root of a semantic tree for interpreting the tree at v; and a node N5 is the root of a
semantic tree for the subtree at vo, then we connect Ny to N using an edge having
cardinality constraints compatible with the occurrence constraints of the edge from
v1 to vy in the element tree.

Evidently, identifying the root of a semantic tree is the major obstacle. The
following example illustrates the problem for an XML schema which is not XNF
compliant. Such a schema can be easily encountered in reality.

Example 4.4. Given an element tree

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

16

GradStudent|
Name(Qin, Qfn), Program (@pname)).

Suppose the user specified the following correspondences

v1: X :GradStudent.Name.Qln«~O:GradStudent.lastname,
vo: X :GradStudent.Name.Q fn «~O:GradStudent.firstname,
vg: X :GradStudent.Program.Qpname«~QO :Program.name,

from the attributes of elements to the datatype properties of concepts in the ontology
shown in Figure 10.

For the element X:Name and the element X :Program, we can identify two
sub-trees, the concept GradStudent and the concept Program by using the correspon-
dences. For the element X :GradStudent, we have to use the two identified sub-trees
to build the final semantic tree. Since both X:Name and X :Program occur once
and are at the same level, the question is which concept node is the root of the final
semantic tree? GradStudent or Program? Since the order of nodes on the same
level of the element tree does not matter, both are potential roots. Therefore, the
mapping algorithm should recover functional edges from GradStudent to Program as

well as from Program to GradStudent, if any. |
GradStudent| 0..x registersin 1.1 | Program
-lastname -name
irstname -. ‘
/ T A
’/ N 0.* appliedFor 0. L
! \
P! '
L) !
v\ !
\ ‘\ GradStudent !
\ V3
1, v, .
A !
I 7.\
SN Name /
‘:\ Program »

\\} A A\ ’//

@fn *@In @pname

Fig. 10. An Element Tree and An Ontology

This leads to the second principle of our algorithm. Let v, and vs be two nodes
in an element tree (an element tree has element nodes and attribute nodes). Let
vo be a child of v; and the maximum occurrence constraint for vy is 1. For each
concept C' in an ontology graph such that C has been identified as the root of a
semantic tree for the subtree at v, C' is a potential root for building a semantic tree
for the element tree at vy. If v1 does not have a child whose maximum occurrence
constraint is 1, then we find a concept node as the root of a semantic tree for the

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

17

element tree at vy as follows. The root connects to its children using non-functional
paths. The tree consisting the root and its children is the minimum one if there
are other trees formed by other roots connecting to the same set of children.
Unfortunately, not every functional edge from a parent node to a child node in
an element tree represents a functional relationship. Specifically, some element tags

are actually the collection tags. The following example illustrates the meaning of
a collection tag.

Example 4.5. Figure 11 depicts an element tree and the correspondences from

the element tree to a CM. The element tree and the correspondences are written in
text as follows.

N .
GradStudent 0.. mostFavorite 0.1 Hobby
-lastname -title
firstname - A
| !
} ,f 0..* hasHobbies 0..* }
| | |
| | |
\ \ |
(IR |
1\ GradStudent 1
N]
AN |
\ N\ |
\ N |
\\ \\\ Name Hobbies ',
N ~
\\\\\\ L// \37 I
~~@M, @in Hobby [
/
Y,
|
@title
Fig. 11. An Element Tree with a Collection Tag
GradStudent/
Name(Qln, Qfn), Hobbies/
(Hobby (Qtitle))*]]

X :GradStudent.Name.Qln«~Q :GradStudent.lastname,
X :GradStudent.Name.Qfn «~QO:GradStudent.firstname,
X :GradStudent.H obbies. Hobby.Qtitle«~QO :Hobby.title.

The element tag X :Hobbies is a collection tag. It represents a collection of hob-
bies of a graduate student. Although the edge X :GradStudent = X:Hobbies is

functional, X :Hobbies — X :Hobby is non-functional. When the concept Hobby is
identified as the root of a semantic tree for the subtree

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

18

Hobbies[
(Hobby (Qtitle))*],

Hobby should not be considered as a potential root of the semantic tree for the entire
element tree. |

Eliminating concepts corresponding to collection tags from the set of the potential
roots is our third principle.

In most cases, we try to discover the semantic mapping between an XML schema
and an ontology such that they were developed independently. In such cases, we
may not be able to find an isomorphic semantic tree S embedded in the ontology
graph. For example, for the element tree

City(QcityName)|
Country (QcountryName)],

if a CM with a path -- locatedIn -->- -- locatedIn -->-

is used for interpreting the element tree, the entire path is a possible
answer. The fourth principle for discovering mappings is to find shortest paths in

an ontology graph instead of restricting to single edges. The composed cardinality
constraints of a path should be compatible with the occurrence constraints of the
corresponding edge in the element tree.

Even though we could eliminate some collection tags from the set of potential
roots to reduce the number of possible semantic trees, there may still be too many
possibilities if the ontology graph is large. To further reduce the size of the set
of potential roots, we can make use of the key and keyref constructs in an XML
schema.

Example 4.6. Given the element tree

Article/
Title(Qtitle), Publisher(@name), Contact Author(Qcontact), (Author(Qid))x].

If the attribute Qtitle is defined as the key for the element X:Article, then we
should only choose the concept corresponding to Qtitle as the root of the semantic
tree, eliminating the classes corresponding to Qname and Qcontact (chosen by the
second principle). Alternatively, if Qcontact is defined as a keyref referencing
some key, we can also eliminate the class corresponding to Qcontact. |

So our fifth principle is to use key and keyref definitions to restrict the set of
potential roots.

4.1.2 Reified Relationships. To represent n-ary relationships in the conceptual
modeling language (CML), one needs to use reified relationship (classes). For ex-
ample, an ontology may have class Presentation connected with functional roles to
classes Author, Paper, and Session, indicating participants. It is desirable to recover
reified relationships and their role connections from an XML schema. Suppose the
element tree

Presentation|
Presenter(Qauthor), Paper(Qtitle), Session(QeventId)],

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

19

represents the above ternary relationship. Then, in the ontology, the root of the
semantic tree is the reified relationship class Presentation, rather than any one
of the three classes which are role fillers. The sizth principle then is to look for
reified relationships for element trees with only functional edges from a parent to
its children that correspond to separate classes?.

4.1.3 ISA Relationships. In [Embley and Mok 2001], ISA relationships are elim-
inated by collapsing superclasses into their subclasses, or vice versa. If a superclass
is collapsed into subclasses, correspondences can be used to distinguish the nodes
in the ontology. If subclasses are collapsed into their superclass, then we treat the
ISA edges as special functional edges with cardinality constraints 0 : 1 and 1 : 1.
The last principle is then to follow ISA edges whenever we need to construct a
functional path®.

Algorithm

4.2 Algorithm

First, to get a better sense of what we are aiming for, we present the encodeTree(S,
L) procedure, which translates an ontology subtree S into a conjunctive formula,
taking into account the correspondences L [An et al. 2006].

Function encodeTree(S, L)

Input subtree S of ontology graph, correspondences L from attributes of element
tree to datatype properties of class nodes in S.

Output variable name generated for root of S, and conjunctive formula for the
tree.

Steps:

(1) Suppose N is the root of S, let ¥ = {}.

(2) If N is an attribute node with label f, find @d such that L(_,Qd, _, f, N) = true,
return (Qd, true).

(3) If N is a class node with label C, then introduce new variable Y'; add conjoint
C(Y) to ¥; for each edge p; from N to N;:
(a) let S; be the subtree rooted at N;;
(b) let (vi, ¢i(Z;))=encodeTree(S;, L);
(¢) add conjunct p;(Y,v;) A ¢:(Z;) to V;
(4) return (Y,).

The following procedure constructTree(T, L) generates the subtree of the ontology
graph for the element tree after appropriately replicating nodes® in the ontology
graph.

Function constructTree(T', L)

4If a parent functionally connects to only two children, then it may represent an M:N binary
relationship. So recover it as well.

5Thus, ISA is taken care of in the forthcoming algorithm by proper treatment of functional path.
6Replications are needed when multiple attributes correspond to the same datatype property. See
[An et al. 2005b] for details.

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

20

Input an element tree T', an ontology graph, and correspondence L from attributes
in T to datatype properties of class nodes in the ontology graph.

Output set of (subtree S, root R, collectionTag) triples, where collectionTag is a
boolean value indicating whether the root corresponds to a collection tag.

Steps:

(1) Suppose N is the root of tree T.

(2) If N is an attribute, then find L(, N,_,_, R) = true; return ({R},R, false).
/*the base case for leaves.*/

(3) If N is an element having n edges {eq, .., e, } pointing to n nodes {Ny, .., N, },

let T; be the subtree rooted at IV,

then compute (S;,R;, collectionTag;)= constructTree(T;, L) for i =1, .., n;

(a) If n = 1 and ey is non-functional, return (S1,R1, true);/*N probably is a
collection tag representing a set of instances each of which is an instance
of the Ny element.*/

Else if n = 1 and e; is functional return (Sy,R1,collectionTagy).

Else if Ri=Ry=...=R,,, then return (combine(S1,..,S,), R1, false)".

Else let F={Rj,,..,R;, | s.t. ej, is functional and collectionTag;, = false
fork=1,..,m, jre{l,...,n}} and NF={R,,, .., R;, | s.t. e;, is non-functional,
or e;, is functional and collectionTag;, = true fork =1,..,h, ix€{l,...,n}},
let ans = {}, /*separate nodes according to their connection types to N.*/

==
2L

i. Try to limit the number of nodes in F by considering the following
cases: 1) keep the nodes corresponding to key elements located on the
highest level; 2) keep those nodes which do not correspond to keyref
elements.

ii. If NF =0, find a reified relationship concept R with m roles r;,,..,7;,.
pointing to nodes in F, let S= combine({r;,}, {S5;,}) for k =1,..,m;
let ans= ansU(S, R, false). If R does not exist and m = 2, find
a non-functional shortest path p connecting the two nodes R;, , Rj,
in F; let S= combine(p, Sj,, S;,); let ans= ansU(S, R;,, false).
/*N probably represents an n-ary relationship or many-many binary
relationship (footnote of the sixth principle.)*/

iii. Else for each R;, € F k =1,..,m, find a shortest functional path p;,
from R;, to each R;, € F\R;, for t = 1,..,k — 1,k + 1,..,m; and
find a shortest non-functional path ¢;, from R;, to each R; € NF for
r=1,.., h;ifp;, and ¢,, exist, let S= combine({p;, }, {¢:. },{51, ., 5n});
let ans=ansU(S,R;,,false). /*pick an root and connect it to other
nodes according to their connection types.*/

iv. If ans # (0, return ans; else find a minimum Steiner tree S connect-
ing Ry,.., Ry, return (S,Ry, false). /*the default action is to find a
shortest Steiner tree.*/

It is likely that the algorithm will return too many results. Therefore, at the final
stage we set a threshold Nipesp, for limiting the number of final results presented.

"Function combine merges edges of trees into a larger tree.

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

21

5. EXPERIMENTAL EVALUATION

We have implemented the mapping discovery algorithm and conducted a set of
experiments to evaluate its effectiveness and usefulness.

Measures for mapping quality and accuracy. We first attempt to use the
notions of precision and recall for the evaluation. Let R be the number of correct
mapping formulas of an XML schema, let I be the number of correctly identified
mapping formulas by the algorithm, and let P be the total number of mapping
formulas returned. The two quantities are computed as: precision = I/P and
recall = I/R. Please note that for a single input element tree T', which has a single
correct mapping formula, the algorithm either produces the formula or not. So the
recall for T is either 0 or 1, but the precision may vary according to the number
of output formulas. For measuring the overall quality of the mapping results, we
computed the average precision and recall for all tested element trees of an XML
schema.

However, precision and recall alone cannot tell us how useful the algorithm is
to users. The purpose of our tool is to assist users in the process of constructing
complex mappings, so that productivity is enhanced. Consider the case when only
one semantic mapping is returned. Even if the tool did not find the exactly right
one, it could still be useful if the formula is accurate enough so that some labor is
saved. To try to measure this, we adopt the accuracy metric for schema match-
ing [Melnik et al. 2002]. Consider the mapping formula ®(X)—¥(X,Y) with the
formula ®(X) encoding an element tree. The formula ¥(X,Y") encodes a semantic
tree S = (V, E) by using a set of unary predicates for nodes in V, a set of binary
predicates for edges in F, and a set of variables, Y, assigned to each node (there
are predicates and variables for datatype properties as well). For a given element
tree T', writing the complex mapping formula consists of identifying the semantic
tree and encoding it into a conjunctive formula (which could be treated as a set
of atomic predicates). Let ¥; = {a1(Z1), a2(Z2),..,am(Zm)} encode a tree Sy, let
\112 = {bl(Yl),bQ(YQ), 7bn(Yn)} encode a tree 52. Let D = \I/Q\\pl = {bi(m” s.t.
for a given partial one-one function f : Y — Z representing the mapping from
nodes of Sy to nodes of Sy, b;(f(Y;)) € U1}. One can easily identify the mapping
f:Y — Z by comparing the two trees Sy and S; (recall an ontology graph contains
class nodes as well as attribute nodes representing datatype properties) so we con-
sider that it comes for free. Let ¢ = |D|. Suppose ¥; to be the correct formula and
U5 to be the formula returned by the tool for an element tree. To reach the correct
formula ¥, from the formula ¥, one needs to delete n — ¢ predicates from W5 and
add m — ¢ predicates to W5. On the other hand, if the user creates the formula from
scratch, m additions are needed. Let us assume that additions and deletions need
the same amount of effort. However, browsing the ontology for correcting formula
U5 to formula W, is different from creating the formula ¥; from scratch. So let «
be a cost factor for browsing the ontology for correcting a formula, and let 3 be a
factor for creating a formula. We define the accuracy or labor savings of the tool as
labor savings =1 — alln=c)+(m=c)] Intuitively, a < g, but for a worst-case bound
let us assume a = [in this study. Notice that in a perfect situation, m =n = ¢
and labor savings = 1.

Schemas and ontologies. To evaluate the tool, we collected 9 XML schemas vary-

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

22

ing in size and nested structure. The 9 schemas come from 4 application domains,
and 4 publicly available domain ontologies were obtained from the Web and liter-
ature. Table I and II shows the characteristics of the schemas and the ontologies;
the column heads are self-explanatory. The company schema and ontology are ob-
tained from [Kleiner and Lipeck 2001] in order to test the principles of the mapping
construction. The conference schema is obtained from [Lee and Chu 2000]. UT DB
is the schema used for describing the information of the database group in Univer-
sity of Toronto. SigmodRecord is the schema for SIGMOD record. The rest of the
schemas are obtained from the Clio test suite (http://www.cs.toronto.edu/db/Clio).
The KA ontology, CIA factbook, and the Bibliographic-Data are all available on
the Web.

XML Schema Max Depth (DFS) in # Nodes in # Attributes in

Schema Graph Schema Graph Schema Graph
Company 6 30 17
Conference 5 21 12
UT DB 6 40 20
Mondial 6 214 93
DBLP 1 3 132 63
DBLP 2 5 29 11
SigmodRecord 3 16 7
Amalgam 1 3 117 101
Amalgam 2 3 81 53

Table I. Characteristics of Test XML Schemas

Ontology # Nodes # Links
Company 18 27
KA 105 4396
KA 105 4396
CIA factbook 52 7
Bibliographic 75 749
Bibliographic 75 749
Bibliographic 75 749
Bibliographic 75 749
Bibliographic 75 749

Table II. Ontology Summary

Experimental results. Our experiments are conducted on a Dell desktop with
a 1.8GHZ Intel Pentium 4 CPU and 1G memory. The first observation is the
efficiency. In terms of the execution times, we observed that the algorithm generated
results on average in 1.4 seconds which is not significantly large, for our test data.

Figure 12 shows the average precision and recall measures of the 9 mapping
pairs. For each pair of schema and ontology, the average precision and recall are
computed as follows. For the element trees extracted from the schema graph, a set
of correct mapping formulas is manually created. We then apply the algorithm on
the element trees and ontologies to generate a set of formulas. Next we examine each

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

23

of the generated formulas to count how many are correct and compute the average
precision and recall. The overall average precision is 35% and overall average recall
is 75%. Notice that we have limited the number of formulas returned by the tool
to 10.

O Avg. Precision

m Avg. Recall

Avg. Precision/Recall (%)
[
o

R & Q > Y v S N v
2 QO O O Q < Q' Q Q
S & & ®o° Q‘b\/ Q@\/ & & &
(X $ X S & VS&
)
Ny <

Fig. 12. Average Recall and Precision for 9 Mapping Cases

Finally, we evaluate the usefulness of the tool. Figure 13 shows the average values
of labor savings for the 9 mapping cases. For each mapping case, the average labor
savings is computed as follows. Examine each incorrect formula returned by the
algorithm and compute its labor saving value relative to the manually created one.
Take the average value of the labor savings of all incorrect formulas. Note that
even when the correct formula was identified by the algorithm, we still computed
the labor savings for all incorrect ones to see how useful the tool is in case only
one formula was returned. The overall average labor savings is over 80%, which is
quite promising. Especially in view of the pessimistic assumption that « = (§ in
the labor savings formula, we take this as evidence that the tool can greatly assist
users in constructing complex mappings between XML schemas and ontologies with
a proper schema matching tool as a front-end component.

6. MAINTAINING SEMANTIC MAPPINGS

Creating semantic mappings between XML schemas and ontologies is a complex
process. Although we have developed heuristics for assisting people to discover
semantic mappings, it still requires human involvement in the process. Once such a
semantic mapping has been created, it is important and necessary to help maintain
the consistency of the semantic relationship when the schema and ontology evolve.
In this section, we study the problem of maintaining a semantic mapping.

The purpose of the maintenance are two-fold: first, to preserve the semantic
relationship between the schema and the ontology when the schema or ontology
are modified; second, to reuse the existing semantic mapping as much as possible.

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

24

100 —
g 80 1 — 1 [
@
2
£ 60 — — — —
©
(%]
S 40 H —] —
[
-
o 20~ — — —
<
0 ; ; ; ; ; ; ; ; !
S o Q & ~ v > N Q
& @5\0 & O Qy\? Q)\g Q,Oé & &
@ g ¥ 9 F & S
oS & . <§<\o YS(\ ?,&
NY 2

Fig. 13. Average Labor Savings for 9 Mapping Cases

A similar problem has been studied for adapting schema mappings under schema
evolution. Two possible approaches have been proposed in the literature: a schema
change approach (SCA) [Velegrakis et al. 2003] and a mapping composition ap-
proach (MCA) [Yu and Popa 2005]. Both solutions focus on reusing the semantics
encoded in previous mappings for merely adapting the mappings. Schemas are not
“synchronized”. In our situation, “synchronizing” the ontology and schema asso-
ciated with a semantic mapping along with adapting the mapping will be essential
for achieving desired goals. Consider a very simple case. Suppose the semantics of
an XML schema is expressed in terms of an ontology. If the database administrator
(DBA) wants to modify an occurrence constraint in the schema by changing it from
many to one, it may be desirable to “synchronize” the corresponding cardinality
constraint in the ontology accordingly. Although an ontology is commonly consid-
ered as a shared conceptualization and tends to be fixed, we assume that we can
modify a local copy of the ontology and employ sophisticated version control sys-
tems for maintaining different versions of ontologies. Version control for ontologies
is beyond the scope of this paper. In the sequel, we focus on mapping maintenance
between XML schemas and ontologies when XML schemas evolve.

Related work includes schema evolution in object-oriented databases (OODB).
The problem of schema evolution in OODB is to maintain the consistency of the
instances in an OODB when its schema is modified. The challenges are to update
the database efficiently and minimize information loss. A variety of solutions, e.g.,
[Benatallah ; Banerjee et al. ; Claypool et al. ; Ferrandina et al.], have been
proposed in the literature. Our problem is different from the schema evolution
problem in OODB in that we aim at the semantic consistency between a schema
and an ontology. However, we can draw some insights from the extensive study of
the schema evolution problem in OODB.

Another mapping maintenance problem, studied in [McCann et al.], mainly
focuses on detecting inconsistency of simple correspondences between schema ele-

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

25

ments when schemas evolve. This problem is complementary to the problem we
consider here.

We organize this section as follows. First, we propose the goals of mapping
maintenance: We need to understand what is a consistent semantic relationship.
Second, we analyze and categorize possible changes to schemas and ontologies.
Finally, we present a maintenance plan.

6.1 Goals of Maintaining Semantic Mappings

A semantic mapping formula ¥(X) — ®(X,Y) relates a formula ¥(X) encoding
an element tree T with a conjunctive formula ®(X,Y") encoding a semantic tree (or
s-tree) S in an ontology. A consistent mapping means that the element tree and
the s-tree S should be “semantically compatible”. In other word, the instances of
the element tree should be compatible with the instances of the s-tree. To check
this condition, we consider the process of translating instances under one structure
to instances under another structure.

Let X7 be a set of occurrence constraints (see Section 3.1) imposed to the ele-
ments in the element Tree T'. Let g be a set of cardinality constraints (see Section
3.2) imposed on the relationships in the semantic tree S. Consider the mapping
formula ¥(X) — ®(X,Y). For a legal instance of T satisfying X7, we can create
an instance of S by instantiating Y using labeled null variables in ®(X,Y). We
then check whether the new instance of S satisfies the constraints Xg. Conversely,
for a legal instance of S satisfying g, we can create an instance of T' and check
whether the instance satisfies the constraints Y. If for each legal instance of T
we can create a legal instance of S, and for each legal instance of S we can create
a legal instance of T, then we say that the mapping formula ¥(X) — ®(X,Y) is
consistent. Our goals for maintaining semantic mappings are as follows.

Goal 1 For a consistent semantic mapping M between an XML schema X and an
ontology O, maintain the consistency of M when X evolves.

Goal 2 For a consistent semantic mapping M between an XML schema X and
an ontology O, mazimize the usage of the existing semantics of M during the
masintenance.

6.2 Schema Evolution

Changes to XML schemas can be classified along two orthogonal axes. First, on
the action axis, changes can be classified into (1) changes for adding/deleting ele-
ments; (2) changes for merging/splitting elements; (3) changes for moving/copying
elements; (4) changes for renaming elements; and (5) changes for modifying con-
straints. Second, on the effect axis, changes can be classified into (i) changes that
cause mapping modification; (ii) changes that cause the related schema (or on-
tology) modification; and (iii) changes that cause both mapping and the related
schema (or ontology) modification. These changes can be characterized by map-
pings [Yu and Popa 2005] or by sequences of evolution primitives [Velegrakis et al.
2003; Banerjee et al. |.

In our study, we use a set of simple correspondences to link elements of the previ-
ous schema to elements of the new schema after a schema changed. We then analyze
the existing semantic mapping and the semantics in the new schema. Through the
set of correspondences, we will then (semi-)automatically adapt both the seman-

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

26

tic mapping and the schema/ontology to maintain the consistency of the semantic
mapping.
Example 6.1. Figure 14 shows on the left hand side an old XML schema X.

On the right hand side is the new XML X' which was evolved from X by remov-
ing the Name element. The dashed arrows from attributes and elements in X to

— ——
) -"" ~~--\
article 3 article

/ N L e - e = (N
aUthoreg e @title — == ==Y author < @title

contactauthor == ===1= = == j =$ contactauthor

_____.;@ld

___,.__-.)@fn

/ \g—‘@authorld ——----"---"@ln s\@authorid
-

-
@mn” QAN S~ ==—T

new schema X’

old schema X without ‘name’ element

Fig. 14. Capturing the Evolution of an XML Schema

attributes and elements in X' capture the commonality/differences between the old
XML schema and the new XML schema. |

6.3 Maintenance Plan

We present a plan for maintaining semantic mappings between XML schemas and
ontologies. Figure 15 graphically describes the semantic mapping maintenance
setting, where the schema X evolved to a new schema X’. M is the existing semantic
mapping; M’ is the set of correspondences from elements of X’ to elements of X.
The result of the mapping maintenance is to adapt M to a new semantic mapping
M" between X’ and O (or O” if the (copy of the) original ontology needs to be

modified.)
8 =223 8
¢ = - —
= ——

Fig. 15. Maintenance of Semantic Mapping

0/0”

e 1Z

:

For a semantic mapping formula ¥(X) — ®(X,Y") which relates a formula ¥(X)
encoding an element tree T with a conjunctive formula ®(X,Y’) encoding an s-tree
S in an ontology, the plan consists of several strategies presented as the following.

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

27

Strategy 1: Align the element tree T" and the s-tree S so that each attribute,
element, and edge in T corresponds to a construct or a set of constructs in S.
This alignment may indicate that a path in 7" corresponds to an edge in S or vice
versa. Consequently, for each individual attribute, element, or edge in 7', it either
corresponds to an individual construct in S or it is a part of a compound structure
such as a path which corresponds to an individual construct in S.
Strategy 2: If an attribute is added to the XML schema, then locate the construct
in S corresponding to the element where the attribute is added. Add a new attribute
to the construct. If an element added to the schema, add a new concept to the
ontology. The new concept is connected to the construct corresponding to the
parent element of the new element. Update the mapping formula accordingly.
Strategy 3: If a construct is deleted from either the schema such that some leaves
of the trees are removed, then update the mapping formula by removing the deleted
construct. For example, if a leaf of T" is removed due to the deletion of an attribute
in the schema, the mapping formula can be updated accordingly by removing the
referred attribute.
Strategy 4: If the element tree T evolves to a new tree 7" through restructur-
ing, then use the set of simple correspondences between T and T” to generate an
evolution mapping between these two trees. Composing [Yu and Popa 2005] the
evolution mapping and the existing mapping formula to generate a new mapping
formula relating 7" and S.
Strategy 5: If a constraint in the schema is changed, locate the constructs in
the ontology which correspond to the structure in the XML schema where the
changed constraint was imposed. Update the corresponding constraint in the on-
tology according to the change to the constraint in the schema. For example, if the
occurrence constraint on a parent-child edge is changed from many to single, then
the cardinality constraint on the corresponding relationship in the ontology should
be updated from many to functional.

With the above strategies, we are able to incrementally maintain the consistency
of a semantic mapping between an XML schema and an ontology when the schema
evolves.

7. CONCLUSIONS

In this paper, we have motivated and defined the problem of discovering complex
semantic mappings from XML schemas to ontologies, given a set of simple corre-
spondences from XML attributes to ontology datatype properties. The problem is
motivated by the needs to annotate XML data in terms of ontologies, to translate
XML data into ontologies [An and Mylopoulos], and to integrate heterogeneous
XML data on the semantic web. We have proposed a tool for semi-automatically
constructing complex mappings for users, and we evaluated the tool on a variety
of real XML schemas and ontologies. Our experimental results suggest that quite
significant savings in human work could be achieved by the use of our tool.
Semantic mappings between XML schemas and ontologies are valuable assets
once they are created. However, schemas and ontologies change constantly in open,
dynamic, and distributed environments such as the Web. To address this problem,
we propose strategies for maintaining a semantic mapping between an XML schema,

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

28

and an ontology under schema evolution. Overall, the results of the entire study
provide a set of solutions for building sustainable XML data integration systems
using ontologies.

Future work includes developing effective algorithms for ranking the mapping
candidates. We also plan to use semantic mappings between XML schemas and
ontologies to generate direct mappings between XML schemas.

REFERENCES

AMANN, B.; BEERI, C., FUNDULAKI, I., AND SCHOLL, M. 2002. Ontology-based integration of xml
web resources. In ISWC ’02: Proceedings of the First International Semantic Web Conference
on The Semantic Web. Springer-Verlag, London, UK, 117-131.

AN, Y., BORGIDA, A., AND MYLOPOULOS, J. 2005a. Constructing Complex Semantic Mappings be-
tween XML Data and Ontologies. In Proceedings of the International Conference on Semantic
Web (ISWC). 6-20.

AN, Y., BORGIDA, A., AND MYLOPOULOS, J. 2005b. Inferring complex semantic mappings between
relational tables and ontologies from simple correspondences. In OTM Conferences (2). 1152—
1169.

AN, Y., BORGIDA, A., AND MYLOPOULOS, J. 2006. Discovering the Semantics of Relational Tables
through Mappings. Journal on Data Semantics VII, 1-32.

AN, Y. AND MYLOPOULOS, J. Translating xml web data into ontologies. In In the Proceedings of
International Workshop on Web Semantics (SWWS’05), Agia Napa, Cyprus. 2005.

ARENAS, M. AND LiBKIN, L. 2005a. Xml data exchange: consistency and query answering. In
PODS ’05: Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. ACM Press, New York, NY, USA, 13-24.

ARENAS, M. AND LIBKIN, L. 2005b. XML Data Exchange: Consistency and Query Answering. In
Proceedings of the ACM Symposium on Principles of Database Systems (PODS). 13-24.

BANERJEE, J. ET AL. Semantics and Implementation of Schema Evolution in Object-Oriented
Databases. In SIGMOD’87.

BeENATALLAH, B. A Unified Framework for Supporting Dynamic Schema Evolution in Object
Databases. In ER’99.

CraypooL, K. T., JIN, J., AND RUNDENSTEINER, E. SERF: Schema Evolution through an Exten-
sible, Re-usable, and Flexible Framework. In CIKM’98.

DELOBEL, C., REYNAUD, C., RousseT, M.-C., SiroT, J.-P., AND VoODISLAV, D. 2003. Semantic
integration in xyleme: a uniform tree-based approach. Data Knowl. Eng. 44, 3, 267-298.

DHAMANKAR, R., LEE, Y., DOAN, A., HALEVY, A., AND DOMINGOS, P. 2004. imap: discovering
complex semantic matches between database schemas. In SIGMOD °04: Proceedings of the 2004
ACM SIGMOD international conference on Management of data. ACM Press, New York, NY,
USA, 383-394.

EMBLEY, D. W. AND MOK, W. Y. 2001. Developing xml documents with guaranteed “good” prop-
erties. In ER ’01: Proceedings of the 20th International Conference on Conceptual Modeling.
Springer-Verlag, London, UK, 426-441.

FALLSIDE, D. C. AND WALMSLEY, P. October 2004. XML Schema Part 0: Primer Second Edition.
In W8C Recommendation. http://www.w3.org/TR/xmlschema-0/.

FERRANDINA, F., FERRAN, G., MEYER, T., MADEC, J., AND ZICARI, R. Schema and Database
Evolution in the O2 Object Database System. In VLDB’95.

HALEVY, A. Y., IVEs, Z. G., MORK, P., AND TATARINOV, 1. 2003. Piazza: data management in-
frastructure for semantic web applications. In WWW ’08: Proceedings of the 12th international
conference on World Wide Web. ACM Press, New York, NY, USA, 556-567.

JENSEN, M. R., MOLLER, T. H., AND PEDERSEN, T. B. 2003. Converting xml dtds to uml diagrams
for conceptual data integration. Data Knowl. Eng. 44, 3, 323—346.

KLEINER, C. AND LiPECK, U. W. 2001. Automatic generation of xml dtds from conceptual
database schemas. In GI Jahrestagung (1). 396-405.

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

29

LAKSHMANAN, L. V. S. AND SADRI, F. 2003. Interoperability on xml data. In International
Semantic Web Conference. 146—163.

LEE, D. AND CHU, W. W. 2000. Constraints-preserving transformation from xml document type
definition to relational schema. In ER. 323-338.

MADHAVAN, J., BERNSTEIN, P. A., AND RauM, E. 2001. Generic schema matching with cupid.
In VLDB ’01: Proceedings of the 27th International Conference on Very Large Data Bases.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 49-58.

McCANN, R. ET AL. Maveric: Mapping Maintenance for Data Integration Systems. In VLDB’05.

MELNIK, S., GARCIA-MOLINA, H., AND RAHM, E. 2002. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In ICDE. 117-128.

MILLER, R. J., Haas, L. M., AND HERNANDEZ, M. A. 2000. Schema mapping as query discovery.
In VLDB ’00: Proceedings of the 26th International Conference on Very Large Data Bases.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 77-88.

Popra, L., VELEGRAKIS, Y., MILLER, R. J., HERNANDEZ, M. A., AND FAGIN, R. 2002. Translating
web data. In VLDB. 598-609.

SHANMUGASUNDARAM, J., TUFTE, K., ZHANG, C., HE, G., DEWITT, D. J., AND NAUGHTON, J. F.
1999. Relational databases for querying xml documents: Limitations and opportunities. In
VLDB’99, Proceedings of 25th International Conference on Very Large Data Bases, September
7-10, 1999, Edinburgh, Scotland, UK, M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B.
Zdonik, and M. L. Brodie, Eds. Morgan Kaufmann, 302—-314.

VELEGRAKIS, Y., MILLER, R. J., AND Pora, L. 2003. Mapping Adaptation under Evolving
Schemas. In Proceedings of the International Conference on Very Large Data bases (VLDB).
584-595.

Yu, C. AND PopA, L. 2005. Semantic Adaptation of Schema Mappings when Schema Evolve. In
Proceedings of the International Conference on Very Large Data bases (VLDB).

Journal of Computer Science and Engineering, Vol. V, No. N, December 2007.

