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a b s t r a c t

Ontology mapping seeks to find semantic correspondences between similar elements of different ontolo-
gies. It is a key challenge to achieve semantic interoperability in building the Semantic Web. This paper
proposes a new generic and adaptive ontology mapping approach, called the PRIOR+, based on propa-
gation theory, information retrieval techniques and artificial intelligence. The approach consists of three
major modules, i.e., the IR-based similarity generator, the adaptive similarity filter and weighted similar-
ity aggregator, and the neural network based constraint satisfaction solver. The approach first measures
both linguistic and structural similarity of ontologies in a vector space model, and then aggregates them
using an adaptive method based on their harmonies, which is defined as an estimator of performance
of similarity. Finally to improve mapping accuracy the interactive activation and competition neural
network is activated, if necessary, to search for a solution that can satisfy ontology constraints. The
experimental results show that harmony is a good estimator of f-measure; the harmony based adaptive
aggregation outperforms other aggregation methods; neural network approach significantly boosts the
performance in most cases. Our approach is competitive with top-ranked systems on benchmark tests
at OAEI campaign 2007, and performs the best on real cases in OAEI benchmark tests.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The World Wide Web (WWW) is widely used as a universal
medium for information exchange. Automatically exchanging data
and reusing the exchanged data in the WWW is limited due to
the heterogeneity problem existing in information resources, and
the non-semantic nature of HTML and URLs. Information hetero-
geneity occurs at three levels, i.e., syntax, structure and semantics
[38]. Syntactic heterogeneity is the simplest heterogeneity problem
caused by the usage of different data formats. To solve the syntactic

� This paper has been revised and extended from the authors’ previous work
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heterogeneity, standardized formats such as XML,4 RDF/RDFS5 and
OWL6 have been widely used to describe data in a uniform way that
makes automatic processing of shared information easier. However
standardization cannot overcome structural heterogeneity which
occurs as a result of the way information is structured even in
homogeneous syntactic environments. For example, one source
might model trucks but only classify them into a few categories;
while the other source might make very fine-grained distinctions
between types of trucks based on their physical structure, weight,
purpose, etc. Manually encoded transformation rules as well as
some middleware components have been used to solve structural
heterogeneity problems [42]. Though sophisticated solutions to
syntactic and structural heterogeneity have been developed, the
problem of semantic heterogeneity is still only partially solved.
Semantic heterogeneity occurs whenever two contexts do not

4 http://www.w3.org/TR/2004/REC-xml-20040204.
5 http://www.w3.org/TR/rdf-schema/.
6 http://www.w3.org/TR/owl-features/.

1570-8268/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.websem.2009.11.002



Author's personal copy

M. Mao et al. / Web Semantics: Science, Services and Agents on the World Wide Web 8 (2010) 14–25 15

share the same interpretation of information (e.g. homonyms and
synonyms). For example, the semantic search engine Swoogle
returns 346 documents when searching for spring.7 The top-ranked
results show that the same term has many different meanings, e.g.
one spring means the season, the other spring means the ground
water, etc. Though synonym sets, term networks, concept lattices,
features and constraints have been proposed as solutions for solv-
ing semantic heterogeneity among different information systems,
those approaches are not sufficient to solve the problem of semantic
heterogeneity in the WWW environment [38].

The vision of the Semantic Web [1] provides many new perspec-
tives and technologies to overcome the limitation of the WWW.
Ontologies are a key component to solve the problem of semantic
heterogeneity, and thus enable semantic interoperability between
different web applications and services because of its ability to pro-
vide formal and explicit definitions of data and allow reasoning
over related concepts. Though ontologies are being used more and
more, no universal ontology exists for the WWW. Given the reality
of multiple ontologies over many domains, ontology mapping that
aims to find semantic correspondences between similar elements
of different ontologies has been the subject of research in various
domains and applications [32].

The following use cases show how ontology mapping can help
to achieve semantic correspondences in different scenarios, and
thus motivate our work in this area. First of all, ontology mapping
is important to the success of the Semantic Web. The pervasive
usage of agents or web services is a characteristic of the Semantic
Web. However agents or web services may use different protocols
that are independently designed, which means when agents or web
services meet, there is little chance for them to understand each
other without an “interpreter”. Therefore ontology mapping is “a
necessary precondition to establish interoperability between agents or
services using different ontologies” [7] (page 2). That is, the mapping
between ontologies provides the means for agents and services
to either translate their messages or integrate bridge axioms in
their own models. Secondly, ontology mapping is also widely used
to support data integration and information transformation. For
example, a web marketplace such as Amazon8 may need to com-
bine products from multiple vendors’ catalogs into its own. A web
portal like NCSTRL9 may want to integrate documents from mul-
tiple library directories into its own. A company may want to
merge its service taxonomy with its partners. A researcher may
want to merge his/her bookmarks with those of his/her peers, etc.
Moreover, from the perspective of information retrieval, ontology
mapping can support semantic query processing across disparate
sources by expanding or rewriting the query using the corre-
sponding information in multiple ontologies. For example, a user is
looking for the director of a movie, e.g., “Star War”, on the Web. In
one movie website, the name of movie is identified as “moviename”
and the name of its director is identified as “director” in its schema.
However in another movie website, those two concepts might be
identified as “title” and “directorname”, respectively in their schema.
Therefore to enable a federated search on those two websites, a
mapping between the schemas of those two websites will help us
rewrite queries according to different schemas.

Ontology mapping can be done either by hand or using auto-
mated tools. Manual mapping becomes impractical as the number,
size and complexity of ontologies increases. Automatic ontology
mapping has shown its importance in practical applications includ-
ing the Semantic Web [1], information transformation and data

7 Based on the search results returned from http://swoogle.umbc.edu/ in July,
2007.

8 http://www.amazon.com/.
9 http://www.ncstrl.org/.

integration [6], query processing across disparate sources [14], to
name a few. Fully or semi-automated mapping approaches have
been examined in various research studies, e.g., analyzing lin-
guistic information of elements in ontologies [20,34,39], utilizing
information retrieval techniques [21,22,36], treating ontologies as
structural graphs [28,31,41], using heuristic rules to look for specific
mapping patterns [15] and applying machine learning techniques
[5,26]. Comprehensive surveys of ontology mapping systems and
approaches can be found in [9,19,32].

Though the state of the art approaches have made significant
progresses in ontology mapping, they suffer from two limitations.
First, ontology mapping approaches that use multiple mapping
strategies meet the problem of aggregating multiple similarities.
Currently they either use some predefined experience numbers
to weight different similarities or tentatively set parameters in
aggregation functions (e.g. sigmoid). Manually setting parameters
is impractical due to its inability to adapting to different ontol-
ogy mapping tasks. A second limitation is that most ontology
mapping approaches do not thoroughly deal with ontology con-
straints (e.g., the hierarchical relations in RDFS, the constraints
and axioms in OWL, and the rules in SWRL10). Most approaches
either ignore ontology constraints completely or deal with ontol-
ogy constraints based on some heuristic rules [8,18,31]. To the best
of our knowledge, exceptions are GLUE [5], which adopts relax-
ation labeling to optimize mapping configurations by considering
ontology constraints, and RiMOM [39], which uses risk minimiza-
tion to search for the optimal mappings from the results output by
multiple strategies. To overcome the limitations, in this paper we
propose a new weight assignment method to adaptively aggregate
different similarities and then adopt a neural network based con-
straint satisfaction model to improve overall mapping performance
from previously aggregated results. Actually our adaptive aggre-
gation method can be integrated in most matching systems that
estimate multiple similarities. Though the neural network model
can be implemented independently from our adaptive aggregation
approach, the parameter (i.e. harmony) provides a good guidance
on where the neural network model should be activated or not.

Our contributions in this paper are twofold:

• We propose a measure harmony to estimate performance of sim-
ilarities for ontology mapping, without given the ground truth.
Based on the estimation we adaptively aggregate various simi-
larities and adjust our mapping strategies.

• We propose to use the interactive activation and competition
(IAC) neural network to search for a solution that best satisfies
ontology constraints.

To evaluate our approach, we adopt the benchmark tests from
OAEI ontology matching campaign 2007. We follow the evaluation
criteria of OAEI, calculating the precision, recall and f-measure of
each test case. Experimental results show that harmony has high
correlation with f-measure of individual similarity; the harmony
based adaptive aggregator outperforms all existing aggregation
methods; the IAC neural network boosts mapping performance sig-
nificantly. We also compare our approach with top-ranked systems
that participated in the campaign.

The rest of the paper is organized as follows. Section 2 illustrates
and defines ontology mapping problem with a simple example.
Section 3 explains our approach in details. Section 4 describes our
evaluation methodology and discusses experimental results. Sec-
tion 5 reviews some related work followed by a summary and
future work at the end.

10 http://www.daml.org/2003/11/swrl/.
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Fig. 1. Two bibliographic ontologies.

2. Problem statement

Ontology is a formal, explicit specification of a shared con-
ceptualization in terms of concepts (i.e., classes), properties and
relations [12]. Classes can be associated instances as well. Fig. 1
shows two sample ontologies in Bibliography area, in which the
ellipses indicate classes (e.g., “Reference”, “Composite”, “Book” and
“Proceedings”, etc.), the dashed rectangles indicate properties (e.g.,
“Publisher”, “Editor”, “Organization”, etc.), the lines with arrow-
head indicate “subClassof” relation between two classes, and the
solid rectangle indicates an instance that is associated with the
class of “Monograph” (i.e., “object-oriented data modeling” pub-
lished by the MIT Press at 2000). Each class and property has some
information to describe and restrict it. For example, the descrip-
tive information of Book in the left ontology includes its ID, label,
comment and restrictions such as title, publisher, etc.

Ontology mapping aims to find semantic correspondences
between similar elements in two ontologies. In this paper, seman-
tic correspondence refers to “=” relationship and elements refer
to classes and properties. The input of a mapping task is two
homogeneous ontologies, O1 and O2, expressed in formal ontology
languages. The output is a mapping, also called the mapping result,
between the input ontologies. Mapping can be represented in dif-
ferent ways such as queries [3], bridging axioms [6] or an instance in
a mapping ontology [14]. We define mapping results as a statement
4-tuple (as written in Eq. (1)), where m is a mapping that specifies a
specific element e1i in O1 corresponds to a certain element e2j in O2
with a relationship of r, and the mapping holds a confidence mea-
sure of s (also known as similarity), which is typically normalized
in a range [0. . .1].

m(e1 i, e2 j, r, s) (1)

Candidate mappings in Fig. 1 include Reference and Compos-
ite, Book and Book, Monograph and Monogaphy, Collection
and Collection, Proceedings and Proc. They can be repre-
sented as: m(Reference,Composite = .11), m(Book,Book = 1),
m(Monograph,Monography = .9), m(Collection,Collection = 1),
m(Proceedings,Proc. = .36).

3. Our approach

Generally speaking, our approach, which we call PRIOR+, first
measures the similarities of both linguistic and structural informa-
tion of ontology in a vector space model using classic information
retrieval technique. Next it adaptively aggregates different similari-
ties according to their predicted performance and adjusts mapping
strategies based on the performance of final similarity. Finally it
utilizes the IAC neural network to solve the constraint satisfaction

Fig. 2. The architecture of PRIOR+.

problem (CSP) in the context of ontology mapping. The architecture
of our approach is shown in Fig. 2, where H denotes the harmony
of similarities. The details of its three major modules, i.e., the IR-
based Similarity Generator, the Adaptive Similarity Aggregator and
the Neural Network (i.e., the IAC neural network) based Constraint
Satisfaction Solver, are given in the following sections.

3.1. IR-based similarity generator

In this section we briefly describe the generation of differ-
ent similarities and refer interested readers to our previous work
[20–22] for details. The input of the similarity generator is two
ontologies, which will be parsed by Jena11 and each element of

11 http://jena.sourceforge.net/.
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which will be pre-processed by removing stop words, stemming,
and tokenizing. The outputs are three similarity matrixes that con-
tain similarity scores for each pair of elements in ontologies.

3.1.1. Name similarity
The name similarity is calculated based on the edit distance

between the name (i.e., ID) of elements. The name-based similarity
is defined as Eq. (2), where EditDist(e1i, e2j) is Levenshtein distance
between elements e1i and e2j, l(e1i) and l(e2j) are the string length
of the name of e1i and e2j, respectively.

NameSim(e1 i, e2 j) = 1 − EditDist(e1 i, e2 j)
max(l(e1 i), l(e2,j))

(2)

3.1.2. Profile similarity
The profile similarity is generated in three steps:

• Profile Enrichment. For each element in the ontology, we generate
a profile (i.e., a combination of the element’s descriptive informa-
tion) to represent it and thus enrich its information. In particular,
the profile of a class = the class’s ID + label + comments + other
restriction + its properties’ profiles + its instances’ profiles. The
profile of a property = the property’s ID + label + its domain + its
range. The profile of an instance = the instance’s ID + label + other
descriptive information. Then the tf•idf weight is assigned for
each profile based on the whole collection of all profiles in the
ontology.

• Profile Propagation. To exploit the neighboring information of
each element, the profile of the element’s ancestors, descendants
and siblings will be passed to that of the element with different
weights.

• Profile Mapping. Finally the cosine similarity between the profiles
of two elements of e1i and e2j is calculated in a vector space model
using Eq. (3), where Ve1i and Ve2j are two vectors representing the
profile of element e1i and e2j, respectively, n is the dimension of
the profile vectors, Vke1i and Vke2j are kth element in the profile
vector of element e1i and e2j, respectively, |Ve1i| and |Ve2j| are the
lengths of the two vectors, respectively.

ProfileSim (e1 i, e2 j) =
−−→
Ve1 i

· −−→
Ve2 j

|Ve1 i
||Ve2j

| =

n∑
k=1

(Ve1 i
k

∗ Ve2 j
k

)

√∑
(Vel i

k
)2

√∑
(Ve2 j

k
)2

(3)

3.1.3. Structural similarity
The structural similarity between two elements comes from

their structural features (e.g., the number of direct property of a
class). Structural similarity is considered for classes only. No struc-
tural similarity will be given to property and instance due to the lack
of hierarchical information. The structural similarity of the classes
in two ontologies is defined by Eq. (4), where e1i and e2j are two
class elements in ontology O1 and O2, respectively, n is the total
number of structure features, diffk(e1i,e2j) denotes the difference
for feature k.

StructSim (eli, e2j) =

n∑
k=1

(1 − diffk(e1 i, e2 j))

n
(4)

The diffk(e1i,e2j) is defined as Eq. (5), where sf(e1i) and sf(e2j) denote
the value of structure features of e1i and e2j, respectively. In our
approach sf(e1i) and sf(e2j) are one of the following values, i.e., the
number of the class’ direct properties, the number of the class’
instances, the number of the class’ children, and the normalized

depth of the class from the root.

diff (e1 i, e2 j) = |sf (eli) − sf (e2j)|
max (sf (eli), sf (e2j))

(5)

Here we give an example of depth difference. Assume the max
depth of ontology O1 is 5, the max depth of ontology O2 is
6. depth(e1i) = 3, depth(e2j) = 4. We first normalize the depth as
sf(e1i) = 3/5 = .6, sf(e1i) = 4/6 = .67. Then calculate depth difference:
diff(e1i,e1i) = |.6-.67|/max(.6, .67) = .07/.67 = .10.

3.2. Harmony

In this section we introduce the term harmony to estimate the
importance and reliability of different similarities. Totally five indi-
vidual harmonies (i.e., class name harmony, class profile harmony,
class structural harmony, property name harmony, and property
profile harmony) and two final harmony (i.e. class harmony, prop-
erty harmony) will be estimated on the corresponding similarities.

3.2.1. The definition of harmony
As we stated in Section 1 that manually setting parameters to

aggregate different similarities is impractical due to its inability to
adapting to different ontology mapping tasks; meanwhile, the fact
that different similarities work well in different situations moti-
vates us to investigate a new measure that can estimate the quality
of each similarity so that we can aggregate them according to their
individual characteristic (see the comparison of individual similar-
ity in Section 4.2.1). Therefore we are looking for a measurement
that (1) can tell us which similarity is more reliable and trustful
so that we can give it a higher weight during aggregation and fil-
ter out false mappings that have low similarity; (2) can assist us
to adaptively adjust our mapping strategy, i.e., when to activate or
inactivate NN-based constraint satisfaction solver.

Ideally, for 1-1 mapping, the similarity score of two truly
mapped elements should be larger than that of all other pairs of
elements that share the same row/column with the two elements
in the similarity matrix, which implies that the two elements of this
pair mutually prefer each other. Given the rationale, we define the
harmony of the similarity matrix as Eq. (6), where #s max denotes
the number of the pair of elements that has the highest and the only
highest similarity in its corresponding row and column in the sim-
ilarity matrix, and #ei denotes the number of elements in ontology
Oi.

h = #s max
min (#e1, #e2)

(6)

3.2.2. A simple example of harmony estimation
Table 1 is the name similarity matrix for the example illustrated

in Fig. 1. The upper table lists the original similarity score between
each pair of elements. The lower table illustrates how the harmony
is calculated in this case, where “×” denotes the cell that has the
highest similarity score in each row, “O” denotes the cell that has
the highest similarity score in each column, and “⊗” denotes the
overlapped cell that has the highest similarity in both the row and
the column. The cells that have highest similarity score in each row
or column are indicated in bold in Table 1. Therefore the #s max in
Eq. (6) is the number of “⊗” in Table 1. In this case, #s max is 4 and
thus the harmony of the name similarity matrix is 4/5 = .8.

3.3. Adaptive similarity aggregator

3.3.1. Similarity aggregation in the state-of-art ontology
mapping approaches

Aggregating different similarity is pervasive in ontology map-
ping systems that contain multiple individual matchers, for
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Table 1
A sample of harmony calculation.

Composite Book Proc. Monography Collection

Reference .11 0 .22 .1 .1
Book .22 1 .2 .2 .2
Proceedings .18 .09 .36 .09 .18
Monograph .11 .22 .11 .9 .1
Collection .3 .2 .1 .1 1

example, COMA [4], Falcon-AO [34], RiMOM [39], and QOM [8], etc.
Many strategies, e.g., Max, Min, Weighted, Average and SIGMOD, have
been proposed to aggregate different similarities in the approaches.
The Max/Min strategy returns the maximal/minimal similarity of
individual matchers. The Weighted strategy determines a weighted
sum of similarity of individual matchers. The Average strategy is
one special case of the Weighted strategy and returns the average
similarity over all individual matchers. The SIGMOID strategy com-
bines multiple results using a sigmoid function, which is essentially
a smoothed threshold function.

Among the strategies, the Max/Min strategy selects one extreme
end of various similarities to be the representative of the final sim-
ilarity, which is either too optimistic (e.g. Max) especially in case of
contradicting similarities or too pessimistic (e.g. Min). The Average
strategy considers the individual similarities equally important and
cannot distinguish differences between them. The Weighted strat-
egy overcomes the drawbacks of the Average strategy by assigning
relative weights to individual matchers. The SIGMOID strategy
emphasizes high individual predicting values and deemphasizes
low individual predicting values.

Currently the systems that adopt the Weighted strategy or the
SIGMOID strategy to aggregate similarities need to manually set
aggregation weights based on experience for different similarities
or tentatively set center position and steepness factor in the sig-
moid function. However, manually predefined parameters cannot
be generalized to adapt to different mapping situations. To our best
knowledge, one exception to aggregate different similarity without
manually setting weights is to use machine learning method pro-
posed in [17]. However, this approach needs training data, which
is not available in most cases. Therefore how to select appropriate
parameters that can truly reflect the reliability of different similari-
ties without knowing the ground truth in advance deserves further
research.

3.3.2. Adaptive similarity aggregation
In this section we propose a new weight assignment method

to adaptively aggregate different similarities. That is, we use the
harmony of different similarities as weight to aggregate various sim-
ilarities. Therefore the final similarity of the pair of elements (e1i,e2j)
can be defined by Eq. (7), where hk denotes the harmony of different
similarities as defined in Eq. (6), n denotes the number of different
types of similarity, and Simk(e1i,e2j) denotes the similarity of each

pair of elements.

FinalSim (eli, e2j) =
∑

khk × Simk(eli, e2j)

n
(7)

The input of the adaptive similarity aggregator is a set of individ-
ual similarity matrixes as described in Section 3.1. The output is an
aggregated similarity matrix, which we call final similarity matrix.
The comparison of the harmony-based adaptive similarity aggre-
gation and other aggregation methods is given in Section 4.2.3.

There are noises in similarity matrix, especially in the case of
name similarity. Even two names are not related at all, we may still
get a positive edit distance based similarity if there is one shared
letter. Harmony provides a way to filter out noises from similarity
matrix. If a matrix has high harmony, we have high confidence that
the lowest ranked similarities in each row and column are noises.
Therefore, before aggregation we filter out a proportion of lower
ranked similarities in each row and column based on harmony. The
number of similarities filtered out is shown in Eq. (8), where p is
number of lowest ranked similarities filtered out in each row or
column, L is length of the row or column, h is harmony of the simi-
larity matrix. The purpose of (L − 1) in this equation is to make sure
we have one similarity left for each row and column.

p = min (L − 1, (h × L)) (8)

3.4. NN-based constraint satisfaction solver

3.4.1. The constraint satisfaction problem
A constraint satisfaction problem (CSP) is “a problem composed

of a finite set of variables, each of which is associated with a finite
domain, and a set of constraints that restricts the values the variables
can simultaneously take. The task is to assign a value to each variable
satisfying all the constraints.”[40] Classic examples of CSPs include
the map coloring problem, sudoku, eight queens puzzle, etc.

CSP arises as an intriguing research problem in ontology map-
ping due to the fact that the characteristics of an ontology and its
representations result in many kinds of constraints. For example,
the hierarchical relations in RDFS do not allow crisscross mappings,
the axioms such as owl:sameAs and owl:equvalentClass in OWL indi-
cate an equivalent relation between different elements, and the
rules in SWRL would be to imply or assert some properties that
are not directly available. To improve the quality of ontology map-
ping, we need to find a configuration that can best satisfy those
constraints.

CSPs are typically solved by a form of search, e.g. backtracking,
constraint propagation or local search [40]. In [30] McClelland and
Rumelhart described how to use the IAC neural network to solve
CSPs in detail. Next we briefly introduce the IAC neural network,
and then explain how to use it in ontology mapping.

3.4.2. The IAC network
In general, an IAC neural network consists of a number of com-

petitive nodes connected to each other. Each node represents a
hypothesis. The connection between two nodes represents con-
straint between their hypotheses. Each connection is associated
with a weight. The activation of a node is determined locally by
the nodes adjacent to it and the weights connecting to it. Fur-
thermore, if two hypotheses support each other, the connection
between them is positive (i.e., excitatory); whereas if two hypothe-
ses are against each other, the connection between them is negative
(i.e., inhibitory). The weight of the connection is proportional to the
strength of the constraint. The stronger a constraint is, the larger
the corresponding weight is.

The mechanism of the IAC neural network can be illustrated
using the following simple example. Suppose we have two grids, 1
and 2, and two constraints:
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Fig. 3. A simple constraint network.

1. Each grid can have one value, either A or B.
2. The values of the two grids are different.

We have four hypotheses: A in grid 1 (HA1); B in grid 1 (HB1); A in
grid 2 (HA2); B in grid 2 (HB2). Based on the two constraints we know
there are two negative connections and one positive connection for
each hypothesis:

1. HAi is against HBi, and vice versa (i = 1 or 2).
2. Hx1 is against Hx2, and vice versa (x = A or B).
3. HAi supports HBj, and vice versa (i, j = 1 or 2, and i /= j).

Fig. 3 illustrates the simple example, where each node repre-
sents a hypothesis, the line with rounded head and arrowhead
represents negative connection and positive connection between
hypothesis respectively and the dashed line with arrowhead rep-
resents a small stimulus on each node from outside.

Assume the negative weight is half the positive weight and all
nodes are inactive at start. Though the input from three neighbors of
the node will cancel out, the small excitatory input from outside will
activate the node. All nodes will update their states asynchronously.
That is, nodes are chosen to be updated sequentially in random
order. Finally, either A1 and B2 or B1 and A2 will be active, and the
network will reach a stable state, called settled or relaxed solution.

3.4.3. The IAC neural network in the context of ontology mapping
In the context of ontology mapping, a node in the IAC neu-

ral network represents a hypothesis that indicates element e1i in
ontology O1 can be mapped to element e2j in ontology O2. The
connections between nodes in the network represent constraints
between hypotheses. In Fig. 4 we can see the input of the network
includes the initial activation of each node (i.e., the priori proba-
bility of a hypothesis), its bias, external inputs and a weight matrix
responding to the connections between different hypotheses. In

our approach the initial activation of each node is set to the final
similarity of (e1i, e2j) output from the adaptive similarity aggrega-
tor. The activation of the node can be updated using the following
simple rule, where ai denotes the activation of node i, written as ni,
neti denotes the net input of the node.

ai(t + 1) =
{

ai(t) + neti(1 − ai(t)), neti > 0
ai(t) + netiai(t), neti < 0

The neti comes from three sources, i.e. its neighbors, its bias, and
its external inputs. The neti is defined as Eq. (9), where wij denotes
the connection weight between ni and nj, aj denotes the activation
of node nj, biasi denotes the bias of ni, and eii denotes the external
input of ni, which is a function of the confidence of a mapping. Note
that the weight matrix is symmetric and the nodes may not connect
to themselves, i.e., wij = wji, wii = 0.

neti =
∑

j
wijaj + biasi + eii (9)

The network can be stopped after running n cycles or at some good-
ness point. It is obviously that forcing the network to stop at a
predefined cycle number usually is not optimal. In the rest of the
section, we introduce how we stop the network according to its
goodness.

McClelland and Rumelhart [30] defined the goodness (short for
goodness of fit) as the degree to which the desired constraints are
satisfied. They pointed out that the goodness depends on three
things. First, it depends on the extent to which each node satisfies
the constraints imposed upon it by other nodes. Thus, if a connec-
tion between two nodes is positive, the constraint is satisfied to
the degree that both nodes are active. Otherwise if the connection
is negative, the constraint is violated to the degree that both nodes
are active. A simple way to express this is the product of the acti-
vation of two nodes times the weight connecting them, i.e., wijaiaj.
Note that for positive weights the more active the two units are,
the better the constraint is satisfied; whereas for negative weights
the more active the two units are, the less the constraint is satis-
fied. Second, the priori probability of a hypothesis is captured by
adding the bias to the goodness measure. Finally the goodness of a
node when direct evidence is available is given by the product of
the input value times the activation value of the node. The bigger
this product, the better the system is satisfying this external con-
straint. Overall the goodness of node i can be defined as in Eq. (10),
where the symbols share the same definition as Eq. (9).

goodnessi =
∑

j
wijaiaj + biasiai + eiiai = netiai (10)

Since we are concerned with the degree to which the entire pat-
tern of values assigned to all of the hypotheses are consistent with
the entire body of constraints, the overall goodness is defined as

Fig. 4. The IAC neural network in the context of ontology mapping.



Author's personal copy

20 M. Mao et al. / Web Semantics: Science, Services and Agents on the World Wide Web 8 (2010) 14–25

Table 2
The constraints used in our approach.

# Constraints Connection

1 Only 1-1 mapping is allowed. Negative
2 No crisscross mapping is allowed. Negative
3 If children elements match, then their parent elements match. Positive
4 If parent elements match, then their children elements match. Positive
5 If e1i match e2j , then e1s match e2t , where e1i and e1s , e2j and e2t are siblings in ontologies. Positive
6 If property elements match, then their domain elements match. Positive
7 If property elements match, then their range elements match. Positive
8 If class elements match, then their direct property elements match. Positive
9 If property elements match, then their mother-class elements match. Positive
10 If class elements match, then their individual elements match. Positive
11 If individual elements match, then their mother-class elements match. Positive
12 Two elements match if their owl:sameAs or owl:equivalentClass or owl:equivalentProperty elements match. Positive

the sum of all individual goodnesses. Now the constraint satisfac-
tion problem is converted to the problem of maximizing the overall
goodness. In practice we look for the ıgoodness between time t and
t − 1 (see Eq. (11)) less than a threshold to be a stop condition. To
be noted, it cannot guarantee to find a global optimal solution. It
could reach a local maximal or stops too early.

ıgoodness =
∑

i
goodnessi(t) −

∑
i
goodnessi(t − 1) (11)

3.4.4. The implementation of the IAC neural network
Many constraints, e.g. the cardinality of a property, have been

used to restrict ontologies. Different constraints result in different
connections between nodes in the IAC neural network. For exam-
ple, the constraint that “only 1-to-1 mapping is allowed” results in
a negative connection between nodes (e1i, e2j) and (e1i, e2k), where
k /= j. Moreover, “two elements match if their children match”,
results in a positive connection between nodes (e1i, e2j) and (e1k,
e2t), where e1k and e2t are the children of e1i and e2j, respectively.

Table 2 lists the constraints that have been implemented in our
approach. Although the number of negative constraints is much
less than that of positive constraints, the ratio of negative connec-
tion and positive connection is not small. This is because each node
in the network will have a huge amount of negative connections
introduced by the 1-1 mapping of constraints. Though the weights
of different constraints should be set to a function of its confidence,
currently we just set the weight of positive constraints as 1 and the
weight of negative constraints as −1.

4. Evaluation

To evaluate our approach we have applied the benchmark tests
from OAEI ontology matching campaign 2007.12 The reasons why
we choose OAEI benchmark tests are: 1. The annual campaign has
become an authoritative contest in the area of ontology mapping,
and thus attracts many participants including both well-known
ontology mapping systems and new entrants. 2. The campaign pro-
vides uniform test cases for all participants so that the analysis
and comparison between different approaches is practical. 3. The
ground truth of benchmark tests is open. Thus we can use it to
comprehensively evaluate different components of our approach.

4.1. Data sets and evaluation criteria

The OAEI benchmark tests include 1 reference ontology OR, ded-
icated to the very narrow domain of bibliography, and multiple
test ontologies, OT, that discard various information from the ref-
erence ontology in order to evaluate how algorithms behave when

12 http://oaei.ontologymatching.org/2007/.

Table 3
The overview of OAEI benchmark tests.

Tests Description

#101–104 OR and OT have exactly the same or totally different names
#201–210 OR and OT have the same structure but different linguistics in

some level
#221–247 OR and OT have the same linguistics but different structure
#248–266 Both structure and linguistics are different between OR and OT

#301–304 OT are real world cases

information is lacking, except real cases. More specifically, bench-
mark tests can be divided into 5 groups as shown in Table 3. All
benchmark tests can be downloaded here.13

We adopt the evaluation criteria used by the campaign. That is,
standard evaluation measures precision, recall and f-measure will
be computed against the reference alignments. The precision, recall
and f-measure are defined as Eqs. (12), (13) and (14). For the matter
of aggregation of the measures weighted harmonic means [10] will
be computed.

precision p = #correct found mappings

#all found mappings
(12)

recall r = # correct found mappings

# all possible mappings
(13)

f -measure f = 2 × p × r

p + r
(14)

4.2. Experimental design and results

To evaluate our approach, we designed four experiments. Each
answers one of the questions we are interested in:

1. What is the performance of each individual similarity, i.e., edit
distance based name similarity, profile similarity, and structural
similarity? Could we estimate the quality of each similarity in
different situation so that we can aggregate them according to
their individual characteristic?

2. Can the measure of harmony reflect the reliability of different
similarities? That is, does it correlate to the performance of a
similarity?

3. Is the harmony-based adaptive aggregation method better than
other aggregation methods discussed in Section 3.3.1?

4. Does the IAC neural network work in the context of ontology
mapping? If it does, how much improvement can it make? Fur-
thermore, can the harmony assist the IAC neural network to
adjust its mapping strategy for a better performance?

5. How does our approach perform compared with others?

13 http://oaei.ontologymatching.org/2007/benchmarks/.
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Fig. 5. The comparison of the f-measure of 3 individual similarities on each OAEI benchmark test.

Fig. 6. The comparison of individual similarities over all OAEI benchmark tests.

4.2.1. The comparison of each individual similarity
We proposed three kinds of similarities, i.e., edit distance based

name similarity, profile similarity, and structure similarity. Each
similarity measures the correspondence between two elements
from a different perspective. Fig. 5 compares the performance (i.e.,
f-measure) of 3 individual similarities on each OAEI benchmark
test. Fig. 6 compares the performance (i.e., f-measure) of each indi-
vidual similarity over all OAEI benchmark tests.

The observations from Figs. 5 and 6 are:

1. The edit distance based similarity is intuitive. It works very well
on the cases that have high similarity between the names of ele-
ments in ontologies. For example, Test #101–104, #203, #208,
#221–247, #301, #302, #304, etc. However such similarity is
more lexical-oriented than semantic-oriented, which encoun-
ters trouble where synonyms exist. In the cases that have very
low linguistic similarity, e.g., #201, #202 and #248–266, the
performance of the edit distance based similarity is very poor.
One solution to overcome the limitation of edit distance based
similarity is to check auxiliary information in a thesaurus, e.g.
WordNet.14 However integrating WordNet will cost much more
time in finding synonymous relations between words, and thus
decrease the efficiency of the whole approach.

2. The structure similarity explores structural features in two
ontologies. It is extremely useful in pure graphic mapping tasks,

14 http://wordnet.princeton.edu/.

for example in #248–266 where meaningful linguistic informa-
tion has been removed or replaced by some randomly generated
information. However structure similarity contributes very lit-
tle in the cases where linguistic information is adequate, e.g.,
#221–247, or in the case where structural information is lim-
ited, e.g., #301, #303–304, or does not exist at all, e.g. #302, in
which the hierarchy of the ontology is absolutely flat. Finally, the
overall recall of structure similarity is as low as .27, which indi-
cates relying on this similarity only cannot help us to find most
mappings.

3. The profile similarity utilizes all kinds of descriptive informa-
tion to generate a profile for each element, and then compares
the cosine similarity of two profiles in a vector space model.
The profile similarity works very well when linguistic informa-
tion is adequate, e.g., #101–104, #221–247, #301, #302, #304.
Meanwhile, since the profile similarity explores the structural
information of an element by integrating its property informa-
tion, instance information and neighboring information, it also
works well in the cases where linguistic information is limited,
e.g., #201, #202, #205–207, #209, #248–266. Generally speak-
ing, the profile similarity takes advantage of both edit distance
comparison and structure analysis, and thus it outperforms edit
distance based similarity and structure similarity in most cases
except #250, #257, #261, #265, #266, where no or very little
lexical information is available. Therefore, the mapping totally
relies on the structure information. The precision, recall and f-
measure of the profile similarity over all OAEI benchmark tests
are .85, .31 and .46, respectively.

4. The fact that different similarities work well in different sit-
uations motivates us to investigate a new measure that can
estimate the quality of each similarity so that we can aggregate
them according to their individual characteristic.

4.2.2. The correlations between harmony and the characteristic of
similarities

As stated in Section 3.2 that the harmony is defined to estimate
the importance and reliability of a similarity, which can be reflected
by its performance, e.g. f-measure. Thus we conduct this experi-
ment to evaluate the correlation between harmony and f-measure.

The experiment methodology is: for each test, we calculate 5
similarities, i.e., class name similarity, class profile similarity, class
structural similarity, property name similarity and property profile
similarity. For each similarity matrix, we extract mapping results
using naive descendant extraction algorithm [27]. After that we
evaluate the results against the reference alignment and get the f-
measure of each similarity. Meanwhile, we estimate 5 harmonies
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Fig. 7. The correlation of harmony vs. f-measure on class.

Fig. 8. The correlation of harmony vs. f-measure on property.

upon its corresponding matrix. Finally we compare the f-measure
with the harmony on each similarity.

Fig. 7 and Fig. 8 demonstrate that harmony does linearly cor-
relate with f-measure of different similarities. The R2 for name
similarity, profile similarity, and structural similarity on class are
.97, .85 and .77, respectively in Fig. 7. The R2 for the name similar-
ity and profile similarity on property are .96 and .97, respectively in
Fig. 8. The data show that the harmony is indeed a good estimator
of f-measure for each individual similarity, especially on estimating
the performance of class’ ID, property’s ID and property’s profile.
The observations make us confident on using harmony to adap-
tively aggregate similarities and adjust mapping strategies.

4.2.3. The comparison of different aggregation methods
Similarity aggregation has been researched in many ontology

mapping approaches as discussed in Section 3.3.1. Data aggre-
gation, called data fusion, has also been widely investigated in
information retrieval area [13]. To evaluate the harmony-based
adaptive weighted aggregation method, short as HADAPT, we con-
duct the experiment to compare the performance of HADAPT with
six other aggregation methods selected from both ontology map-
ping and information retrieval area. Table 4 lists the name and brief

Table 4
Aggregation functions used in experiment.

Method Description Equation

HADAPT Harmony-based adaptive aggregation fs = (hi × f(si))/N
MIN Minimum of individual similarities fs = min(si)
MAX Maximum of individual similarities fs = max(si)
AVG Average of individual similarities fs = sum(si)/N
ANZ AVG/number of non-zero similarities fs = (sum(si)/N)/Nz
MNZ AVG × number of non-zero similarities fs = (sum(si)/N) * Nz
SIGMOID Average of individual similarities

smoothed by sigmoid
fs = sum(sigmoid(si))/N

Fig. 9. Comparison of aggregation types.

description of seven aggregation methods, where si denotes the ith
similarity, f denotes the adaptive filter function, fs denotes the final
aggregated similarity, hi denotes the harmony of ith similarity, N
denotes the number of individual similarity, Nz denotes the number
of non-zero similarities.

The experiment methodology is: for each test, we first calculate
three individual similarities (i.e. name similarity, profile similar-
ity and structural similarity) as described in Section 3.1. Then we
aggregate the individual similarities using different aggregation
methods as listed in Table 4. After aggregation, we apply the naive
descendant extraction algorithm [27] to extract final mappings.
Precision, recall and f-measure of final results on each test are
calculated. Finally the overall precision, recall and f-measure are
calculated over all benchmarks tests, which are shown in Fig. 9.

The first observation is the performance of individual similarity
is very poor. Their recalls are lower than .32; f-measures are lower
than .5. On the contrary the performance is dramatically boosted
by all aggregation methods except MIN. They achieve recalls higher
than .7, f-measure higher than .7. The data demonstrate that aggre-
gation methods are very effective in improving the performance of
mapping approaches that rely on measuring multiple similarities.
Finally Fig. 9 shows the harmony-based adaptive similarity aggre-
gation method (i.e., HADAPT) outperforms all other methods when
aggregating different similarities. It holds the highest precision,
recall, and f-measure at .92, .83 and .87, respectively.

4.2.4. The improvement of NN-based constraint satisfaction
solver

If the performance of the aggregated similarity is good, the
NN-based constrain satisfaction solver won’t be activated. This
judgment is based on harmony of aggregated similarity. When the
harmony of final similarity is less than a threshold (.8 in our exper-
iment) the network will start. The effect of the harmony threshold

Fig. 10. The impact of different harmony thresholds on the performance of mapping.
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Fig. 11. The improvement with neural network.

Table 5
The number of possible mappings when NN-based CSP
solver is applied.

Test # # of possible mappings

202 5185
209 5121
210 5121
248 5185
249 5218
250 1089
251 5053
252 6338
253 5218
254 1089
257 1089
258 5086
259 6371
260 1021
261 2242
262 1089
265 1021
266 2242
302 2349
303 6390

was evaluated, and the result is shown in Fig. 10. Overall perfor-
mance is almost the same when the threshold is between 0.5 and
0.9. There is slight drop of performance when the NN solver is
applied to all tests (i.e., threshold = 1). It shows that when there
is a perfect match, NN solver could introduce a little noise.

Currently, the NN-based constraint satisfaction solver will be
activated on 20 tests, i.e., 202, 209, 210, 248–266, 302 and 303. The
number of possible mappings for these tests is shown in Table 5.

Fig. 11 shows the change of the performance of these tests after
applying the IAC neural network. 10 runs of NN-based constraint
satisfaction solver were performed; mean and standard deviation
of the 10 runs are reported in Fig. 11. Among 20 tests, 15 get
improved on their f-measure, only 5 get lower f-measures. The
biggest improvement of f-measure is .37. The overall improvement
on these 20 tests is shown in Table 6. The NN-based CSP solver
dramatically improves both precision and recall by more than .1.
If we calculate percentage improvement, that is 13%, 24%, and 19%
for precision, recall, and f-measure, respectively. To take a further

Table 6
Overall improvement with neural network.

H-mean Precision Recall F-measure

Before NN .76 .54 .63
After NN .88 .67 .76
NN improvement 13% 24% 19%

Fig. 12. The comparison of PRIOR+ with top-ranked systems on benchmark tests in
OAEI campaign 2007.

look, the reason why the performance of test 209, 250, 257, 261 and
266 drop is: first of all, all of them have very limited linguistic infor-
mation and some of them (e.g. 257, 261, 266) even do not have any
linguistic information available at all. For example, all entity names
and all comments have been removed in 209; and all the classes in
261 starting with capital letter are added, which will not have any
mappings in 101. Therefore the original mapping performance is
very poor for all these tests and further the rules that make use of
previous mapping results in NN cannot help in this way. Meanwhile
most of them (except 209) change the structure of the test ontology.
For example, some add new classes in a new layer and the others
flatten the hierarchy of the ontology. Therefore some rules in NN
(e.g. children–parents rule) are not correct anymore. This is a draw-
back of NN approach. However if we take a look at real cases (e.g.
302, 303) that usually have linguistic information available, we will
see the impact of structure difference decreases. On the other hand,
for all the other tests that have been improved by NN approach,
they have both some linguistic information and some consistent
structure information that can help the rules implemented in NN
to improve the overall performance.

4.2.5. The comparison between the PRIOR+ and top-ranked
systems in OAEI campaign 2007

Fig. 12 compares the performance of PRIOR+ and 4 top-ranked
ontology mapping systems (i.e., ASMOV [18], Lily [41], RiMOM [39],
and Falcon-AO [34]) on the benchmark tests at OAEI campaign
2007. The evaluation data of these 4 systems can be downloaded
here.15 The data of PRIOR+ can be downloaded here.16

15 http://oaei.ontologymatching.org/2007/results/zip/.
16 http://www.sis.pitt.edu/∼mingmao/om07/PRIORPLUS-result.zip This data is

slightly different from what we submitted to the OAEI campaign after improving
the PRIOR+ approach.



Author's personal copy

24 M. Mao et al. / Web Semantics: Science, Services and Agents on the World Wide Web 8 (2010) 14–25

The results in Fig. 12 shows the overall f-measure of PRIOR+
(.912) is competitive to that of RiMOM (.907), Falcon-AO (.890),
LILY (.925) and ASMOV (.924). Moreover, all systems perform per-
fectly on test 1xx. Though the f-measure of PRIOR+ is not as good as
that of LILY, ASMOV and RiMOM on test 2xx, PRIOR+ performs the
best on real world cases, i.e., 3xx. To get a more meaningful compar-
ison, Wilcox test was performed to compare PRIOR+ with the other
four methods on precision, recall and f-measure. Except PRIOR+’s f-
measure is significantly better than Falcon’s (p = 0.007), there is no
significant difference between PRIOR+ and the other four methods
(LILY, ASMOV, RiMOM, Falcon), in all cases, p-value > 0.1.

5. Related work

Different approaches have been proposed to solve the ontol-
ogy mapping problem. The comprehensive survey of some famous
ontology mapping systems, such as GLUE [5], QOM [8], Similarity
Flooding [28], PROMPT [31], can be found in [9,19,32]. Here we
only review 4 top-ranked systems that participated in OAEI cam-
paign 2007, i.e., Falcon-AO [34], RiMOM [39], LILY [41], ASMOV [18],
and the GLUE system [5]. The reason of reviewing 4 OAEI campaign
participants is: 1. The techniques that the 4 systems used in their
approach are diverse and based on the state-of-art approaches. In
reviewing these systems, we are reviewing the latest developments
in this area. 2. Like ours, all the systems are based on multiple
similarities, and thus face the problem of aggregating different sim-
ilarities in an effective way. Therefore, reviewing the approaches is
critical to evaluate our approach by comparing each other. 3. The
OAEI campaign provides uniform test cases for all participants so
that the quantitative comparison between different approaches is
practical. The reason of reviewing GLUE is due to its usage of relax-
ation labeling to optimize mapping configuration, which shares
the same insight with us that satisfying ontology constraints as
much as possible is critical to improve the accuracy of ontology
mapping.

Falcon-AO [34] is a similarity-based generic ontology mapping
system. It consists of three elementary matchers, i.e., V-Doc, I-Sub
[37], and GMO, and one ontology partitioner, PBM. V-Doc con-
structs a virtual document for each URIref, and then measures their
similarity in a vector space model. I-Sub compares the similarity of
strings by considering their similarity along with their differences.
GMO explores structural similarity based on a bipartite graph. PBM
partitions large ontologies into small clusters, and then matches
between and within clusters. The profile used in our approach is
similar as the virtual document constructed in Falcon-AO. The differ-
ence is the virtual document only exploits neighboring information
based on RDF model; whereas our profile does not have any limi-
tation of information type, and thus can integrate any information
including instance. From the aggregation view, though Falcon-AO
measures both linguistic comparability and structural compara-
bility of ontologies to estimate the reliability of matched entity
pairs, it only uses them to form three heuristic rules to integrate
results generated by GMO and LMO. In LMO Falcon-AO also lin-
early combines two linguistic similarities with some experiential
number. Unfortunately neither experiential number nor heuristic
rules can automatically adapt to different test cases, as we argued
in Section 3.3.1. Furthermore, when estimating linguistic compara-
bility Falcon-AO does not distinguish the difference between class
and property; whereas our approach estimates harmony for class
and property separately. Finally Falcon-AO does not have solutions
to optimize final results so that they can satisfy various ontology
constraints.

RiMOM [39] is a general ontology mapping system based
on Bayesian decision theory. It utilizes normalization and NLP
techniques and integrates multiple strategies for ontology map-

ping. Afterwards RiMOM uses risk minimization to search for
optimal mappings from the results of multiple strategies. Both
RiMOM and our approach do propagation based on propagation
theory [11]. However RiMOM propagates the similarity of two
entities to entity pairs associated with some kinds of relation-
ship (e.g. superClassOf, siblingClassOf, domain, etc.); whereas our
approach propagates original information of an element instead
of its similarity to its neighboring elements, and then compares
their similarity based on the propagated profiles. Another dif-
ference is when integrating multiple strategies RiMOM adopts
a sigmoid function with tentatively set parameters, which has
been demonstrated not good as harmony-based adaptive similar-
ity aggregation (see Fig. 9). Furthermore, though RiMOM calculates
two similarity factors to estimate the characteristics of ontolo-
gies, their estimation is suitable to some special situations only.
For example, their linguistic similarity factor only concerns ele-
ments that have the same label. Meanwhile, the harmony in our
approach is more general. Finally we explore different approaches
to find the optimal mappings for final results extraction. RiMOM
uses risk minimization approach; while we try neural network
approach.

LILY [41] is a generic ontology mapping system based on the
extraction of semantic subgraph. It exploits both linguistic and
structural information in semantic subgraphs to generate initial
alignments. Then a subsequent similarity propagation strategy is
applied to produce more alignments if necessary. Finally LILY uses
classic image threshold selection algorithm to automatically select
threshold, and extract final results based on the stable marriage
strategy. One limitation of LILY is that it needs to manually set the
size of subgraph according to different mapping tasks and the effi-
ciency of semantic subgraph is very low in large-scale ontologies.
Furthermore, as with most mapping approaches, LILY combines
all separate similarities with experiential weights, and it does not
consider ontology constraints directly.

ASMOV [18] is an automated ontology mapping tool that itera-
tively calculates the similarity between concepts in ontologies by
analyzing four features such as textual description. It then com-
bines the measures of these four features using a weighted sum.
The weights are adjusted based on some static rules. At the end of
each iteration, a pruning process eliminates the invalid mappings
by analyzing two semantic inconsistencies: crisscross mappings
and many-to-one mappings. Due to the limited literature available
we are unable to compare our approach with ASMOV in detail. What
we can say is the aggregation method in ASMOV is heuristic rule
based Weighted aggregation and only two constraints are validated
for their final results.

GLUE [5] is an instance-based ontology (specifically taxonomy)
mapping system using machine learning techniques. GLUE first
applies statistical analysis to the available data (i.e., joint prob-
ability distribution computation), and then implements multiple
learners to exploit information in concept instances and taxo-
nomic structure of ontologies. Next, GLUE uses a probabilistic
model to combine the results of different learners. Finally, GLUE
adopts relaxation labeling approach to search for the mapping
configuration that best satisfies the domain constraints and the
common knowledge, taking into account the observed similari-
ties. GLUE and our approach are similar in that both of us try to
look for a global optimal mapping configuration when considering
ontology constraints. However, we explore different approaches
and different kinds of constraints. GLUE adopts relaxation labeling
approach that has been applied successfully in computer vision,
natural language processing and hypertext classification [16,33,2];
whereas our approach integrates the IAC neural network that has
been used to model visual word recognition [29] and information
retrieval tasks [35]. Furthermore, the constraints implemented in
our approach are more complex than that in GLUE.
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6. Summary and future work

In this paper we proposed a new adaptive ontology mapping
approach, the PRIOR+. First the PRIOR+ measures three similarities
of ontologies in a vector space model. Meanwhile it estimates the
harmony of each similarity upon its corresponding matrix. After
that the PRIOR+ adaptively filters out false mappings and aggre-
gates multiple similarities by weighting them with their harmonies.
Finally the IAC neural network will be selectively activated to find
a solution that best satisfies ontology constraints. Final results will
be extracted using naive extraction algorithm from the optimized
mappings.

The experimental results show: harmony is a good measure
to estimate the reliability of different similarities. It is good at
assisting adaptively aggregating similarities and adjusting map-
ping strategies as well. The harmony-based adaptive aggregation
method outperforms other aggregation methods. Using the IAC
neural network to solve constraint satisfaction problem in ontology
mapping can dramatically improve the performance of mapping
results. The PRIOR+ is competitive with all top-ranked systems on
the benchmark tests at OAEI campaign 2007. Notably it outper-
forms all systems on benchmark real cases.

Future work may include: Explore and implement more con-
straints such as complex axioms in OWL. Investigate which
constraint is more useful than others. Assign each constraint a dif-
ferent weight according to its priori probability.
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