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Abstract. Multimedia search and retrieval are considerably improved
by providing explicit meaning to visual content by the help of ontologies.
Several multimedia ontologies have been proposed recently as suitable
knowledge models to narrow the well known semantic gap and to enable
the semantic interpretation of images. Since these ontologies have been
created in different application contexts, establishing links between them,
a task known as ontology matching, promises to fully unlock their poten-
tial in support of multimedia search and retrieval. This paper proposes
and compares empirically two extensional ontology matching techniques
applied to an important semantic image retrieval issue: automatically
associating common-sense knowledge to multimedia concepts. First, we
extend a previously introduced matching approach to use both textual
and visual knowledge. In addition, a novel matching technique based on
a multimodal graph is proposed. We argue that the textual and visual
modalities have to be seen as complementary rather than as exclusive
means to improve the efficiency of the application of an ontology match-
ing procedure in the multimedia domain. An experimental evaluation is
included.

1 Introduction

In recent years, many research efforts have been directed towards the problem of
improving search and retrieval in large image collections by providing semantic
annotations in a fully automatic manner. Ideally, semantic image annotation re-
sults in a linguistic description of an image, which, in the current state of affairs,
is often only related to perceptual manifestations of semantics. Indeed, most of
the existing approaches are based on the automatic detection of semantic con-
cepts from low level features with machine learning techniques. Nevertheless, as
explained in [10], the image semantics cannot be considered as being included
explicitly and exclusively in the image itself. It rather depends on prior knowl-
edge and on the context of use of the visual information. In consequence, explicit
formal knowledge bodies (ontologies) have been growingly used to relate seman-
tics and images. Their application in the multimedia domain aims at improving
image search and retrieval by providing high-level semantics to visual content,
thus facilitating the interface between human and artificial agents and narrow-
ing the well-known semantic gap between low-level visual features and high-level
meaning [19].
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However, differences in the scopes and purposes of these ontologies (reviewed
in Section 2) as well as in their application contexts tend to result in various
heterogeneities on terminological, conceptual and / or semantic level. Therefore,
relating these knowledge resources, a process termed as ontology matching [5],
is crucial in order to fully unlock their potential in support of multimedia search
and retrieval - a field in which ontology matching has found little application
in contrast to its use in the semantic web domain. To accomplish an ontology
matching task one could rely on the instances contained in the ontologies con-
cepts (extensional or instance-based matching), make use of the relations that
hold between the different concepts (structural matching), measure the similari-
ties of the concept names and their lexical definitions (terminological matching),
etc. In the case of multimedia ontologies, which often come equipped with sets of
annotated images, extensional matching is a suitable paradigm since it enables
to benefit from both the visual and the textual knowledge.

This paper considers two generic instance-based ontology matching tech-
niques - one based on variable selection (developed in a previous study of the
same authors [12], [23]) and another, novel approach, exploring the benefits of
discovering correlations in a multimodal graph. We apply and compare these
approaches in the context of an important semantic image retrieval problem:
associating common-sense knowledge to multimedia concepts. In particular, the
paper proposes to narrow the semantic gap by matching a common sense on-
tology (WordNet [15] associated to the image database LabelMe[18]) with a
specific multimedia ontology (LSCOM [20] associated to the TRECVID2005 de-
velopment data set).

Since our matching approaches rely on extensional information, it is impor-
tant to explore and make use of all possible instance-based knowledge that can
be made available. In extensional terms, these two resources can be considered
as bi-modal, each possessing a visual and a textual modality. On one hand, the
concepts of these ontologies serve to annotate a given set of images which can be
considered as instances of these concepts. On the other hand, every image can
be assigned a text document by taking the concepts that it is annotated by and
their corresponding textual definitions (LSCOM definitions or WordNet glosses).
In order to apply the suggested matching approaches, one can rely on either of
the two modalities and we will refer to the two resulting types of matching as,
respectively, visual matching and textual matching. What the paper investigates
more closely, are the benefits of using both in combination, instead of each of
them in isolation. The variable selection model is able to work with only one
modality at a time and an integration of the results have to be performed post
factum. Since we are primarily interested in obtaining concept correspondences
based on the visual characteristics of the images in the two datasets, we will
rely on the visual modality to produce a baseline matching, which will be later
adjusted and refined by the help of the textual modality. A potential advantage
of the graph-based model is that it allows the simultaneous, built-in application
of the two modalities in the matching process.
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The rest of the article is structured as follows. Next section reviews related
work. Section 3 provides a summary of the generic instance-based ontology
matching techniques that we use. The application of these methods on visual
and textual instances is described in detail in Section 4: we report experimental
results of these matchings and discuss the benefits of their integrated interpre-
tation. We conclude in Section 5.

2 Related Work

Despite many recent efforts to provide approaches for automatic annotation of
images with high-level concepts [11], the semantic gap problem is still an issue
for the understanding of the meaning of multimedia documents. In this context,
many knowledge models or ontologies have been proposed to improve multimedia
retrieval and interpretation by the explicit modeling of the different relationships
between semantic concepts.

In particular, many generic large scale multimedia ontologies or multimedia
concept lexicons together with image collections have been proposed to provide
an effective representation and interpretation of multimedia concepts [21, 20, 3].
We propose to classify these ontologies in four major groups: (1) semantic web
multimedia ontologies often based on MPEG-7 (a review can be found in [3])
(2) visual concept hierarchies (or networks) inferred from inter-concept visual
similarity contexts (among which VCNet based on Flickr Distance [26] and the
Topic Network of Fan [6]), (3) specific multimedia lexicons often composed of a
hierarchy of semantic concepts with associated visual concept detectors used to
describe and to detect automatically the semantic concept of multimedia docu-
ments (LSCOM [20], multimedia thesauri [22], [21]) and (4) generic ontologies
based on existing semantic concept hierarchies such as WordNet and populated
with annotated images or multimedia documents (ImageNet [4], LabelMe [18]).

The reasoning power of ontological models has also been used for seman-
tic image interpretation. In [2],[9] and [17], formal models of application domain
knowledge are used, through fuzzy description logics, to help and to guide seman-
tic image analysis. Prior knowledge on structured visual knowledge represented
by an And-or graph (stochastic grammars) has been proved to be very useful in
the context of image parsing or scene recognition in images [28]. While these dif-
ferent formal models are highly integrated in multimedia processing, their main
drawback is that they are specific to the application domain.

All these ontologies have proved to be very useful mainly in the context of se-
mantic concept detection and automatic multimedia annotation but many prob-
lems still remain among which the interoperability issue between visual concepts
and high level concepts. To solve this issue, some ontology-based infrastructures
have also been proposed to guide image annotation [1]. These infrastructures are
mainly based on different ontologies (multimedia ontologies, application domain
ontologies and top ontologies for interoperability purposes) and the link between
the different ontologies is often done manually. In [21], the authors also propose
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to build a multimedia thesaurus by linking manually 101 multimedia concepts
with WordNet synsets.

Due to the fact that these large scale multimedia ontologies are often dedi-
cated to (or initially built for) particular needs or a particular application, they
often tend to exhibit a certain heterogeneity which allows their use as com-
plementary knowledge sources. For instance LSCOM was built for video news
annotation purposes, while the scope of WordNet/LabelMe is rather general
and common-sense. Hence, these ontologies differ both in their conceptual con-
tent (number, granularity and genericity of the concepts) and in their usage
(LSCOM is dedicated to multimedia annotation and therefore the extensional
and terminological knowledge that it assigns to each concept is defined by the
visual appearances of this concept). While studies have been done to analyze
the different inter-ontology concept similarities in different multimedia ontolo-
gies [13], to the best of our knowledge, there are no approaches in the state of
the art which propose a cross analysis and a joint use of these different and
complementary resources.

3 Instance-based Ontology Matching

We propose a methodology to narrow the semantic gap by matching two com-
plementary resources: a visual ontology and a semantic thesaurus. Contrarily to
[21], we suggest to accomplish this matching in an automatic manner. We apply
a generic extensional ontology matching approach based on discovering cross-
ontology concept similarities via variable selection, which has been previously
introduced for matching textually populated ontologies [23]. In [12], we propose
a first extension of this approach based on visual extensional knowledge. In the
framework of this paper, the approach has been extended to use both textual and
visual knowledge with the objective to combine both in the concept alignment
process. In addition, we suggest a novel matching technique, based on a multi-
model graph and a Random Walk with Restart (RWR). In the sequel, we will
describe the main elements of these approaches in a generic manner, by referring
to an abstract notion of instance, without specifying whether it comprises a text
or a multimedia document and how precisely it is represented. We only assume
that each instance is indeed representable as a real-valued vector. We start by
giving several assumptions and definitions.

An ontology is based on a set of concepts and relations defined on these
concepts, which describe in an explicit and formal manner the knowledge
about a given domain of interest. In this paper, we are particularly inter-
ested in ontologies, whose concepts come equipped with a set of associated
instances, referred to as populated ontologies and defined as tuples of the
kind O = {C,is_a, R, I, g}, where C is a set whose elements are called con-
cepts, is_a is a partial order on C, R is a set of other relations holding between
the concepts from the set C, I is a set whose elements are called instances and
g : C — 2! is an injection from the set of concepts to the set of subsets of I. In
this way, a concept is intensionally modeled by its relations to other concepts,
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and eztensionally by a set of instances assigned to it via the mapping g. By
assumption, every instance can be represented as an n dimensional real-valued
vector, defined by n input variables of some kind (the same for all the instances
in I).

To build a procedure for ontology matching, we need to be able to measure
the pair-wise similarity of concepts. The measures used in the current study
are based on wvariable selection (Section 3.1) and on correlations discovered by a
random walk in a mized multimedia graph (Section 3.2).

3.1 Variable Selection-Based Method (VSBM)

Variable selection [7] is defined as a procedure for assigning ranks to the input
variables with respect to their importance for the output, a ranking criterion
provided. On these bases, we propose to evaluate concept similarity by comparing
the ranks assigned to the input variables w.r.t. two given concepts.

We define a binary training set Sg for each concept ¢ from an ontology O
by taking I, the entire set of instances assigned to O and labeling all instances
from the set g(c) as positive and all the rest (I\g(c)) as negative. By the help of
a variable selection procedure performed on S§ (i.e. evaluating the importance
of the input variables w.r.t. the concept ¢), we obtain a representation of the
concept ¢ as a list

L(c) = (r{,r5, ey ), (1)
where 7§ is the rank associated to the ith variable. To compute a rank per

variable and per concept, we apply a standard Point-wise Mutual Information
criterion approximated for a variable v; and a concept ¢ by

A x ||

= PMI ) = lo8 e AT By

(2)

where A is the number of co-occurrences of v; and ¢, B is the number of non-zero
occurrences of v; out of ¢, C' is the number of zero occurrences of v; within ¢ and
| - | stands for set cardinality [27].

Given two source ontologies O and O’, a representation as the one in (1) is
made available by following the described procedure for every concept of each
of these ontologies. The similarity of two concepts, ¢ € O and ¢ € O’ is then
measured in terms of their corresponding representations L(c) and L(c’). Several
choices of a similarity measure based on these representations are proposed and
compared in [23]. In the experimental work contained in this paper, we have used
Spearman’s measure of correlation and the n'-TF similarity measure. Spearman’s
coefficient is given by

c _ pc’\2
Sl

n(n? —1) (3)

SSpear (C, Cl) =

The n/-TF (n’ Top Features) simply measures the size of the intersection of the
subsets of the n’ < n top variables (i.e. the ones with highest ranks) according
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to the lists LY"$(¢) and LY*"5(¢'):

Viqyeees Uy Ndv: ... v
S”'TF(C,C/) _ |{ 119 00 Zn/}n/{ g1 _]n/}|’ (4)

where v stands for the variable which has a rank ri and vj - for the variable

which has a rank rjc;

In the sequel, we will be interested in applying the measures above in order to
represent a concept ¢ from ontology O by a list of pairs of the kind (s;, ¢}), where
s; (a shortcut for s;(c,c})) is the similarity score (issued from either measure (3)
or (4)) of the concept ¢ and the concept ¢; € O', i = 1,..., k with k the cardinality
of the concept set of O’. We will denote the list of such pairs corresponding to
the concept ¢ € O by

Lsim(c) — {(51’0/1)7...,(816,0;0)}- (5)

Provided the choice of a threshold k¥’ < k, we will define for each concept ¢ € O
the matching L;i™(c) by keeping only those k' concepts from O’ which have
the highest similarity scores with respect to c. An alignment of O to O’ will
be defined as the set of matchings A(O,0") = {L;i™(c;)}._;, where [ is the

j=1s
cardinality of the concept set of O.

3.2 Graph-based Method (GBM)

Graph-based procedures are well-known approaches for evaluating the similarity
between objects, like our concepts. These approaches have been used in several
domains: ranking algorithms for information retrieval [8], automatic image an-
notation [16], [25], data analysis and word sense disambiguation [14]. The idea
is to exploit the relationships between objects and the different aspects of these
objects. In our instance-based ontology matching framework, we have objects of
different kinds: (1) concepts, (2) concept instances (i.e. images), and (3) features
relevant to the images. We use a method based on the Mixed-Multimedia Graph
(MMG) and the Random Walks with Restarts algorithm proposed in [16]. Fig.
1 represents a special case of a MMG in the scope of our concept matching
procedure.

The MMG graph is well adapted for multimedia document processing because
it allows to mix heterogeneous kinds of information, like illustrated in Fig. 1. For
each instance we have: (1) a concept node, (2) a textual representation of the
instance and (3) a visual representation of the instance. For our experiments, the
textual representation is based on a bag-of-words model built from the textual
definition of all the concepts associated to an instance (the instances are multi-
annotated), and the visual representation is based on histograms of visual words
computed over the instances. The kind of the instance representation is seen as
a modality, the graph is modular and a modality can be easily used or not. As
we will see in the experiments (Section 4.1), we have used both the uni-modal
and the bi-modal versions of the graph. Regardless to the chosen modality, the
graph is completed with Nearest Neighbor (NN) links between the nodes of each
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Fig.1. An MMG Graph

modality. The similarity function needed to compute these links depends on the
modality type, therefore we need a function for computing the similarity between
two textual representations and another function for computing the similarity
between two visual representations.

The process of discovering concept similarities consists in finding correlations
between a specific concept of the ontology O and the concepts of the ontology
O’. We use the RWR algorithm as described in [16]. The random walk starts
at a fixed concept node - the one for which we search similar concepts in the
ontology O’ (see the concept ¢; in Fig. 1). At each step, the walker can either
choose a link in the set of associated links to the node on which it is, or go to
its starting point with a probability p (experimentally set to 0.8 as in [16]). A
precise description with implementation details of the algorithm can be found
in [24].

The probability that the walker is at node ¢/, called the steady state probabil-
ity, pe, (¢'), can be interpreted like an affinity measure between the node ¢; and
c'. Therefore, if we consider the results only for concept nodes, a high similarity
between ¢; € O, and ¢’ € O is observed when the probability p., (¢') is high.

4 Aligning Two Multimedia Resources

The ontology matching techniques described above can be applied for any two
ontologies whose concepts are used to label a set of real-world instances of some
kind. Based on these techniques, we will align two complementary multimedia
knowledge resources by using and integrating the visual and textual modalities
of their extensions.
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We chose, on one hand, LSCOM [20] — an ontology dedicated to multimedia
annotation. It was initially built in the framework of TRECVID! with the criteria
of concept usefulness, concept observability and feasibility of concept automatic
detection. LSCOM is populated with the development set of TRECVID 2005
videos. On the other hand, we used WordNet [15] populated with the LabelMe
dataset [18].

4.1 Experimental Setting

In our experimental work, we have used a part of the LSCOM ontology,
LSCOM _Annotation_v1.0%, which is a subset of 449 concepts from the ini-
tial LSCOM ontology, and is used for annotating 61,517 images from the
TRECVID2005 development set. Since this set contains images from broad-
cast news videos, the chosen LSCOM subpart is particularly adapted to an-
notate this kind of content, thus contains abstract and specific concepts (e.g.
SCIENCE_TECHNOLOGY, INTERVIEW_ON_LOCATION). To the contrary, our sub-
ontology defined from WordNet populated with LabelMe (3676 concepts) is very
general considering the nature of LabelMe, which is composed of photographs
from the daily life and contains concepts such as CAR, COMPUTER, PERSON, etc.

To provide a low-scale evaluation of the suggested approaches, we chose five
concepts from the LSCOM ontology (Bus, COMPUTER, PEDESTRIAN_ZONE,
SPEAKER_AT_PODIUM, SPORT) populated with 2317 images, and thirteen con-
cepts from the WordNet ontology (ARM, CAR, GRASS, HEAD, LEG, PERSON,
PLANT, PLATE, ROAD, SIDEWALK, TORSO, TREE, WHEEL) populated with 4964
images. The choice of the selected concepts was made on the basis of several
criteria: (1) the number of associated instances, (2) the lack of semantic ambi-
guity in our dataset for every selected concept, (3) for WordNet only: a high
confidence (arbitrarily decided) in the discrimination of the concept using only
perceptual information, (4) the presence of contextually bound cross-ontology
concepts (such as BUus and CAR) as well as contextually isolated concepts (i.e.
dissimilar to all the other concepts such as PLATE).

We draw the readers attention to the fact that the similarities of the concepts
should be interpreted strictly within the extensional nature of their definitions
and not in terms of any possible intuitive or common sense definition. Our meth-
ods imply that two concepts are similar if their corresponding instances contain
similar visual or textual characteristics (the instances of two similar concepts
contain some identical objects). In some cases, these similarity scores are in
agreement with the common sense, but they are not in other cases. In that line
of thought, taking two concepts (one from each of the ontologies) with identical
names (e.g. BUS in WordNet and Bus in LSCOM) is not relevant for evaluating
the quality of the alignments.

In the remainder of the section, we will first present and discuss results from
the visual and textual matchings of the selected sets of concepts separately. We

! http://www-nlpir.nist.gov/projects/tv2005/
2 http://www.ee.columbia.edu/In/dvmm /lscom/
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will further propose a method to integrate the two matching types. As matching
procedures we have used the VSBM method with two different concept similarity
measures - Spearman’s correlation and the n/-TF measure3. Additionally, we
have tested the GBM approach by using either only the visual or only the textual
modality and by using both modalities simultaneously. This results in three
independent alignments per matching type which, to improve readability, are all
gathered at the end of the paper.

4.2 Visual Matching

Instances and Representation To construct image features, we use a bag-
of-words model with a visual codebook of size 900, built classically using the
well known SIFT descriptor and a K-Means algorithm. The quantification of the
extracted SIFT features was done over all the instances associated to the selected
concepts (from both LSCOM and WordNet) by using only the distinct objects
in each image instead of the entire image in order to extract the SIFT features.
The variables which describe an image are then the bins of the histograms of
codewords corresponding to this image.

Results and Discussion The results of matching the 5 LSCOM concepts
against the 13 WordNet concepts by following the variable selection-based
matching procedure described above are presented in Tables 1 and 2 and the
results from the GBM method are shown in Table 3. As introduced in (5), we
provide for every LSCOM concept (in the top row) a list of pairs (score, WordNet
concept) in a descending order of their importance with respect to this concept.
The scores in Table 1 and Table 2 are issued from applying the similarity mea-
sures (3) and (4), respectively, whereas the scores in Table 3 are correlations
found by the help of the graph-based method.

As a general tendency, the WordNet concepts PERSON and HEAD tend to
appear up in the lists, whereas the concept PLATE achieves mostly low scores.
These results are coherent with the nature of our data, since the concept PLATE
stands alone in our selection of concepts, whereas the concepts PERSON and HEAD
are highly relevant for the TRECVID dataset, containing shots from news videos
where often we have a presenter or a speaker. For Table 3, some remarks about
the graph construction have to be taken into account. The similarity used to
compute the nearest-neighbor links is a Minkowski distance. Due to the nature of
the LSCOM/TRECVID data (the images are visually very close to one another
within TRECVID), we have taken into account only NN links from ontology
O to O’ (or vice-versa) in order to get a well connected graph. Without this
constraint, we would have a graph with two disconnected components. However,
this explains the results in Table 3 where the top 5 concepts are the same in all
lists (subject to a permutation).

We observe examples of a lack of coherence between intuitive interpretations
and achieved matchings as discussed previously in this section. For example,
SIDEWALK w.r.t. COMPUTER is intuitively an erroneous matching in contrast

3 Pearson’s measure, also discussed in [23] showed to compete closely with Spearman’s.
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to LEG and PERSON w.r.t. SPEAKER_AT_PODIUM which is intuitively coherent
(Table 1 and 2).We note that this is a perceptually induced conceptual mismatch,
i.e. a bias, which is due to co-occurrences of visual objects within the instances of
both concepts. In our example, images of SIDEWALK tend to contain the object
person, so do images of COMPUTER, although COMPUTER and SIDEWALK are
unrelated. In order to account for this problem, we suggest that a post-processing
of the obtained matchings has to be performed with the objective to re-rank the
WordNet concepts w.r.t. their importance for the respective LSCOM concept.
To these ends, we perform a textual matching with the objective to complement
the results achieved by the visual matching and filter out undesired alignments.

4.3 Textual Matching

Instances and Representation We present the results of the matching of the
two selected sets of concepts, by using this time as instances textual documents,
relevant to these concepts. A text document has been generated for every image,
by taking the names of all concepts that an image contains in its annotation,
as well as the (textual) definitions of these concepts (the LSCOM definitions for
TRECVID images or the WordNet glosses for LabelMe images). An example is
shown in Fig. 2. After a phase of standard text-processing (lemmatization and
stop-word filtering), a vocabulary of size 544 has been constructed for the corpus
containing the documents generated as instances for the two ontologies. Every
textual instance is represented as a tf-idf vector of dimension 544.

107_Standing One or more people standing up. 227 Bus

l’ l‘ Shots of a bus. 224_Outdoor Shots of Outdoor locations.

j, 217 Person Shots depicting a person. The face may be
‘ partially visible. 202_Crowd Shots depicting a crowd.

g 181 Adult Shots showing a person over the age of 18.

104_Male_Person One or more male persons.
290 Daytime Outdoor shots that take place outdoors
during the day. 316_Group We defined a group as 3-10
people. 109_Windows An opening in the wall or roof of a

o
! b"":\. building or vehicle fitted with glass or other transparent
material.

Fig. 2. The LSCOM concept BUS: a visual and a textual instance.

Results and Discussion To derive the textual similarity scores, we have
applied the same procedures as those applied for the visual matching. For
the VSBM matching, we first scored the variables by the help of a mutual
information-based variable selection and then measured concept similarities by
the help of Spearman’s measure of correlation and n'-TF (equations (3) and
(4)). We note that in this case the variables that define our instances are actual
(lemmatized) terms that appear in the corpus with a certain (sufficiently high)
frequency. The results of these matchings are presented in an analogous man-
ner to the visual matching in Tables 4 and 5. The similarity scores achieved by
applying the graph-based approach on our textual data are found in Table 6.
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We observe that, while some of the correlations already found by the vi-
sual matching are confirmed (e.g. the low scores of the stand-alone concept
PLATE), some of the WordNet concepts achieve different scores through the tex-
tual matching (e.g. the problematic SIDEWALK). This confirms the initial hy-
pothesis that the two matching modalities are complementary and neither is to
be applied self-dependently. The integration and the proper interpretation of the
results of the two matching types is the subject of the following sub-section.

4.4 Integration of the Textual and the Visual Modalities

A posteriori pruning with VSBM As a result of the matchings, every
WordNet concept is assigned two scores w.r.t. each LSCOM concept - a visual
similarity score s! and a textual similarity score s.

In order to identify problematic matchings (e.g. (COMPUTER, SIDEWALK)),
we propose an algorithm which serves to prune the list of most important (w.r.t.
a given LSCOM concept) WordNet concepts. We compute for every LSCOM
concept the quantities s = |si — s¢|, Vi = 1,....k, (k is here the number of
WordNet concepts) represented in Tables 7 and 8. The scores si and s are in-
tegers corresponding to the (real) similarity scores. When multiple consecutive
concepts achieve identical scores (a likely case when applying the n/-TF mea-
sure) the same rank is attributed to each of these concepts. We take as a basis
the matching achieved by using the visual modality and we fix a number k&’ of
concepts to be kept. Our algorithm relies on the heuristics that the WordNet
concepts ¢, for which the corresponding sfs is too large (w.r.t. an experimentally
set threshold) should be identified as subjective to removal. The list L™ (c) is
pruned by removing from it all WordNet concepts with too large a ss. By ap-
plying this algorithm on the results in Table 7 (fixing k' at 4), we are able to
prune out some problematic concepts, such as the WordNet concept SIDEWALK
w.r.t. the LSCOM concepts COMPUTER, SPEAKER_AT_PODIUM and SPORTS,
the WordNet concept ROAD with respect to the LSCOM concept COMPUTER, or
the WordNet concepts PLANT and WHEEL with respect to the LSCOM concept
PEDESTRIAN_ZONE. Similar results are achieved based on the results obtained
by the n/-TF measure (Table 8).

Built-in bi-modality matching with GBM Table 9 contains the results
of the built-in bi-modality matching by the GBM approach in which the two
modalities have been used as an integral part of the matching process. As we
can see, the obtained results are in general coherent, although less performant as
compared to the VSBM approach. On one hand, this is due to the low number of
concepts resulting in too little nodes in the multi-modal graph, which decreases
the probability of discovering interesting matches. On the other hand, the graph
has been constructed in a manner which does not allow that an image node is
connected to more than one concept node (mono-annotation), which leads to a
loss of co-occurrence information. The performance of the matching procedure
can be significantly improved by lifting this constraint and adding additional
edges to the graph. An overall advantage of this method is the computational
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time of the RWR algorithm and the multi-modality which allows the concepts
to be populated by documents of different types. These two points make this
method very promising for a matching at a larger scale.

5 Conclusions

The problem of associating high level meaning to a set of visual concepts has been
situated in an ontology matching framework. We have proposed and compared
two generic matching techniques - one based on a variable selection method
(VSBM) and one based on a random walk in a graph (GBM) by relying on
instances of both wvisual and tertual nature. We have demonstrated that these
two extensional modalities are complementary and their combined use improves
the achieved results. Although for the moment the VSBM outperforms the GBM
approach, the full potential of the latter method is to be uncovered in a large-
scale application which is a subject of near future work.

The achieved alignments allow for the semantic enrichment of concepts be-
longing to a multimedia ontology (LSCOM) with high level linguistic concepts
from a general and common sense knowledge base (WordNet). This alignment
could be used to build a linguistic description of the concepts of LSCOM and
improve the retrieval process through: (a) query expansion and reformulation,
i.e. retrieving documents annotated with concepts from an ontology O using a
query composed of concepts of an ontology O’, and (b) a better description of
the documents in the indexing process.

Due to the bias of the data and to the difficulty to extract the concrete se-
mantics of a correlation, a quantitative measure of the efficiency of the approach
is difficult to give. An evaluation of the approach could be envisaged within a
concrete application context in an information access framework.

References

1. T. Athanasiadis, V. Tzouvaras, K. Petridis, F. Precioso, Y. Avrithis, and Y. Kom-
patsiaris. Using a multimedia ontology infrastructure for semantic annotation of
multimedia content. In SemAnnot’05, 2005.

2. S. Dasiopoulou, I. Kompatsiaris, and M. Strintzis. Using fuzzy dls to enhance
semantic image analysis. In Semantic Multimedia, pages 31-46. Springer, 2008.

3. S. Dasiopoulou, V. Tzouvaras, . Kompatsiaris, and M. Strintzis. Enquiring
MPEG-7 based multimedia ontologies. MM Tools and Appls, pages 1-40, 2010.

4. J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. ImageNet: a large-scale
hierarchical image database. In CVPR, pages 710-719, 2009.

5. J. Euzenat and P. Shvaiko. Ontology Matching. Springer-Verlag, 1 edition, 2007.

6. J. Fan, H. Luo, Y. Shen, and C. Yang. Integrating visual and semantic contexts for
topic network generation and word sense disambiguation. ACM CIVR’09, pages
1-8, 2009.

7. 1. Guyon and A. Elisseeff. An introduction to variable and feature selection. JMLR,
3(1):1157-1182, 2003.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Visual and Textual Multimedia Ontology Matching 13

T. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm for
web search. IEEE transactions on knowledge and data engineering, pages 784-796,
2003.

C. Hudelot, J. Atif, and 1. Bloch. Fuzzy Spatial Relation Ontology for Image
Interpretation. Fuzzy Sets and Systems, 159:1929-1951, 2008.

C. Hudelot, N. Maillot, and M. Thonnat. Symbol grounding for semantic image
interpretation: from image data to semantics. In SKCV-Workshop, ICCV, 2005.
M. Inoue. On the need for annotation-based image retrieval. In Proceedings of
the Workshop on Information Retrieval in Context (IRiX), Sheffield, UK, pages
44-46, 2004.

N. James, K. Todorov, and C. Hudelot. Ontology matching for the semantic an-
notation of images. In FUZZ-IEEE. IEEE Computer Society Press, 2010.

M. Koskela and A. Smeaton. An empirical study of inter-concept similarities in
multimedia ontologies. In CIVR’07, pages 464-471. ACM, 2007.

R. Mihalcea, P. Tarau, and E. Figa. Pagerank on semantic networks, with appli-
cation to word sense disambiguation. In ICCL, page 1126. Association for Com-
putational Linguistics, 2004.

G. Miller. WordNet: a lexical database for English. Communications of the ACM,
38(11):39-41, 1995.

J. Pan, H. Yang, C. Faloutsos, and P. Duygulu. Automatic multimedia cross-modal
correlation discovery. In ACM SIGKDD, page 658. ACM, 2004.

1. S. E. Peraldi, A. Kaya, and R. Moller. Formalizing multimedia interpretation
based on abduction over description logic aboxes. In Description Logics, 2009.

B. Russell, A. Torralba, K. Murphy, and W. Freeman. LabelMe: a database and
web-based tool for image annotation. IJCV, 77(1):157-173, 2008.

A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image
retrieval at the end of the early years. IEEE Trans. Patt. An. Mach. Intell., pages
1349-1380, 2000.

J. Smith and S. Chang. Large-scale concept ontology for multimedia. IEEE Mul-
timedia, 13(3):86-91, 2006.

C. Snoek, B. Huurnink, L. Hollink, M. De Rijke, G. Schreiber, and M. Worring.
Adding semantics to detectors for video retrieval. IEEE Trans. on Mult., 9(5):975—
986, 2007.

R. Tansley. The multimedia thesaurus: An aid for multimedia information retrieval
and navigation. Master’s thesis, 1998.

K. Todorov, P. Geibel, and K.-U. Kiithnberger. Extensional ontology matching
with variable selection for support vector machines. In CISIS, pages 962-968.
IEEE Computer Society Press, 2010.

H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with restart and its
applications. In ICDM ’06, pages 613-622, Washington, DC, USA, 2006. IEEE
Computer Society.

C. Wang, F. Jing, L. Zhang, and H. Zhang. Image annotation refinement using
random walk with restarts. In ACM MM, page 650, 2006.

L. Wu, X.-S. Hua, N. Yu, W.-Y. Ma, and S. Li. Flickr distance. In MM’08, pages
31-40. ACM, 2008.

Y. Yang and J. O. Pedersen. A comparative study on feature selection in text
categorization. In Fourteenth ICML, pages 412—420. Morgan Kaufmann Publishers,
1997.

B. Yao, X. Yang, L. Lin, M. Lee, and S. Zhu. I2t: Image parsing to text description.
IEEE Proc. Special Issue on Internet Vision (To appear).



14 N. James, K. Todorov, C. Hudelot
Bus Computer |Ped. Zone |Speaker At Pod.|Sport
0.602 head 0.646 person [0.726 plant 0.594 person 0.631 head
0.598 road 0.643 sidewalk|0.709 grass 0.532 head 0.613 sidewalk
0.588 car 0.636 head 0.694 wheel |0.522 grass 0.607 person
0.587 person |0.565 road 0.687 tree 0.521 plant 0.607 car
0.584 wheel |0.495 car 0.617 arm 0.503 sidewalk 0.580 road
0.581 arm 0.467 arm 0.575 leg 0.481 road 0.555 arm
0.570 tree 0.427 wheel |0.567 car 0.475 wheel 0.505 wheel
0.557 sidewalk|0.422 leg 0.478 road 0.468 tree 0.504 tree
0.552 grass 0.411 grass 0.477 sidewalk|0.383 arm 0.454 leg
0.542 plant 0.408 tree 0.467 torso 0.363 car 0.444 torso
0.509 leg 0.406 plant 0.440 person [0.341 leg 0.426 plant
0.460 torso 0.388 torso 0.413 head 0.233 torso 0.399 grass
0.336 plate 0.204 plate 0.117 plate 0.188 plate 0.320 plate
Table 1. Visual VSBM matching with Spearman’s correlation measure (eq. (3)).
Bus Computer |Ped. Zone |Speaker At Pod.|Sport
0.325 person |0.400 head 0.600 grass 0.456 person 0.306 road
0.318 grass 0.375 person [0.531 plant 0.400 grass 0.300 head
0.318 road 0.318 sidewalk|0.475 tree 0.368 head 0.300 person
0.293 head 0.306 road 0.456 wheel  [0.350 plant 0.281 sidewalk
0.268 plant 0.231 torso 0.275 leg 0.325 road 0.250 car
0.268 tree 0.225 leg 0.250 plate 0.281 sidewalk 0.212 leg
0.243 sidewalk|0.193 grass 0.212 arm 0.225 tree 0.193 arm
0.237 wheel  [0.193 plant 0.162 person |0.225 wheel 0.175 torso
0.218 torso 0.118 car 0.137 car 0.162 leg 0.168 plate
0.206 leg 0.112 wheel |0.137 torso 0.106 car 0.156 plant
0.150 arm 0.100 tree 0.112 head 0.087 arm 0.143 wheel
0.150 car 0.093 arm 0.112 road 0.068 plate 0.131 tree
0.143 plate 0.087 plate 0.112 sidewalk|0.062 torso 0.118 grass
Table 2. Visual VSBM matching with n’-TF measure (eq. (4)). n’ = 150.
Bus Computer Ped. Zone Speaker At Pod.|Sport
4.2E-6 car 3.4E-6 car 2.3E-6 head 2.1E-6 head 3.0E-6 head
2.9E-6 head 3.3E-6 head 2.0E-6 car 1.7E-6 car 2.5E-6 car
2.2E-6 tree 2.1E-6 tree 1.5E-6 tree 1.2E-6 tree 2.0E-6 person
1.6E-6 road 1.4E-6 person |1.0E-6 road 1.0E-6 person 1.9E-6 tree
1.4E-6 person |1.4E-6 road 8.6E-7 person |7.9E-7 road 1.0E-6 road
9.6E-7 sidewalk|8.9E-7 sidewalk|7.3E-7 sidewalk|4.7TE-7 sidewalk 9.9E-7 plant
7.3E-7 plant 7.8E-7 wheel |5.6E-7 arm 4.6E-7 grass 7.6E-7 sidewalk
6.2E-7 arm 6.6E-7 plant 5.5E-7 leg 3.3E-7 wheel 6.9E-7 grass
5.4E-7 grass 6.4E-7 grass 5.5E-7 torso 3.3E-7 plant 5.7E-7 wheel
5.3E-7 leg 5.8E-7 plate 4.8E-7 grass 2.9E-7 arm 4.7E-7 plate
5.1E-7 wheel |2.6E-7 arm 4.6E-7 wheel |2.4E-7 torso 3.4E-7 arm
5.1E-7 torso 2.4E-7 leg 2.4E-7 plant 2.4E-7 leg 3.4E-7 leg
3.1E-7 plate 2.4E-7 torso 1.6E-7 plate 2.3E-7 plate 3.3E-7 torso

Table 3. Visual GBM matching.
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Bus Computer |Ped. Zone |Speaker At Pod.|Sport
0.667 head 0.531 head 0.615 head 0.485 head 0.581 head
0.363 car 0.166 car 0.336 car 0.109 car 0.223 car
0.233 tree 0.059 person |0.234 tree 0.006 tree 0.170 tree
0.153 person |0.050 tree 0.157 person |0.011 person 0.118 person
0.130 road 0.013 torso 0.125 road 0.053 torso 0.070 torso
0.098 arm 0.005 arm 0.109 arm 0.068 arm 0.050 arm
0.092 torso 0.023 leg 0.104 grass 0.113 leg 0.042 grass
0.086 grass 0.094 plate 0.096 torso 0.170 road 0.023 road
0.069 leg 0.101 plant 0.068 leg 0.185 grass 0.017 leg
0.015 sidewalk|0.124 grass 0.017 sidewalk|0.186 plate 0.067 sidewalk
0.044 plant 0.137 road 0.066 plant 0.198 plant 0.108 plant
0.059 wheel ]0.184 sidewalk|0.070 wheel |0.249 sidewalk 0.122 plate
0.091 plate 0.305 wheel |0.136 plate 0.380 wheel 0.194 wheel

Table 4. Textual VSBM matching with Spearman’s correlation

measure (eq. (3)).

Bus Computer |Ped. Zone |Speaker At Pod.|Sport
0.257 road 0.257 person |0.185 sidewalk|0.200 person 0.228 grass
0.185 car 0.185 arm 0.185 road 0.157 plant 0.200 tree
0.171 wheel |0.171 torso 0.171 person [0.157 torso 0.171 road
0.171 sidewalk|0.171 leg 0.171 car 0.142 leg 0.157 plant
0.157 tree 0.157 tree 0.171 tree 0.100 arm 0.142 person
0.142 grass 0.142 plate 0.171 grass 0.100 grass 0.128 sidewalk
0.128 person |0.114 car 0.157 wheel |0.057 head 0.114 arm
0.114 plant 0.114 head 0.114 arm 0.057 plate 0.114 plate
0.100 head 0.100 road 0.114 head 0.057 sidewalk 0.114 torso
0.085 arm 0.100 plant 0.114 leg 0.057 tree 0.100 car
0.085 plate 0.085 grass 0.100 plant 0.042 car 0.100 head
0.085 torso 0.071 wheel |0.100 torso 0.042 road 0.100 leg
0.071 leg 0.028 sidewalk|0.028 plate 0.014 wheel 0.057 wheel
Table 5. Textual VSBM matching with the n'-TF measure (eq. (4)). n’ = 150.
Bus Computer Ped. Zone Speaker At Pod.|Sport
2.4E-6 road 1.0E-6 person |2.5E-6 road 5.6E-7 head 7.0E-7 grass
1.8E-6 tree 6.9E-7 head 2.2E-6 sidewalk|4.2E-7 person 6.0E-7 tree
1.5E-6 person |[6.8E-7 arm 1.3E-6 tree 3.7TE-7 tree 5.9E-7 person
1.4E-6 wheel |6.5E-7 leg 1.2E-6 car 3.4E-7 arm 5.6E-7 road
1.4E-6 plant 6.4E-7 torso 7.6E-7 wheel |3.3E-7 torso 4.3E-7 head
1.3E-6 car 5.4E-7 plant 6.2E-7 person |3.0E-7 leg 4.1E-7 torso
8.9E-7 sidewalk|2.5E-7 tree 4.4E-7 arm 2.8E-7 plant 4.1E-7 leg
8.3E-7 leg 2.1E-7 wheel |4.2E-7 head 1.6E-7 plate 4.0E-7 plant
7.3E-7 arm 1.9E-7 road 3.6E-7 leg 9.5E-8 grass 4.0E-7 arm
7.2E-7 head 1.6E-7 plate 3.5E-7 torso 9.4E-8 road 2.3E-7 sidewalk
6.7E-7 torso 1.3E-7 sidewalk|3.4E-7 plant 8.1E-8 wheel 1.8E-7 car
5.1E-7 grass 9.6E-8 grass 3.3E-7 grass 6.0E-8 sidewalk 1.7E-7 wheel
4.8E-7 plate 9.1E-8 car 1.2E-7 plate 5.9E-8 car 7.7E-8 plate

Table 6. Textual GBM matching.
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Bus Sy St |Ss|Comp. s, si|ss|Ped.Zone|s, s; |s5|Sp.AtPod.|s, s |ss|Sport |s, st |Ss
head 11 |0 |person [13 |2 |plant 111 |10|person 14 |3 |head 11 |0
road 25 |3 [sidewalk|2 12 [10|grass 27 |5 |head 21 |1 |sidewalk|2 10 (8
car 32 |1 |head 31 |2 |wheel 312 |9 |grass 39 |6 |person (34 |1
person |44 |0 |road 411 |7 |tree 43 |1 |plant 411 |7 |car 42 |2
wheel |5 12 |7 |car 52 |3 |arm 56 |1 |sidewalk 512 |7 |road 58 |3
arm 66 |0 |arm 66 |0 |leg 69 |3 |road 68 |2 |arm 66 |0
tree 73 |4 |wheel |713|6 |car 72 |5 |wheel 713 |6 |wheel |7 13 |6
sidewalk|8 10 |2 |leg 87 |1 |road 85 |3 [tree 83 |5 |tree 83 |5
grass 98 |1 |grass 910 |1 |sidewalk [9 10 |1 |arm 96 |3 |leg 99 |0
plant 10 11|1 |tree 10 4 |6 |torso 10 8 |2 |car 10 2 |8 |torso 105 |5
leg 11 9 |2 |plant 11 9 |2 |person 114 |7 |leg 11 7 |4 |plant 11 11|10
torso 12 7 |5 |torso 12 5 |7 |head 121 |11|torso 12 5 |7 |grass 127 |5
plate 13 13|0 |plate 13 8 |5 |plate 13 13|0 |plate 13 103 |plate 13 12|1
Table 7. Differences between the visual and the textual similarity scores issued from

the VSBM matching with Spearman’s correlation measure.

Bus Sy St|Ss|Comp. [s, St|ss|Ped.Zone|s, si|ss|Sp.AtPod.|s, s¢|ss|Sport |[s, s¢|Ss
person |16 |4 |head 16 |4 |grass 12 |1 |person 11 |0 |road 13 |2
road 21 |1 |person (21 |1 |plant 25 |3 |grass 24 |2 |head 28 1|6
grass 25 |3 |sidewalk|3 10 |7 |tree 32 |1 |head 35 |2 |person (35 |2
sidewalk|3 3 |0 |road 47 |3 |wheel 43 |1 |plant 42 |2 |sidewalk|4 6 |2
tree 34 |1 |torso 53 |2 |leg 54 |1 |road 56 |1 |car 58 |3
plant 37 |4 |leg 6 3 |3 |plate 6 6 |0 |sidewalk 65 |1 |leg 59 |4
head 38 |5 |grass 78 |1 |arm 74 |3 |tree 75 |2 |arm 67 |1
wheel |43 |1 |plant 77 |0 |person 82 |6 |wheel 87 |1 [torso 77 |0
torso 59 |4 |car 86 |2 |car 92 |7 |leg 93 |6 |plate 87 |1
leg 6 10 |4 |wheel [89 |1 [torso 95 |4 |car 106 |4 |plant |94 |5
car 72 |5 |tree 94 |5 |head 104 |6 |arm 11 4|7 |wheel |10 10|0
arm 79 |2 |arm 10 2 |8 |road 10 1 |9 |plate 12 5|8 [tree 112 1|9
plate 89 |1 |plate 11 5 |6 |sidewalk [10 1 |9 |torso 13 2 |11|grass 121 |11

Table 8. Differences between the visual and the textual similarity scores issued from
the VSBM matching with the n’-TF similarity measure. n’ = 150.

Bus Computer Ped. Zone Speaker At Pod.|Sport

3.8E-6 car 2.6E-6 head 2.7E-6 road 1.8E-6 head 2.2E-6 head
3.0E-6 road 2.2E-6 car 2.4E-6 sidewalk|1.2E-6 car 1.8E-6 tree
2.9E-6 tree 1.6E-6 tree 2.4E-6 car 1.1E-6 tree 1.8E-6 car
2.4E-6 head 1.6E-6 person |2.1E-6 tree 1.0E-6 person 1.7E-6 person
2.0E-6 person |1.1E-6 road 1.9E-6 head 6.7E-7 road 1.1E-6 road
1.5E-6 plant 8.9E-7 plant 1.0E-6 person [5.0E-7 arm 1.0E-6 grass
1.4E-6 wheel |7.7E-7 sidewalk|1.0E-6 wheel |4.7E-7 plant 1.0E-6 plant
1.4E-6 sidewalk|7.4E-7 arm 8.0E-7 arm 4.6E-7 torso 7.6E-7 sidewalk
1.0E-6 arm 7.0E-7 leg 7.4E-7 leg 4.4E-7 leg 5.9E-7 leg
1.0E-6 leg 6.9E-7 torso 7.4E-7 torso 4.2E-7 grass 5.9E-7 arm
9.4E-7 torso 6.8E-7 wheel [6.4E-7 grass 4.1E-7 sidewalk 5.8E-7 torso
7.9E-7 grass 5.4E-7 plate 4.7E-7 plant 3.1E-7 plate 5.5E-7 wheel
5.9E-7 plate 5.3E-7 grass 2.2E-7 plate 3.1E-7 wheel 4.1E-7 plate

Table 9. A built-in bi-modality matching with GBM.




