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Abstract—The linguistic description, i.e. semantic annotation
of images can benefit from representations of useful concepts
and the links between them as ontologies. Recently, several
multimedia ontologies have been proposed in the literature as
suitable knowledge models to bridge the well known semantic
gap between low level features of image content and its
high level conceptual meaning. Nevertheless, these multimedia
ontologies are often dedicated to (or initially built for) particular
needs or a particular application. Ontology matching, defined
as the process of relating different heterogeneous models, could
be a suitable approach to solve several interoperability issues
that coexist in semantic image annotation and retrieval. In
this paper, we propose an original and generic instance-based
ontology matching approach and a methodology to extract a
minimal ontology defined as the common reference between dif-
ferent heterogeneous ontologies. Then, this approach is applied
to two dif ferent semantic image retrieval issues: the bridging
of the semantic gap by the matching of a multimedia ontology
with a common-sense knowledge ontology and the matching of
different multimedia ontologies to extract a common reference
knowledge model dedicated to several multimedia applications.

I. INTRODUCTION

The fast growth of shared digital image and video collec-
tions together with the intensive use of visual information
for decision making in many domains (as for instance
medicine or geosciences) require new effective methods to
search and retrieve in these collections. In particular, in
order to enable and to improve the communication and the
interface between humans and computers, it is necessary
to understand the semantic content of images and to build
linguistic descriptions of their content in an automatic way.
Following decades of research on Content Based Image
Retrieval (CBIR) [26], automatic image annotation is a very
active research topic which aims at automatically assign-
ing linguistic terms (semantic level) describing the visual
information depicted in images (perceptual level) [4]. As
opposed to the domain of analysis and indexing of textual
documents, the visual domain has to face the important issue
of matching human interpr etations of image information
with the numerical image signature derivable by a computer.
This issue is defined as the Semantic gap problem [26].
As suggested in [16] and [32], this problem is close to
the symbol grounding problem [11] or anchoring problem
[1], respectively addressed in A[rtificial] I[ntelligence] and
in robotics. In most of the image annotation approaches,
the computed linguistic description is often only related
to perceptual manifestations of semantics. Nevertheless, as
explained in [16], the image semantics cannot be considered
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Mathematics and Systems Laboratory (MAS), Ecole Centrale Paris, Grande
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as being included explicitly in the image itself. It rather
depends on prior knowledge and on the context of use of
the visual information. As a consequence, explicit semantics,
represented by ontologies, has been intensely used in the field
of image retrieval recently. Indeed, ontologies are c onvenient
not only to represent visual knowledge [23] but also to allow
automatic processing over the represented knowledge [2].

Another benefit of ontologies in the context of shared
digital image and video collections is that they are inter-
operable description schemes to represent, share and reason
on visual knowledge. Indeed, a lot of interoperability issues
exist in this context: (a) At the semantic level – between
different representations of the same domain knowledge; (b)
At the visual level – between different multimedia ontologies;
(c) Between the visual level and the semantic level, i.e. the
semantic gap problem. Ontology matching, that we defined
as the process of relating heterogeneous knowledge models,
can be used to solve this kind of interoperability issues.
Nevertheless, while ontology matching has been widely used
for semantic web applications, it has been rarely used in the
context of image sharing and retrieval.

In this paper, we propose an original and generic approach
based on ontology matching and on the extraction of a
minimal ontology to solve several interoperability-related
problems in the visual domain. In particular, we address the
following questions:

(1) Filling the semantic gap by matching ontologies
at the semantic level with ontologies at the visual level.

(2) Matching multiple visual ontologies in order to
extract a common reference, i.e. a common and consensual
visual model for linguistic descriptions of images.

The paper is structured in the following manner. A generic
approach for instance-based ontology matching and for the
extraction of a minimal ontology out of a set of hetero-
geneous source ontologies is suggested in Section II. The
two application-related issues, pointed above, are addressed,
respectively, in Section III-A and Section III-B with some
results showing the potential of the method. Section IV pro-
poses a brief overview of related approaches concerning both
the use of knowledge models for the linguistic description of
images and ontology matching (general and specific to the
problem of linguistic description for semantic annotation of
images). Finally, Section V summarizes and outlines open
ends.

II. PROPOSED APPROACH: ONTOLOGY MATCHING AND
MINIMAL ONTOLOGY EXTRACTION

An ontology in an AI sense is understood as a collection
of concepts and relations defined on these concepts, which
represent the knowledge in a certain domain of interest



and provide reasoning and inference mechanisms. The on-
tology matching problem stems from the fact that different
communities, independently from one another, are likely to
adopt different ontologies, given a domain of interest. In
consequence, multiple heterogeneous ontologies, describing
similar or overlapping parts of the world are created. Hetero-
geneity may occur on syntactical, terminological, conceptual
and other levels, not in isolation from one another; it can
be observed among individuals or among groups of individ-
uals. An ontology matching procedure aims at reducing this
heterogeneity by yielding assertions on the relatedness of
cross-ontology concepts, in an automatic or semi-automatic
manner. To these ends, according to [7], one commonly
relies on ex tensional (related to the concepts instances),
structural (related to the inter-ontology concepts relations),
terminological (language-related) or semantic (related to log-
ical interpretation) information, separately or in combination.

In the current section, we present an ontology matching
framework for aligning the concepts of multiple heteroge-
neous ontologies modeling intersecting domains of interest,
in order to enable their interoperability and facilitate the
interaction of human or artificial agents with these resources.
Our goal has been to make explicit the relations that hold
between the different cross-ontology concepts via a novel,
minimal ontology, defined on and relevant to the set of source
ontologies. A minimal ontology is understood in the sense
of a structure limited to what is believed to have the same
significance for the entire set of ontologies over a given
instance-set. The novel ontology results from aligning similar
concepts from the source ontologies, where the measure of
concept similarity is defined by the help of their correspond-
ing instance-sets. One may interpret the minimal ontology
as a resource providing a common vocabulary for a set of
heterogeneous vocabularies, w here the common reference is
implicitly defined through a set of concept alignments.

In the targeted application domains, the minimal multime-
dia ontology could be interpreted as the set of predominant
semantic concepts that appear in various image databases.

Although, throughout the exposition of the current section,
it has been our goal to remain as abstract as possible, we will
link the concepts to be further presented with concepts from
the visual domain by small examples (where appropriate) in
order to keep track of our eventual goal: indicate possible
applications of the ontology matching paradigm for facilitat-
ing/enabling the semantic annotation of images.

A. Populated Ontologies

The definition below, a modified version of [30], relates
structure to instances in the following manner.

Definition 1: A populated ontology is a tuple O =
{C,is_a, R, I, g}, where C is a set whose elements are
called concepts, is_a is a partial order on C, R is set of
other (binary) relations holding between the concepts from
the set C, I is a set whose elements are called instances and
g : C → 2I is an injection from the set of concepts to the
set of subsets of I.

In this formulation, a concept is intensionally defined by
its relations to other concepts via the partial order and the set
R, and extensionally by a set of instances via the mapping g.
We note that the sets C and I are compulsorily non-empty,
whereas R can be the empty set. In view of this remark, the
definition above describes a hierarchical ontology: an ontol-
ogy which, although not limited to subsumptional relations,
necessarily contains a hierarchical backbone.

The set I is a set of concept instances – text documents,
images or other (real world data) entities, representable in
the form of real-valued vectors. The injection g associates a
set of instances to every concept. By definition, the empty
set can be associated to a concept as well, hence not every
concept is expected or required to have instances. Whether
g takes inheritance via subsumption into account in defining
a concept’s instance-set (hierarchical concept instantiation,
assumed in our study) or not (non-hierarchical instantiation)
is a semantics and design-related issue [17].

In the context of semantic image annotation, ImageNet
[5] and LSCOM [27] are two examples of such populated
ontologies: concepts are the nodes of the WordNet hierarchy
in ImageNet or the LSCOM categories, while instances are
the images in the associated databases, labeled by these con-
cepts. Note that the set R is empty for the LSCOM ontology.
In the case of ImageNet, R contains several useful (Word-
Net) relations like is_a_member_of, is_a_part_of,
opposes etc.

B. Ontology Matching by Variable Selection

A concept similarity measure of some kind usually stands
in the core of an ontology matching procedure. Previous
work [31] introduces instance-based similarity measures,
which use variable selection in order to represent concepts
as sets of characteristic features. We will see (Section III)
that this representation has multiple benefits for solving the
problems pointed out in the introduction of this article.
Therefore, we proceed to explain in some detail the main
mechanisms of this approach.

Variable selection techniques in machine learning (re-
viewed in [10]) serve to rank the input variables of a
given problem (e.g. classification) by their importance for
the output (the class affiliation of an instance), according
to certain evaluation criteria. A variable selection procedure
attaches to each variable a real value – a score – which
indicates the variable’s pertinence. This can be of help for di-
mensionality reduction tasks or, as in our case, for extracting
latent input-output dependencies. Assuming that instances
are represented as real-valued vectors, a variable selection
procedure would indicate which of the vector dimensions are
most important for the separation of the instances (within a
single ontology) into those that belong to a given concept
and those that do not.

Let us consider two ontologies O1 and O2 together with
their corresponding sets of instances I1 = {i11, ..., i1m1

} and
I2 = {i21, ..., i2m2

}, assuming that all instances from both



I1 and I2 live in the same n-dimensional space1, m1 and
m2 are integers. We recall that in the visual domain these
instances are images, represented as feature vectors in one
of the ways explained in Section III-A2. For a concept A
from ontology O1, we define a labeling SA = {(i1j , yAj )},
where i1j ∈ Rn, yAj take values +1 when the corresponding
instance i1j is assigned to A, and −1 otherwise, j = 1, ...,m1.
The labels split the instances of O1 into those that belong
to the concept A (positive instances), and thos e that do not
(negative ones). Such a labeling can be acquired analogously
and independently for any concept in both input ontologies.

For two concepts of interest, A ∈ C1 and B ∈ C2,
we carry out a variable selection procedure independently
on each of their corresponding sets SA = {(i1j , yAj )},
j = 1, ...,m1 and SB = {(i2k, yBk )}, k = 1, ...,m2, and
score the variables by their importance for the respective
class separation. In consequence, the concepts A and B can
be represented by the lists of their corresponding variables
scores:

LA = (sA1 , s
A
2 , ..., s

A
n ), LB = (sB1 , s

B
2 , ..., s

B
n ), (1)

where sAi is the score assigned to the ith variable for the
concept A.

On the basis of the concept representations (1), one can
define various measures of similarity between A and B. The
k-TF measure takes the sets of variables corresponding to
the k largest elements of LA and LB and measures their
intersection on set theoretic bases. Alternatively, parameter-
free measures of statistical correlation, which act as measures
of similarity, can be computed over the ranks (integers
corresponding to the scores) or directly over the scores
associated to the variables. In the experimental part of the
paper, we have used Spearman’s measure of correlation,
given by:

simρ = 1− 6

∑
i d

2
i

n(n2 − 1)
, (2)

where di is the difference of the ranks calculated for the
ith variable for the two classes. Definitions and comparison
of the performance of several other measures on textual
instances are found in [31]. The concept representation (1)
and the ensuing similarity measures can be successfully
applied on images and we will provide methodological and
experimental support of that claim in Section III.

We assume that sim : C1×C2 → R is a measure that uses
the similarity criteria discussed above (abstracting ourselves
from a particular choice) applied on two concept sets taken
from two different source ontologies. A match-and-merge
procedure, based on the measure sim, will be defined as a
procedure M, which takes two ontologies O1 and O2 and
produces a third ontology, O, by aligning the concepts of
the smaller of the two (assuming O1) to the concepts of the
bigger one (O2). In fact, the resulting merged ontology O is
the ontology O2, enriched with links to the concepts from

1In the sequel, when using the term instance, we will be referring to the
instance’s representation in that space.

Fig. 1. An example with three source ontologies.

O1. The concepts of O use as names the set of names of the
concepts from the ontologies O1 and O2, which form them.
Thus, the links between the two source ontologies via the
merged ontology are made explicit.

To indicate that the procedure described above is applied
on two input ontologies O1 and O2 resulting in an output
ontology O, we will use the denotation M(O1, O2) = O.

C. Extraction of a Minimal Ontology

We will focus on the problem of defining a common
reference for a set of heterogeneous ontologies, which are
assumed to be extensionally similar, to a certain extent.

Let Ω = {O1, ..., ON} be a set of source ontologies.
Following definition 1, every ontology Oi ∈ Ω, i = 1, ..., N,
is defined as a pentuple Oi = {Ci,is_a, Ri, Ii, gi}. We
assume that there exists a non-empty intersection of the
instance-sets of the source ontologies , i.e.

⋂N
i=1 Ii 6= ∅ and

let
⋂N
i=1 Ii = Imin. The term intersection is not understood

in the classical sense of a strict intersection, but rather in the
sense of a definition, specific for the type of instances (in
the case of images, we consider the definition introduced
in Section III-B). We will define a sub-ontology of each
member of Ω which is based on the instance set Imin.

Definition 2: A minimal set of concepts for an ontology
Oi corresponding to the instance-set Imin is defined as the set
Cmini = {Aj |Aj ∈ Ci, gi(Aj) ∩ Imin 6= ∅, j = 1, ...,Mi},
where Mi is the cardinality of the concept set of Oi. A sub-
ontology of Oi, based on Imin will be defined as

Osubi = {Cmini ,is_a, Rmini , g∗i , Imin},

where is_a is a partial order on Cmini , Rmini =
{(Ak, Al) ∈ Ri|Ak, Al ∈ Cmini ,∀k, l = 1, ...,Mi} and g∗i
maps a concepts Aj to the intersection of its instance set
with Imin, i.e. g∗i (Aj) = gi(Aj) ∩ Imin.

We emphasize two implications of the definition above:
(1) a concept from Oi will be included in the ontology Osubi

not only when all of its instances are from Imin, but when
at least some of them are; (2) the concepts from Osubi are
extensionally redefined (as compared to the same concepts
in Oi) by removing from their extensions all the instances
that have failed to belong to Imin. The latter is an important



Fig. 2. Intersection of 4 sets (a) and their corresponding WIG (b).

Fig. 3. Intersection of 6 sets (a) and their corresponding WIG (b) (the
weights are chosen arbitrarily).

step towards removing “noisy” instances which, if kept, may
lead to flawed similarity values in the matching procedure
described in the previous section (applied in the sequel for
the extraction of the minimal ontology).

Given these assumptions, we will discuss a possible ap-
proach to define an ontology which is extensionally based
on the instance-set Imin, and intensionally on the set of
concepts from the ontologies Ω′, called a minimal ontology
of Ω, denoted Omin(Ω) (see Fig. 1 for an illustration).

In order to construct an ontology out of a set of existing
ontologies, we need to identify the similarities between their
elements. In that sense, the problem amounts to a multiple-
ontology matching task. Given the set Ω′, containing a
priori different ontologies, all based on one and the same
set of instances, the resulting minimal ontology should be
extensionally based entirely and exhaustively on this set. In
intensional terms, our aim will be to preserve as much of
the overall conceptual richness of the set Ω′ as possible.
Therefore, a leading design principle will be to keep the
concept-set cardinality of the new ontology not lower than
the cardinality of the largest ontology from Ω′. Hence our
objective to create a minimal ontology with regard to the set
Ω and maximal with regard to the set Ω′.

We make the convention that by ontology cardinality
we will mean the cardinality of the ontology’s concept-
set and let the cardinality of Osubi ∈ Ω′ be Msub

i . Let
{Osubξ(1), O

sub
ξ(2), ..., O

sub
ξ(N)} be the set of sub-ontologies, or-

dered by their respective cardinalities, where ξ is a permu-
tation on the set of ontology indexes such that Msub

ξ(1) >

Msub
ξ(2) > ... > Msub

ξ(N).
The procedure consists in performing multiple binary

matches by recursively aligning and merging the two largest
ontologies from the set Ω′. In algorithmic terms, that
means to assign Omin := Osubσ(1) and perform Omin :=

M(Omin, O
sub
σ(j)),∀j = 2, ..., N, where M is a match and

merge procedure defined in Section II-B. In N match-and-
merge steps, we end up with the ontology Omin. As specified

in Section II-B, every node of Omin contains references to
the names of all corresponding concepts from the source
ontologies which have been merged into it, in the form of
a list of concept names. The hierarchical links inside Omin
indicate how these sets of corresponding concepts are related.
In terms of application, the formulation above is intended
to provide explicit links between different (types of) image
annotations taking into account conceptual inheritance in a
manner specified in detail in Section III.

D. Deciding on Imin by the Help of a WIG

As we have seen in the previous sub-section, the quantity
Imin plays a key role in the definition of the minimal
ontology of Ω. In the discussion above and as shown in Fig.
1, we have assumed that the sets Ii are of approximately the
same cardinalities and Imin approximately equals the pair-
wise intersection of any two of the sets. This describes the
unlikely case when the “contribution” of each of the sets to
Imin is equal. To handle more general cases, like the one
depicted in Figure 2a, we introduce the notion of a weighted
intersection graph.

Definition 3: A weighted intersection graph (WIG) cor-
responding to the family of instance-sets I = {I1, ..., IN} is
a graph G(I, E, p), where the set I forms the set of vertices
of G, E = {{Ii, Ij}|Ii ∩ Ij 6= ∅},∀i, j = 1, ..., N is a set of
arcs, and p : E → R is a function which assigns to each arc
{Ii, Ij} a weight, pij .

An example with four sets is shown in Fig. 2b. The weights
pij are intended to quantify the closeness of two intersecting
sets of instances. This can be done in terms of (1) the distance
of the two populations in a semantic or an euclidean space,
pij = dist(Ii, Ij); or (2) the size of their intersection2, pij =
|Ii∩Ij |
|Ii∪Ij | .

The formulation above allows the user to navigate through
the WIG corresponding to the instance sets of her ontologies
and decide which sets and respective ontologies should be
taken into account in the definition of the set Imin, the basis
for the construction of the minimal ontology. In a certain
sense, the WIG representation ensures that no important
concepts from the source ontologies are felt out from the
definition of the minimal ontology. The advantage of using
a WIG, is that it allows to detect and use the structure of the
family of instance-sets and the contribution of each set to
a potential choice of Imin. Several indicators of the degree
of importance of an instance set Ii might be helpful as, for
instance, the order of every WIG-node, defined as the number
of arcs stemming from that node, the sum of the weights
of these arcs, or a weighted sum of the two, allowing to
give more importance to either the number of ontologies to
which a certain set is connected, or the strength of these
connections.

As a final remark, we note that there need not necessarily
exist a pair-wise intersection between any two instance-sets
(see for example the sets and the corresponding WIG in Fig.

2We recall the reader that by intersection is meant an instance-specific
quantity, defined for the goals of our application in Section III-B.



3). It might be the case that there exist several concentrations
of intersections, or modules of similarity, of equal impor-
tance, which will be readily indicated by the WIG. This can
lead to the definition of the set Imin as the union of several
disjoint sets (what we had just called similarity modules). In
order to create a minimal ontology on this minimal instance-
set, we suggest to apply the algorithm described in Section
II-C separately on each similarity module. The connections
of the different modules are made available again through
the WIG representation.

III. APPLICATION TO SEMANTIC IMAGE ANNOTATION

Over the last five years, many multimedia concept on-
tologies3 (or more precisely lexica) have been proposed to
assist multimedia search and retrieval by providing an effec-
tive representation and interpretation of multimedia concepts
[28], [27]. These ontologies are also critical resources for
the navigation and the exploration of large multimedia col-
lections [8]. They can be classified into three major groups:
(1) visual concept hierarchy (or network) inferred from inter-
concept visual similarity contexts (e.g. VCNet based on
Flickr Distance [36] and the Topic Network of Fan [9]), (2)
specific multimedia lexicons often composed of a hierarchy
of semantic concepts with associated visual concept detecto
rs used to describe and to detect automatically the seman-
tic concepts of multimedia documents (e.g. LSCOM [27],
multimedia thesaurus [28]) and (3) generic ontologies based
on existing semantic concept hierarchies, such as WordNet,
populated with annotated images or multimedia documents
(e.g. ImageNet [5] and LabelMe [25]). In the following, we
propose to use the ontology matching framework presented
in Section II to:
• fill the semantic gap by the alignment of multimedia

ontologies (second group) with ontologies with high
level semantics (third group);

• extract a common reference and study the coherency
and the specificity between the different multimedia
ontologies.

A. Filling the Semantic Gap

1) Problem Statement: As introduced in Section I, the
semantic gap problem implies challenging issues in the field
of image retrieval and annotation, among which the building
of robust high level concept detectors, of user oriented
annotations, and, globally, image annotations with high level
semantics.

In this section, we propose an approach to fill the semantic
gap by mapping two complementary ontologies: a visual
thesaurus and a semantic thesaurus. Contrary to [28] which
proposed such a mapping in a manual way, our approach is
automatic and generic (not dependent on the ontologies) and
based on visual knowledge about the instances.

As a first ontology, we chose LSCOM [27] – a resource
dedicated to multimedia annotation. It was initially built in

3In this paper, we do not consider work on semantic web multimedia on-
tologies (i.e. MPEG-7 based ontologies). A good review of these ontologies
can be found in [3]

the framework of TRECVID4, with the following criteria:
concept usefulness, concept observability, and feasibility
of concept automatic detection. A subset of the LSCOM
hierarchy, containing 450 semantic concepts, is populated by
the development set of TRECVID 2005 videos, and thus is
coherent with the requirements of our approach (c.f. Section
II-A).

As a second ontology, we use a subset of WordNet [24]
populated with the LabelMe dataset [25] containing 3676
concepts.

Applying our matching approach to automatically link
these two ontologies allows to tackle several problems in
automatic semantic annotation of images, such as: (1) the
semantic enrichment of concepts belonging to a multimedia
ontology with high level linguistic concepts from a general
and common sense knowledge base; (2) the evaluation of the
quality of the baseline concept detectors by studying the co-
herency between concepts whose semantics is related to their
perceptual manifestations and concepts whose semantics is
related to common sense.

2) Methodology: In our setting, the instances that ex-
tensionally define a concept are images whose annotations
contain the name associated to that concept. Choosing an
appropriate image representation is, therefore, crucial for our
approach. We consider the following options:

1) a bag-of-words vector representation (e.g. tags, meta-
data, keyword-based annotations);

2) a vector of descriptors (e.g. MPEG-7 descriptors, bag-
of-features);

3) a vector built with the responses of each image to
a set of baseline detectors (e.g. Columbia374 [37],
Mediamill [29] and VIREO-374 [19]).

These image representations are not equal in expressive-
ness. The bag-of-words model does not allow to benefit from
the visual content of images. For the second option, we
can use a codebook built on a bag-of-features model and
histograms of codewords – nowadays the best approach in
the state-of-the-art [19]. The last option assumes we have a
bank of visual detectors built for instance with the bag-of-
words approach and can be seen as a combination of the first
two. The detectors used to build the image signature are not
mandatorily linked to real semantics (i.e. do not correspond
to a concrete object), but, to be efficient, they have to be able
to properly discriminate the concepts in O1 and O2.

Section II-B gives instructions on how to compute a simi-
larity measure sim : C1×C2 → R for two concepts A ∈ O1

and B ∈ O2 by using concept representations based on
variables scores (see eq. (1)). To obtain these representations,
we need to compute a score per variable and per concept.
Considering as variables either words (representation 1),
descriptors (representation 2), or detectors (representation 3)
allows us to apply the generic variable selection approach
described above. To score the variables for a concept A, an
SVM is learned on the binary classification training set SA

4http://www-nlpir.nist.gov/projects/tv2005/



(defined in Section II-B), evaluating the capacity of every
variable to discriminate the concept A from all the other
concepts of its ontology. As an evaluation criterion we use
the variation of the VC-dimension parameter per classifier
proposed and tested in [31]. The advantage of using this
approach is that it allows us to trace back the most important
variables (words, codewords from a codebook model or
detectors form a set of baseline detectors) that characterize
a concept.

The rest of the methodology described in Section II-B
is directly applied to get the resulting mappings between
LSCOM concepts and WordNet concepts. These alignments
can be used to produce a linguistic description of LSCOM
concepts (dedicated to the multimedia document annotation)
in the vocabulary of WordNet (a lexical ontology). This
improves the retrieval process in several ways: (1) through
query expansion and reformulation, i.e. retrieving documents
annotated with concepts from an ontology O1 using a query
composed of concepts of an ontology O2, (2) through a better
description of the documents in the indexing process.

Contrary to [28], our mapping is done in an automatic and
visual manner. An enrichment of the annotations (i.e. adding
the linguistic description derived from the knowledge of what
is a LSCOM concept in the WordNet ontology) is achieved via
an ontology which has a rich semantic structure (we benefit
from all the semantic relations in WordNet, like hypernymy,
meronymy, antonymy). Furthermore, considering a step of
annotation refinement, the annotation coherency assessment
when considering the annotation in its integrity (rather than
assessing the relevance of each concept of the annotation
one by one) also benefits from the rich semantic structure of
WordNet [18].

3) Preliminary Experimental Results: We provide a low-
scale evaluation of the suggested matching approach. We
chose three concepts from the LSCOM ontology and five
concepts from WordNet, respecting several criteria. In the
first place, we selected concepts with more than 500 as-
sociated instances. For WordNet only, we chose concepts
for which we know that distinct visual features (in our case
features from the bag-of-features model) are able to discrim-
inate them. Finally, we verified that we have no semantic
ambiguity among the chosen concepts in our dataset.

To construct image features, we use a bag-of-features
model with a visual codebook (representation 2). The visual
codebook is built classically with a K-Means algorithm. The
quantification of the extracted SIFT features was investigated
in two ways: the building of the codebook is done

1) over all the instances associated to the selected con-
cepts (LSCOM and LabelMe),

2) only over the LabelMe images and a quantification per
concept.

The latter is intuitively consistent, because the LabelMe
dataset is a sufficiently generic collection of photographs
which enables us to properly represent objects from both on-
tologies. The two experimentations gave very similar results;
the results of the experiment based on the first codebook are

TABLE I
LSCOM/TRECVID2005 AGAINST WORDNET/LABELME: AUTOMATIC

CONCEPT MAPPINGS (ABOVE) VS. MANUAL ANNOTATIONS (BELOW).

Concept Names Man Car Boat TV House

Natural Disasters 0.37 0.15 -0.33 0.12 0.44

US Flags 0.21 0.09 0.01 0.05 0.05

Single Family Homes 0.20 0.18 -0.36 0.13 0.41

Natural Disasters 103 51 4 0 73

US Flags 434 16 0 2 28

Single Family Homes 205 73 1 0 184

(a) (b)

Fig. 4. Two LSCOM images annotated by LSCOM:Natural Disasters, that
can be also effectively annotated by WordNet:Man and WordNet:House

resumed in Table I along with manual annotations of LSCOM
instances by WordNet concepts.

We have tested all four similarity measures suggested
in [31], all of them yielding competitive outcomes. The
results presented here are achieved by using Spearman’s
correlation coefficient (see eq. (2)). The values in the
first matrix, therefore, indicate high similarity for positive
values and low similarity for non-positive ones. As
we can see, the results are coherent with the data and
the sense of the LSCOM concepts. For instance, the
concept WordNet:TV is weakly correlated to the chosen
LSCOM concepts, and the concept WordNet:House
is highly correlated with LSCOM:Natural Disasters
and LSCOM:Single Familly Homes but not with
LSCOM:US Flags. This is coherent with the TRECVID2005
data considering that the images annotated with
LSCOM:US Flags are mostly images from speeches
of politicians during presidential elections.

In terms of improving the retrieval process, consider-
ing our results, we can say that the images annotated by
LSCOM:Natural Disasters could also be queried and anno-
tated (after validation in the image) by the LabelMe concepts
WordNet:Man and WordNet:House (Fig. 4).

B. Exploring the Dependencies and Specificities of Various
Multimedia Ontologies through Ontology Matching

1) Problem statement: The development of multimedia
thesauri and lexicons has generated many open issues related
to concept usefulness and concept selection. Many experi-
mental studies have been carried to partially answer these
questions [12]. Recently, some authors proposed to build a



lexicon based on concepts with small semantic gaps [22].
Many approaches have also been proposed to study and to
exploit inter-concept relationships but mainly in the same
ontology [21], [35]. To the best of our knowledge, there is
no work dealing with the relationships of concepts between
different multimedia ontologies. We propose to study the
potential of a WIG representation (introduced in Section
II-D) both to build explicit closeness relationships between
different multimedia ontologies and to extract a minimal
multimedia ontology. This ontology can be defined as the
set of core concepts for concept-based multimedia retrieval
according to the considered collections.

Extracting a minimal ontology from Ω, a set of hetero-
geneous ontologies (which may contain ontologies of the
group (1), (2) or (3) as categorized in the introduction of
this section), has many benefits in multimedia indexing. On
one hand, a minimal ontology offers the possibility to build
an index over annotations written with concepts which share
semantics from heterogeneous ontologies, and to make links
between ontologies like in [28] or in [14] in an automatic
way. On the other hand, the minimal ontology also allows to
assess the generality and the specificity of the ontologies.

The method proposed in Section II-C can be directly
applied to semantic image annotation; the one point which
remains to explicate is the construction of Imin.

2) Computing Imin: We can expect that, regardless of
the image representation, we cannot get exactly the same
descriptor values from different instances (that belong to
different ontologies) although they share the same concept.
Thus, computing Imin imposes to use a similarity function
and to set a threshold parameter for deciding if the similarity
between two instances i11 ∈ O1 and i21 ∈ O2 is high enough
for considering {i11, i21} ∈ I1∩ I2. Therefore, the presence of
an instance i in Imin represents an agreement between the
different ontologies, i.e. i is not strongly isolated in the image
representation space, but rather close to instances belonging
to the other ontologies.

Imin = ∅
foreach k ∈ [1, ..., N ] do

foreach (i, j)|i ∈ Ik, j ∈ I \ Ik, j ∈ kdtree(i, thr)
do

Imin ← Imin ∪ {i} ∪ {j}
end

end
Algorithm 1: k iterates over all the considered ontologies,
Ik is the set of instances of the ontology Ok. The procedure
kdtree(i, thr) retrieves all the instances contained in a
hypersphere of radius thr (empirically set) centered in i.

Depending on the image representation, manipulating the
concept instances can lead to working on observations in
high dimensional spaces, not necessarily well sampled, where
computing Imin could become prohibitive5. In our low-

5Considering the first image representation introduced in Section III-A2,
computing Imin can be performed easily since instances are represented
by bag-of-words.

scale application scenario, this is achieved by using instances
indexed in a kd-tree and a nearest neighbor search, as
presented in Alg. 1.

IV. RELATED WORK

In the past few years, concept-based multimedia retrieval
has been a very active research field with a major effort
in the automatic detection of semantic concepts from low
level features with machine learning approaches. Despite
these various efforts, the semantic gap problem is still an
important open issue for the semantic understanding of
multimedia documents. Recently, many knowledge models
have been proposed to improve multimedia retrieval and to
take into account the different relationships between semantic
concepts in the processing. In [2] and [15], formal models
of application domain knowledge are used, through fuzzy
description logics, to help and to guide semantic image
analysis. Prior knowledge on structured visual knowledge
represented by an And-or graph (stochastic grammars) has
been proved to be very useful in the context of image parsing
or scene recognition in images [39]. While these different
models ar e highly integrated in multimedia processing, their
main drawback is that they are specific to the application
domain. On the contrary, recently, many generic large scale
multimedia ontologies or multimedia concept lexicons (see
Section III), together with image collections have been pro-
posed, mainly in the context of semantic concept detection
and automatic multimedia annotation. These ontologies have
proved to be very useful in this context but many problems
still remain among which the automatic mapping of visual
concepts to high level concepts, the selection strategies of the
different concepts according to different criteria: their use-
fulness [13], their visual discriminative power [38], and the
consideration of inter-concept relationships in the processing
[34], [8].

The paper proposes to address these problems by an on-
tology matching method and an extraction of a minimal on-
tology. An important part of the existing ontology matching
approaches, including ours, are characterized as extensional,
i.e. grounded in the external world, relying on instances in
order to judge concept similarity [6] [30] [17]. The procedure
for minimal ontology extraction that we suggest is much in
line with module extraction research, defined as the problem
of finding, given a certain sub-vocabulary of an ontology,
a minimal sub-structure within that ontology that provides
the same description of the relationships holding between
terms over the sub-vocabulary as the whole ontology [20],
[33]. In contrast to related approaches, we base the extraction
of the minimal structure on the existence of an extensional
agreement of multiple source ontologies.

V. CONCLUSION AND OPEN ENDS

We have proposed directions for the application of ontol-
ogy matching techniques to solve different interoperability
issues in the area of semantic image annotation and retrieval.
In particular, we have addressed two main problems: (1)
bridging the semantic gap and (2) extracting a common



reference model for a set of multimedia ontologies. For
solving problem (1), we have proposed to apply a generic
instance-based ontology matching procedure (developed in a
previous study) in order to produce concept-based annota-
tions enriched with lexical descriptions on the concepts, also
meant to improve indexing and retrieval. A novel multiple
ontology alignment framework has been suggested to solve
problem (2).

Many important problems still need to be addressed like,
for instance, populating each ontology with existing or built
image datasets6, deciding on an appropriate representation
of the instances, solving various complexity issues in the
matching process related to the number of concepts and
instances in the targeted ontologies. Although our prelim-
inary experimental results are encouraging, the work of
implementing and evaluating the propositions of this paper
on a larger scale is still in progress.
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