
Large Scale Instance Matching via Multiple Indexes and
Candidate Selection

Juanzi Lia, Zhichun Wanga,b,∗, Xiao Zhanga, Jie Tanga

aDepartment of Computer Science and Technology, Tsinghua University, Beijing, China
bCollege of Information Science and Technology, Beijing Normal University, Beijing, China

Abstract

Instance Matching aims to discover the linkage between different descriptions of real objects
across heterogeneous data sources. With the rapid development of Semantic Web, especially of
the linked data, automatically instance matching has been become the fundamental issue for on-
tological data sharing and integration. Instances in the ontologies are often in large scale, which
contains millions of, or even hundreds of millions objects. Directly applying previous schema
level ontology matching methods is infeasible. In this paper, we systematically investigate the
characteristics of instance matching, and then propose a scalable and efficient instance matching
approach named VMI. VMI generates multiple vectors for different kinds of information con-
tained in the ontology instances, and uses a set of inverted indexes based rules to get the primary
matching candidates. Then it employs user customized property values to further eliminate the
incorrect matchings. Finally the similarities of matching candidates are computed as the inte-
grated vector distances and the matching results are extracted. Experiments on instance track
from OAEI 2009 and OAEI 2010 show that the proposed method achieves better effectiveness
and efficiency (a speedup of more than 100 times and a bit better performance (+3.0 to 5.0% in
terms of F1-score) than top performer RiMOM on most of the datasets. Experiments on Linked
MDB and DBpedia show that VMI can obtain comparable results with the SILK system (about
26,000 results with good quality).

Keywords: semantic web, instance matching, ontology matching, linked data.

1. Introduction

Ontology is one of the key components to realize the Semantic Web. With the rapid de-
velopment of the Social Web, a lot of ontologies especially lightweight ontologies have been
widely used, and a huge number of instances were annotated according to the ontologies. For
example, the FOAF vocabulary (schema) is comprised of 13 classes and 60 properties while
LiveJournal website alone provides approximately 15,000,000 FOAF profiles (instances). The
DBpedia ontology, which covers 273 classes described by 1,300 different properties, contains
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about 1,600,000 instances. GeoNames provides RDF descriptions of more than 6,500,000 geo-
graphical features worldwide. The Linking Open Data (LOD) project already has a data set of
more than 4.7 billion RDF triples and around 142 million RDF links between instances [6].

As the number of published ontologies grows, a increasing number of ontology-based ap-
plications have also been proposed, such as Question Answering [14], Query Expansion [28],
Knowledge Support [1] and Web Services [26]. The rapid usage of ontologies arises the on-
tology heterogeneity problem. In the last decade, ontology matching has been widely studied
as the key technology to reach interoperability over ontologies [20, 8, 24]. Traditionally, ontol-
ogy matching approaches focus on finding semantic correspondences between complex ontology
schemas. Recently, as the number of ontology instances grows rapidly, the problem of instance
matching attracts increasingly more research interest [35]. The yearly ontology matching com-
petition OAEI (Ontology Alignment Evaluation Initiative)1 has set up instance matching cam-
paigns since 2009. Several systems, such as RiMOM [36], HMatch [7], and FBEM [30], have
participated in the instance matching tasks of OAEI. The problem of instance matching involves
handling large number of instances, which raise new challenges: 1) How to deal with large scale
input? Shvaiko and Enzuenat [29] point out that the scalability is important for ontology match-
ing approaches. Widely used matching techniques such as Edit Distance [15], KNN [16], Google
Distance [12] will take much running time when applied to large number of instances. Suppose
we apply the Edit Distance, one of the most efficient similarity metrics, to match two ontologies
with 1,000,000 instances. Even on a server with 32 Gigabyte memory and 3.2 GHz CPU, the
running time of calculating all the potential matches will be up to 2 days. 2) How to trade off

between precision and recall? Most approaches use strict measures to find matching results with
very high precision but only a very small part of the potential matches are obtained. By inves-
tigating information contained in ontology instances, we observe that there are several different
characteristics of instance matching compared with the traditional ontology matching in schema
level. Firstly, instance data is usually with large scale. Secondly, instance data contains devious
semantic information. Usually concepts and properties in ontology schema are described with
labels and comments. However, for instances or individuals in an ontology, every property is
given a specific value and represented in various ways. For example, the e-mail address of a
person, the ISBN number of a book, the DNA sequence of a gene is consisted of a large number
of different values of validated types. It is difficult to take full advantages of the information.
Thirdly, the concepts and properties in the ontology schema construct a connected graph struc-
ture. The ontology can be viewed as a whole ontology graph and some graph-based algorithms
are employed in ontology matching. However, a concept may have lots of instances and all the
instances are with almost the same structure. The graph algorithm with the whole ontology graph
is not suitable for the instance matching task.

To address the above two challenges, we propose a large scale instance matching method
(named VMI) by using multiple indexes and candidate selection. VMI aims at matching large
scale instance datasets efficiently and generates as many matching results as possible with high
quality. In particular, VMI uses the vector space model to represent instances’ descriptive in-
formation. VMI creates two types of vectors for each instance, one for names and labels of the
instance and the other for descriptive information and information from neighboring instances.
We build inverted indexes for these types of vectors and select matching candidates according to
the indexes. In this way, VMI is able to avoid pair-wise comparison and reduces the matching

1http://oaei.ontologymatching.org/
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space greatly so that the matching efficiency can be improved. Then VMI compares the value
pairs from user specified properties to filter the primary candidates and improve the precision.
Experimental results on the datasets from the Instance Matching track of OAEI 2009 and OAEI
2010 show that VMI is much faster than existing methods (100 times faster than the participants)
while achieves better (+3.0-5.0% in terms of F1-score on most of datasets) accuracy performance
than the top performer RiMOM. Experimental results on LinkedMDB and DBpedia dataset show
that VMI can generate matching results with almost the same amount and quality as ones from
the SILK system [33].

Contributions of this work can be summarized as:

• We formally define the problem of large scale instance matching.

• We propose an efficient and accurate instance matching method by using the inverted in-
dexing and candidate matching selection rules.

• We validate the proposed VMI approach on three datasets from the Instance Matching
track of OAEI 2009 and 2010 as well as datasets from Linked Open Data. Experimental
results show that VMI can achieve a more than 100× speedup than the best performer in
OAEI 2009 and a comparable precision and recall performance with the prevalent SILK
system.

The rest of this paper is organized as follows. In section 2, some related work are summa-
rized. In section 3, we give some preliminary and definitions. In section 4, we show an overview
of VMI algorithm and a detailed presentation of VMI is given in section 5. Experimental results
are illustrated in section 6 with discussions. Finally, conclusion and future work are given in
section 7.

2. Related Work

There has been already several approaches dealing with the instance matching problem. Most
of them focus on achieving high precision and recall, the problem of matching large scale in-
stances has not been well studied. We summarize some of these methods and systems compare
them with our proposed approach VMI.

COMA++ [3] is an schema and ontology matching tool utilizing a composite approach to
combine different match algorithms. In the enhanced eversion of COMA++, it uses two meth-
ods to matching instances [10]: one is the content-based similarity, the other is constraint-based
similarity. COMA++ needs to compare all the instances between two ontologies, and it also
uses a similarity propagation algorithm to transfer similarities from instances to their surround-
ing ontology elements. Our approach generates a virtual document for each instance to include
its neighboring information, and computes the similarity by using Vector Space Model; it is more
efficient than the iterative similarity propagation. Furthermore, our approach selects the match-
ing candidates based on two inverted indexes, it does not need to compare all the instance pairs.
HMatch [7] is a ontology matching suite which provides a component for instance matching. In
HMatch, each instance is represented as a tree where role fillers are nodes and roles are labeled
edges. Matching is performed by traversing the instances trees of the two instance in postorder,
and recursively executing filler similarity. Filler similarities of different properties are combined
by weighted averaging with manually weights. RiMOM [31][21] uses a systematic approach to
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quantitatively estimate the similarity characteristics for each matching task and employs a strat-
egy selection method to automatically combine the matching strategies based on two estimated
factors. For instance matching, RiMOM chooses some data-type properties as the ”necessary”
and ”sufficient” attributes manually. ”sufficient” attributes are use to find the initial alignment
while the ”necessary” attributes for refinement, and a similarity propagation is employed in the
last step. DSSim[23] is an ontology mapping system used with a multi-agent ontology map-
ping framework in the context of question answering. In order to improve the matching quality,
it incorporates the Dempster Shafer theory of evidence into the mapping process. DSSim as-
sesses similarity of all the entities from two different ontologiesthe belief combination process
of DSSim is also computationally expensive. Therefore, DSSim employs an multi-agent ar-
chitecture to enable distributed execution of the approach. Our approach uses inverted indexes
to select matching candidates, therefore reduces the computation time; it is different from the
distributed execution of DSSim that needs multiple machines. FBEM[30] is a feature based in-
stance matching system. It does not need any kind of schema or strong typing information of
the instances. FBEM supports a complete generic way to match instances. Given two instances,
FBEM first computes the Levenstein similarity between all the features of them, and then calcu-
lates the combined similarity score by summing all the maximum similarity feature combinations
between two instances. FBEM also implemented a ”brute-force” matching, similarity of any in-
stance pairs need to be computed to get the matching results. Being different from FBEM, our
approach allows users to specify instance types and important properties to improve the accuracy
and efficiency of VMI. SILK [33] is a link discovery engine which automatically finds RDF links
between datasets. Users should specify which type of RDF links should be discovered between
the data sources as well as which conditions data items must fulfill in order to be interlinked.
These link conditions can apply different similarity metrics to multiple properties of an entity or
related entities that are addressed using a path-based selector language. The resulting similarity
scores can be combined using various similarity aggregation functions.

Comparing with the above approaches, VMI shows several advantages. Firstly, it is an
generic instance matching algorithm while some of these works are customized for specific
domains and schemas. Secondly, instead of simple string comparison on names and property
values, it makes more comprehensive use of instance information. Thirdly, with the help of mul-
tiple indexes and candidate selection rules, VMI is more scalable than these systems, especially
on instance matching.

Some other closely related work can be divided into two groups, ontology schema matching
and data integration. We also briefly reviewed some of these work as follows:

Schema Matching ASMOV [19] is a novel algorithm that uses lexical and structural charac-
teristics of two ontologies to iteratively calculate a similarity measure between them, derives an
alignment, and then verifies it to ensure that it does not contain semantic inconsistencies. Wang
et al. [34] compute instance similarity by annotations first and use Markov Random Fields as
classifier to generate concept mappings. Hu et al. [18] uses a structure-base partitioning algo-
rithm to partition ontology into clusters and construct blocks by assigning RDF sentences to those
clusters. Two matchers, V-Doc and GMO are employed to discover alignments between selected
block candidates. PRIOR+[22] also uses vector space model to generate linguistic and struc-
tural similarity for schema entities. It aggregates the similarities with an adaptive method based
on their harmonies and then activate a neural network to search for a solution that can satisfy
schema constraints. iMatch [2] employs Markov networks for schema matching. It constructs
the network with relations between concepts of the schema to perform probabilistic reasoning
and generate one to one alignments.
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Data Integration Instance Matching task is also known as identity recognition, object con-
solidation, or record linkage in the databases world. Bilke et.al[5] detects duplicates from differ-
ent data sources to align schemas. They compute the tuple similarity using Vector Space Model
, use the Whirl algorithm to calculate the upper bounds for each tuple of one database, and re-
fine these bounds by combining those tuples with promising tuples of the other database. Then
duplicates are detected by their similar attribute tuples. Hogan et.al[17] propose a method for
performing large-scale object consolidation to merge identifiers of equivalent instances occurring
across data sources. The algorithm is based on the analysis of defined inverse functional prop-
erties: properties which have values unique to an instance. Probabilistic models and machine
learning techniques are also widely employed in duplicate detection[11, 4, 32]. Elmagarmid
et.al gives an comprehensive survey on this research area in [9].

3. Preliminaries and Definitions

In this section, we define the problem of instance matching and then analyze the information
that can be used in instance matching. An ontology is a formal, explicit specification of a shared
conceptualization [13][25]. Currently there are many formal representations of ontology, we
choose the following one, which describes ontology as a 6-tuple.

Definition 1. An ontology is a 6-tuple O = {C, P,HC ,HP, AO, I}, where C and P are the sets of
classes and properties respectively. HC defines the hierarchical relationships between classes.
HC ⊂ C × C . (ci, c j) denotes that class ci is the subclass of class c j. Similarly, HP defines the
hierarchical relationships between each property and its subproperties, HP ⊂ P × P. AO is a set
of axioms. I is a set of instances of classes. We call concepts, properties and instances entities in
ontologies.

<owl:Class rdf:about="http://dbpedia.org/ontology/Film">
<rdfs:label xml:lang="en">Film</rdfs:label>
<rdfs:subClassOf rdf:resource="http://dbpedia.org/ontology/Work"/>

</owl:Class>
<owl:DatatypeProperty rdf:about="http://dbpedia.org/ontology/imdbid">
<rdfs:label xml:lang="en">imdbId</rdfs:label>
<rdfs:domain rdf:resource="http://dbpedia.org/ontology/Film"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:ObjectProperty rdf:about="http://dbpedia.org/ontology/starring">
<rdfs:label xml:lang="en">starring</rdfs:label>
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:class rdf:about="Film"/>
<owl:class rdf:about="TelevisionShow"/>
<owl:class rdf:about="FilmFestival">

</owl:unionOf>
</owl:Class>

</rdfs:domain>
</owl:ObjectProperty>
<rdf:Description rdf:about="http://dbpedia.org/resource/Star_Wars:The_Clone_Wars_%28film%29">
<rdf:type rdf:resource="http://dbpedia.org/resource/Film"/>
<foaf:name>Star Wars: The Clone Wars</foaf:name>
<dbpedia:imdbid>1185834</dbpedia:imdbid>
<dbpedia:starring rdf:resource="http://dbpedia.org/resource/Matt_Lanter"/>
<dbpedia:starring rdf:resource="http://dbpedia.org/resource/James_Arnole_Taylor"/>
<dbpedia:producer rdf:resource="http://dbpedia.org/resource/George_Lucas"/>
<rdfs:comment>Star Wars: The Clone Wars is a 2008 CGI animated science fiction/action film

that takes place within the Star Wars saga, leading into the TV series of the same
name.</rdfs:comment>

</rdf:Description>

Fig. 1. Snnipet of the DBpedia Ontology in OWL

class cj. Similarly, HP defines the hierarchical relationships between each prop-
erty and its subproperties, HP ⊂ P × P . AO is a set of axioms. I is a set of
instances of classes.

Figure 1 is a snippet from the DBpedia Ontology in OWL. We have following
information in it:

– “Film” is a class and it is a subclass of “Work”;

– “imdbid” is a datatype property. It has the domain of “Film” and the range
of “xmls:string”;

– “starring” is a object property. Its domain is the combination of three classes
“Film”, “TelevisionShow” and “FilmFestival”;

– “Star Wars:The Clone Wars%28film%29” is an instance of “Film”. Its value
of property “imdbid” is “1185834”. Its values of property “starring” are two
other instances “Matt Latner” and “James Arnold Taylor”.

Although ontology aims to make web data sharable, ontologies themselves are
heterogeneous and distrbuted. When trying to interoperate data under different
ontologies, it is neccessary to find the matchings among these ontologies. We can
define the problem of Ontology Matching as:

Figure 1: Snippet of the DBpedia Ontology in OWL
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Figure 1 is a snippet from the DBpedia Ontology in OWL. We have the following information
in it:

• Film is a class and it is a subclass of Work;

• imdbid is a datatype property. It has the domain of Film and the range of xmls:string;

• starring is a object property. Its domain is the combination of three classes Film, Televi-
sionShow and FilmFestival;

• Star Wars:The Clone Wars(film) is an instance of Film. Its value of property imdbid is
1185834. Its values of property starring are two other instances Matt Latner and James Arnold Taylor.

Although ontology aims to make web data sharable, ontologies themselves are heterogeneous
and distributed. When trying to interoperate data under different ontologies, it is necessary to find
the matchings among these ontologies. We define the problem of Ontology Matching as:

Definition 2. Given two input ontologies Os and Ot, an ontology matching task is defined to find
corresponding entities in Ot for each entity in Os. Os is called the source ontology and Ot is
called the target ontology. The matching results can be represented as:

Align(Os,Ot) ={(eis, eit, coni, relationi)|eis ∈ Os, eit ∈ Ot, coni ∈ [0, 1],
relationiexact, narrower, broader, overlap}

(1)

Each 4-tuple (eis, eit, coni, relationi) in Align(Os,Ot) indicates that entity eis in Os is matched
to entity eit in Ot with the confidence coni and the matching type relationi. The alignment type can
be exact matching (exact), narrowing matching (narrower:eis is a sub-entity of eit), broadening
matching (broader:eis is a super-entity of eit) and partially overlapping alignment. coni is a
numeric value. The higher the coni value, the more reliable the matching result is.

Particularly, the matching problem restricted only to instances is Instance Matching. The
results of instance matching can be represented as:

InstAlign(Os,Ot) = {(i js, i jt, con j)|i js ∈ Is, i jt ∈ It, coni ∈ [0, 1]} (2)

Because there is only exact matching in instance matching, there is no matching type in instance
matching. The matching problem on concepts and properties is called Schema Matching. Both
instance matching and schema matching are sub-tasks of ontology matching. Previous research
pays a lot of interest on schema matching. But as we introduced in Section 1, instances have
different characteristics from the schema, which makes instance matching a more challenging
problem. To solve this problem, it is necessary to leverage all the information contained in
instances. We summarize information in an instance into six categories:

• URI,URI is the unique identifier on the web for the instance. If two instances have the
same URI, we can simply claim they are the same one;

• Meta, the schema information of the instance, including the classes the instance belongs
to, the properties the instance has and so on;
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• Name, the names and labels people use to refer to the instance in real world. Names of an
instance may come from values of RDFS:label property, other ontology specified property
(like foaf:name) or fragment of its URI. When distinguishing two objects, first choice of
most people is to check the names and in many cases it works, so names is very important
information for instance matching.

• Descriptive Property Values, these property values are the descriptions of the instance in
natural language. Typical example of descriptive property is RDFS:comment.

• Discriminative Property Values, these property values are not descriptions of the instance
but characteristics of instance which can be used directly to distinguish them. For example,
a Person instance with Male value on Sex property is not likely to be matched to a person
instance with Female value on the property while two persons’ instance with the same
value on e-mail property is highly likely to be the same one.

• Neighbors, because instances are related to each other through object properties, so neigh-
boring information is a complement of instances. In many ontologies, instances are lacking
in descriptive information but rich in neighboring information, so it is necessary to take
neighboring information into account in instance matching.

Fig. 2. An Example of Information within an Instance.

– Neighbors, because instances are related to other ones through object prop-
erties, so neighboring information is a completement of instances. By far few
methods has fully used it. But in many ontologies instances are lack of de-
scriptive information but rich in neighboring information, so it is necesary
to take neighboring information into account in instance matching.

Figure 2 illustrates the six kinds of information in an given instance. Its name
is “John Smith”. The meta information contains the type of the instance and
the properties. The descriptive information has two parts, the affiliation and the
title, which describe the instance as a professor in the department of computer
science. The descrinative property information is the birth date of the instance.
The given instance has three neighbors. The first one is the property value of
“hasWife”, the other two are connected through the RDF black node as the
property value of “hasStudents”.

3 Approach Overview

The major challenge we are to solve in VMI is improving the efficiency of instance
matching as well as keeping good quality of the alignments. Given an instance
i from the source ontology Os, traditional methods usually compute similarity
between i and every instance in target ontology Ot in a brute-force way. In fact,
there may be only a few possible instances in Ot that match i. If VMI can select
the matching candidates at first, the matching process will be accelerated vastly.
On the other hand, to gain matching results with good quality, it is necessary
to use all information in an instance. Among the six categories of information,
both Names and Descriptive Property Values are meaningful natural language
segments. With consideration on the two aspects, we find that Vector Space
Model plus Inverted Index perfectly fit in the scenario. Vector Space Model is a
good way to employ text information and with Inverted Index it is easy to find
candidates. Now we have a few more questions to answer: 1) Should VMI use
this method directly? 2) How to use the Neigboring Information? 3) How to use

Figure 2: An Example of Information within an Instance.

Figure 2 illustrates the six kinds of information in a given instance. Its name is John Smith.
The meta information contains the type of the instance and the properties. The descriptive infor-
mation has two parts, the affiliation and the title, which describe the instance as a professor in
the department of computer science. The descriptive property information is the birth date of the
instance. The given instance has three neighbors. The first one is the property value of hasWife,
the other two are connected through the RDF black node as the property value of hasStudents.

4. Approach Overview

The major challenge we are to solve in VMI is to improve the efficiency of instance matching
as well as keeping high quality of the matchings. Given an instance i from the source ontology
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Os, traditional methods usually compute similarity between i and every instance in target ontol-
ogy Ot in a brute-force way. In fact, there may be only a few possible instances in Ot that match
i. If VMI can select the matching candidates at first, the matching process will be accelerated
greatly. On the other hand, to gain matching results with good quality, it is necessary to correctly
use all the information in an instance as possible as we can. Among the six categories of infor-
mation, both Names and Descriptive Property Values are meaningful natural language segments.
With consideration on these two aspects, we find that Vector Space Model plus Inverted Index
perfectly fit in the scenario. Vector Space Model is a good way to process text information and
with Inverted Index we can easily find candidates. Now we have a few more questions to answer:
1) Should VMI use this method directly? 2) How to use the neighboring information? 3) How
to use the Discriminative Property Values? When trying to distinguish two instances, people
usually compare their names at first, then look at their descriptions and property values. There-
fore VMI should follow a similar procedure and should not put all the information in only one
vector. Therefore, VMI builds two different vectors for each instance, one contains the Name
information, called Name Vector, and the other contains the Descriptive Property Values and
the Neighboring information, called Virtual Document Vector. According to the two vectors,
VMI generates two inverted indexes for instances and terms in vectors and then selects primary
matching candidates based on rules. VMI first puts the local Descriptive Property Values in the
Virtual Document Vector, then takes Name Vector and Local Description of all neighbors as the
neighboring information, adds their weighted sum into the Virtual Document Vector to complete
it. Trying to compare the Discriminative Property Values, we need to know the property match-
ings before hand and the mappings are vital for instance matching. We cannot compare the birth
date of a person in the source ontology to the wedding date of a person in the target ontology,
which will result in wrong results. Hence VMI asks users to input property matchings at first,
not complete but with good precision guarantee. If primary candidates do not have matching
values on these properties, VMI eliminates them from the candidate set. This step is a further
refinement on the candidates to improve the precision of final results. The full process of VMI is
shown in Figure 3.

Fig. 3. The Matching Process of VMI

the Disriminative Property Values? When trying to distinguish two instances,
people usually compare their names at first, then look at their descriptions and
property values. Therefore VMI should follow a similar procedure and should not
put all the information in only one vector. VMI build two different vectors for
each instance, one contains the Name information, called Name Vector, and the
other contains the Descriptive Property Values and the Neighboring information,
called Virtual Document Vector. According to the two vectors, VMI generates
two inverted indexes for instances and terms in vectors and then selects primary
matching candidates based on rules. VMI first put the local Descriptive Property
Values in the Virtual Document Vector, then takes Name Vector and Local
Description of all neighbors as the neighboring information, add their weighted
sum into the Virtual Document Vector to complete it. Tring to compare the
Discriminative Property Values, we need the property matchings before hand
and the mappings is very vital. We can not compare the birth date of a person
instance in the source ontology to the wedding date of a person instance in the
target ontology, which will result in totally wrong results. Hence VMI asks users
to input property matchings, not complete but with good precision guanrantee.
If primary candidates do not have matched values on these properties, VMI
eliminates them from the candidate set. This step is a further refinement on the
candidates to improve the precision of the final results. The full process of VMI
is shown in Figure 3.

The first step of VMI is to preprocess the instance file, load the RDF graph
into memory, collect the local information and neighboring information for every
instance. In step 2, VMI builds the Name Vector and the Virtual Document
Vector for each instance. In step 3 VMI adapts the candidate selection rules
based on the vectors and indexes to generate primary matching candidates. In
step 4 VMI use the user specified property pair and value patterns to refine
the pripmary matching candidates. Ather that the similarity of the candidate
instance pairs is computed by the weighted root mean square of their cosine
distance on Name Vector and Virtual Document. At last a threshold filter is
used to produce the final alignments. We will given an detailed explanation of
each step in the next section.

4 The VMI Algorithm

At the beginning we give some symbols we use in this section. i refers to a
given instance and O is the ontology i belongs to. is and it are instances from

Figure 3: The Matching Process of VMI.

The first step of VMI is to preprocess the instance file, load the RDF graph into memory,
and collect the local information and neighboring information for every instance. In step 2, VMI
builds the Name Vector and the Virtual Document Vector for each instance. In step 3 VMI adapts
the candidate selection rules based on the vectors and indexes to generate primary matching
candidates. In step 4 VMI uses the user specified property pair and value patterns to refine the
primary matching candidates. The similarity of the candidate instance pairs is computed by their
cosine distance based on Name Vector and Virtual Document. At last a threshold filter is used to
produce the final matchings. We will give a detailed explanation of each step in the next section.
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5. The VMI Algorithm

At the beginning, we give some symbols used in this section. i refers to a given instance and
O is the ontology i belongs to. is and it are instances from source ontology Os and target ontology
Ot. After preprocessing, we can collect all the information for instance i, Names(i) denotes the
set of its names, S PV(i) the set of its string typed values, NS PV(i) the set of its non-string typed
values of i and NB(i) denotes the set of its neighboring instances. The two types of vectors we
build for i are Name Vector NV(i) and Virtual Document VD(i) respectively.

5.1. Building Vectors and Indexes
To get Names(i), we first check if there are rdfs:label property or other ontology specified

name property values in i and put them into the set Names(i). Otherwise Names(i) contains only
the fragment of the URI. Then we go on to segment strings in Names(i) and eliminate stop words.
The terms in the result are put into NV(i) and their weights are assigned as their occurrence times
in the strings. Because we believe that the words in NV(i) are equally important for i, we build
an inverted index for all the terms in the Name Vector, i.e. for every term t, we maintain a list of
instances whose Name Vectors contain t.

The construction of VD(i) is a little more complex because the information comes from both
its local string typed property values and its neighboring information. In the pre-processing stage,
we put all the string typed values in S PV(i), then we can built a vector LD(i) for the instance
with just the same procedure when building NV(i). Then the neighboring information for i is
defined as the sum of both Name Vectors and Local Description of its neighbor instances:

NBI(i) =
∑

i′∈NB(i)

(NV(i
′

) + LD(i
′

)) (3)

And VD(i) is defined as
VD(i) = LD(i) + γ · NBI(i) (4)

where γ is the neighboring factor which indicates the strength of neighboring information in the
Virtual Document.

Compared with Name Vector, Virtual Document contains more information while each term
in the vector is less important than the terms in Name Vector, so there is no need for us to build
an inverted index for every term in the Virtual Document. Instead, it is necessary to choose some
important terms from each vector to represent the instance. For evaluating the significance of
terms in a Virtual Document, the prevalent tf-idf [27] weight is introduced into the method. Let
wt be the weight of a given term t in a Virtual Document VD(i), W be the sum of weight of all the
words in the document, n be the number of documents which contains t, and N be the number of
all documents. The term frequency (t f ) and inverted document frequency (id f ) and final weight
of the term t in a document is defined as:

t f =
wt

W
(5)

id f = log
N + 1
n + 1

(6)

weight(t) = t f × id f (7)

After the tf-idf computation, we build the inverted indexes for Name Vectors and Virtual
Documents respectively. The inverted index [37] is a widely used data structure used by search
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engines. Typically, the inverted index uses a dictionary store all the unique terms in the docu-
ments. For each term t in the dictionary, there is a link to a postings list Lt =< dt

1, d
t
2, ..., d

t
nt
>.

The element dt
i denotes the document identifier of the i’th document containing t. By using the

inverted index, we can quickly find the documents that contain a given term. Here we build
two inverted indexes for Name Vectors and Virtual Documents of instances, respectively. In our
approach, only terms whose weights are higher than a threshold tvd are added to the dictionary
of the inverted index. Primary matching candidate selection methods will be described in the
following subsection.

5.2. Primary Candidate Selection

Given two sets of instances I1 and I2, our approach does not compare all the instance pairs
between them to decide the matching results. Instead, VMI first selects a set of primary matching
candidates before computing the similarities of instance pairs. For each instance is ∈ I1, instance
it ∈ I2 that satisfies one of the following rules is selected as matching candidate of is:

• If |NV(is)| ≥ 5 and |NV(it)| ≥ 5 and the two vectors have at least 2 terms in common;

• If |NV(is)| ≤ 5 or |NV(it)| ≤ 5 and they have at least 1 term in common;

• If VD(is) and VD(it) have at least 1 common keyword.

The first two rules originate from the idea that we are willing to compare instances with
similar names. When instances have short names, one name term in common could mean a
candidate pair. But when instances have longer names, it is very possible if they are matched,
they should have at least two common terms in the Name Vector. The third rule is a supplement
for the first two rules to make sure that if the instances are not similar in names but have similar
semantic descriptions, they will be chosen as candidates, too. These rules select most of the
correct matching pairs are contained in the candidates (in our experiment data sets, more than
95%) while cutting off a very large portion of the pair-wise comparison.

In the process of selecting matching candidates, the two inverted indexes are used to generate
candidate instance pairs. Take the inverted index of Name Vectors as an example, VIM generates
candidate instance pairs that have at least 1 common term in their names as follows:

• For each unique term t, get its postings list Lt from the inverted index of Name Vectors;

• Generate the set of instance pairs of term t: Pt = {< is, it > |is ∈ Lt ∪ I1, it ∈ Lt ∪ I2};

• Get all the desired instance pairs by Merging the instance pairs generated from all the
terms in inverted index: P = ∪t∈T Pt, here T denotes the set of all unique terms.

All the instance pairs in P have at least 1 common term, those pairs having at least 2 common
terms can also be found within P. The inverted index of Virtual Documents is also used in the
same way to find instance pairs that have at least 1 common term in their Virtual Documents.

5.3. User Specified Candidate Refinement

As we look into the selection rules in the above part, we will find that they are relatively
simple so the process is just a rough filtering on impossible matching pairs. To get more precise
results, VMI needs a further filtering on primary candidates using the Discriminative Property
Values. Since it is really difficult to get the property matching automatically, VMI relies on the
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user’s input as the prior information. We regard rdf:type as a special discriminative property in
VMI. Instances not matched on the type (either under the same concept or one concept is the sub-
concept of the other) will be removed. And for the user specified properties, there are two kinds
of scenarios. One is to check whether the property values are in the user’s given set and the other
one is to check if the property values from two instances are identical. Because different users
may have different presentations on the same information, VMI permits users to fetch particular
part of the property value. All the property matchings, allowed value set and the ways of fetching
values are specified by users in the configuration file of VMI.

5.4. Similarity Computation and Threshold Filtering

Once the candidate instance pairs have been selected, the similarity between them is com-
puted using name vector and virtual document respectively according to the Vector Space Model.
We use the COSINE distance between two vectors to get the similarity. It is defined as:

S im(Vs,Vt) =

∑V
i=1(vsi · vti)√

(
∑V

i=1(v2
si))(
∑V

j=1(v2
t j))

(8)

where V is the dimension of the vector, the elements in V correspond to the weights of terms
computed by formula 7. Then we combine the two similarities to a root mean square as the
initial similarity of the candidate pair.

S im(is, it) =
√

wn · S imnv(is, it)2 + (1 − wn) · S imvd(is, it)2 (9)

where wn is the weight of the name vector similarity. After the final similarity is computed,
VMI takes a threshold filtering on the similarity to extract the final results.

6. Evaluation

In this section we employ VMI algorithm on the datasets from the Instance Matching track
of OAEI 2009 and OAEI 2010 campaigns and evaluate its effectiveness and efficiency on large
scale instance files.

6.1. Data Sets and Experiment Setup

Data Sets We choose two datasets, the instance matching track of OAEI and the LinkedMDB-
DBpedia data set on the movie domain. OAEI2 is a yearly international ontology matching
competition. The Instance Matching track is introduced into the OAEI from 2009 aiming at eval-
uating instance data matchers. We use the A-R-S benchmark and T-S-D benchmark from OAEI
2009 and the Data Interlinking dataset from OAEI 2010 to test VMI. The A-R-S benchmark in-
cludes three ontologies named eprints, rexa and dblp within the domain of scientific publications
in the same Opus schema. T-S-D benchmark includes three data sets covering broader domains
which are structured according to different schemata. The Data Interlinking dataset chooses sev-
eral data sources from LOD. There are reference matchings for the A-R-S benchmark, so we use
it to demonstrate the accuracy of our approach and use the other two for testing scalability of

2http://oaei.ontologymatching.org
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VMI. Table 1 shows the information about the sizes of the data sets and the number of instances
contained in them. The scale of the three data sets in A-R-S benchmark varies greatly. Three
data sets, dblp in A-R-S benchmark, swetodblp and dbpedia in T-S-D benchmark are really large
so that matching these data sets efficiently becomes a major concern. The LinkedMDB reposi-
tory3 is the largest semantic movie database created by researchers from University of Toronto.
There are also a number of movie-related instances in DBpedia which are extracted and stored
in one file. The details of the LinkedMDB-DBpedia data set are shown in Table 2. We match the
movie instances from the two data sources to compare the performance of VIM and the prevalent
system SILK.

Table 1: The sizes of datasets in OAEI (number of instances)

A-R-S Benchmark T-S-D Benchmark Data Interlinking

eprints 847 TAP 65,246 Sider 2,684
rexa 14,771 swetodblp 813,287 Dailymed 10,014
dblp 1,642,945 DBpedia 2,091,003 Drugbank 19,700

Table 2: The detail of LinkedMDB-DBpedia data set

Data Movie Count Actor Count Total Count

LinkedMDB 85,620 50,603 450,000
DBpedia 35,240 26,010 200,000

Experiment Setup We implement VMI in Java. The ontologies are parsed by Jena API4.
Because the processing of large instance files consume a large amount of memory, we run the
normal version of VMI on a server with 32GB memory running Ubuntu Server 8.10.

Measurement To evaluate the accuracy of matching algorithms, we choose the standard
measurement Precision, Recall and F1-Measure to evaluate the efficiency of VMI, we compare
the running time of VMI with two baseline methods, Edit Distance on instance names referred
to as EDist and the champion RiMOM system in A-R-S benchmark.

6.2. Parameter Analysis

We have three parameters in VMI: γ is the neighboring factor, indicates the strength of neigh-
boring information in the Virtual Document; wn is the weight of Name Vector in the computation
of final similarity and t is the threshold in final threshold filtering. We will analyze the per-
formance of VMI with different parameters settings. The following analysis is made on the
eprints-rexa dataset, one of the datasets in A-R-S benchmark.

Neighboring Factor First, we check the performance of VMI with different amount of neigh-
boring information. We suppose γ = 0 mean to eliminate the neighboring information in the Vir-
tual Document. We compare the performance of VMI with different γ on the eprints-rexa dataset
with t = 0.45 and wn = 0.6. The result is shown in Table 3. It is obvious that VMI can not

3http://www.linkedmdb.org
4http://jena.sourceforge.net/

12



get desired performance without sufficient neighboring information, because the local feature
does not contain all the instances information. People may simply believe that instances with
similar neighbors are of high possibility to be similar, too. It is important to add the neighboring
information to the Virtual Document.

Threshold Then we let wn = 0.6 and γ = 0.5 and evaluate the threshold t on the performance
of VMI algorithm. The result is shown in Figure 4(a). The F1-Measure gets to its peak at about
some points around t = 0.5, which is the default value for t. In this case, the matchings with low
similarity are definitely wrong, because the recall increases as the threshold increases from 0 to
0.4.

Name Vector Weight Similar experimental results on wn with t = 0.45 and γ = 0.5 are
shown in the right chart in Figure 4(b). Based on the growing recall curve, it is convincible that
the Name information is very significant to find possible matchings and to promote the absolute
value of the similarity between candidates. However, the relatively low precision with high wn

indicates that only relying on the Name information is not a good way. We choose as 0.6 the
default wn value for the A-R-S benchmark.

Table 3: The effect of neighboring information

γ Precision Recall F1-Measure

0 0.653 0.883 0.751
0.25 0.799 0.906 0.849

0.5 0.799 0.906 0.849
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Figure 4: Effects of Two Major parameters in VMI.

6.3. Efficiency Performance
In order to evaluate the efficiency of VMI, we compare the runtime of VMI with Edit Dis-

tance, RiMOM and DSSim. Here Edit Distance is a baseline approach we develop; it com-
putes the Edit Distance based similarity between instances’ names, and decides the results with
a threshold filtering method. All of these three approaches are coding in Java, and we run each
of them on the same server with 32GB memory and Ubuntu Server 8.10 operating system. The
A-R-S benchmark dataset is used for efficiency analysis, and the result is shown in Table 4. We
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can see that VMI performs much better than the three baseline methods in terms of efficiency. On
the rexa-dblp dataset which is approximately 10,000 ×1,000,000 size, VMI is about 100 times
faster than RiMOM. As we can learn from Table 6, VMI generates comparable matchings with
RiMOM, so VMI is a much better solution for large scale inputs. The great improvement of effi-
ciency comes from the using of two inverted indexes and candidate selection rules. By candidate
selection, VMI cuts off large portion of candidates in pair-wise way. We give the runtime of VMI
on some large scale input in Table 5. With the increase of input scale, the runtime does not in-
crease with the same speed. VMI is able to finish the matching process of input in million-scale
within a few hours. But when it comes to the million-scale, the runtime is going up faster, so
maybe more strict rules should be applied to get a smaller amount of candidates.

Table 4: Runtime on A-R-S benchmark

Method eprints-rexa eprints-dblp rexa-dblp

VMI 10s 16min10s 19min52s
Edist 2min8s 3h15min >10h

RiMOM 1min33s 4h18min 36h34min
DSSim 18min7s 3h23min 20h32min

Table 5: The Runtime of VMI on Some Large Scale Input

Data Scale Time

drugbank-DBpedia 10,000×2,000,000 14min18s
rexa-dblp 15,000×1,600,000 19min52s

dailymed-DBpedia 20,000×2,000,000 21min3s
tap-DBpedia 65,000×2,000,000 29min42s

sweto-DBpedia 800,000×2,000,000 114min37s
dblp-DBpedia 1,600,000×2,000,000 181min9s

Table 6: VMI Performance on A-R-S benchmark compared with OAEI participants

eprints-rexa eprints-dblp rexa-dblp

System Precision Recall F1 Precision Recall F1 Precision Recall F1
VMI 0.80 0.90 0.85 0.62 0.70 0.66 0.71 0.78 0.76

RiMOM 0.94 0.59 0.80 0.93 0.70 0.73 0.78 0.67 0.73
Hmatch 0.95 0.46 0.62 0.65 0.65 0.65 0.42 0.48 0.45
DSSim 0.60 0.28 0.38 0.11 0.15 0.13 0.00 0.00 0.00
FBEM 0.94 0.10 0.18 0.98 0.16 0.28 0.99 0.12 0.21

6.4. Accuracy Performance
We compare VMI with other systems participated A-R-S benchmark in OAEI 2009. The

result is shown in Table 5. The results show that VMI explores the semantic information in in-
stances effectively and generates the matchings as good as the OAEI 2009 champion RiMOM
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system. We can see on eprints-rexa and rexa-dlbe, VMI gets the best F1-Score. However, VMI
gets a lower precision on eprints-dblp dataset. By analyzing the false matchings in the results,
we find out that many of the false ones come from the isolated person instances without any
descriptions and neighboring information. By only using the constraint refinement, it is difficult
to filter out all the false alignments generated from Name Vector with the huge amount of in-
stances in the dblp dataset. In all three tasks, VMI achieves the best recall. This fact indicates
that the candidate selection strategy of VMI indeed filters out the impossible pairs while keeping
the possible ones.

We compare the results of VMI with SILK system on the LinkedMDB-DBpedia dataset.
SILK is able to produce 26059 sure results and 1856 results to be confirmed. VMI is also able to
generate 25979 results. We randomly choose 200 ones from the results and check them manually
and 182 out of them are correct. So the results of VMI are in the same level as the ones of SILK
in both quantity and quality.

In summary, we have following conclusion of VMI with the experiment results: 1) VMI
explores the semantic information with instances effectively and can generate matching results
with high quality. It achieves slightly better F1-Score than the champion RiMOM system in
OAEI 2009. 2) The multiple indexing and candidate selection strategy improves the efficiency
of matching process greatly. Compare with the existing methods, VMI shortens the running time
greatly on datasets with millions of instances.

7. Conclusion and Future Work

In this paper we have proposed an approach VMI to match large scale instances via multiple
indexing and candidate selection. VMI builds two different vectors for each instance, the Name
Vector and the Virtual Document Vector. Two inverted indexes are produced for indexing all
the two groups of vectors. In the matching process, matching candidates are selected based
on several heuristic rules defined on the indexes. By using multiple indexing and candidate
selection, VMI greatly reduces the number of similarity computations, and therefore performs
efficiently on matching large scale instance sets.

In the future, more carefully designed candidate selection rules could be introduced into the
algorithm. With even larger scale of data, the memory consumption will becomes the bottleneck
of VMI, the vectors and indexes may have to be stored on harddisks instead of in the memory
and a better structure of indexes in company with good index compression is in need. More-
over, a complete implementation of the algorithm in parallel is a promising solution for further
scalability.
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