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Abstract. The goal of Model Management is the development of new technolo-
gies and mechanisms to support the integration, evolution and matching of data
models at the conceptual and logical design level. Such tasks are to be performed
by means of a set of model management operators which work on models and
their elements, without being restricted to a particular metamodel (e.g. the rela-
tional or UML metamodel).
We propose that generic model management should employ a generic metamodel
(GMM) which serves as an abstraction of particular metamodels and preserves as
much of the original features of modeling constructs as possible. A naive general-
ization of the elements of concrete metamodels in generic metaclasses would lose
some of the specific features of the metamodels, or yield a prohibitive number of
metaclasses in the GMM. To avoid these problems, we propose the Generic Role
based Metamodel GeRoMe in which each model element is decorated with a set
of role objects that represent specific properties of the model element. Roles may
be added to or removed from elements at any time, which enables a very flexible
and dynamic yet accurate definition of models.
Roles expose to operators different views on the same model element. Thus, oper-
ators concentrate on features which affect their functionality but may remain ag-
nostic about other features. Consequently, these operators can use polymorphism
and have to be implemented only once using GeRoMe, and not for each specific
metamodel. We verified our results by implementing GeRoMe and a selection of
model management operators using our metadata system ConceptBase.

1 Introduction

Design and maintenance of information systems require the management of complex
models. Research in (data) model management aims at developing technologies and
mechanisms to support the integration, merging, evolution, and matching of data mod-
els at the conceptual and logical design level. These problems have been addressed for
specific modeling languages for a long time. Model management has become an ac-
tive research area recently, as researchers now address the problem of generic model
management, i.e. supporting the aforementioned tasks without being restricted to a par-
ticular modeling language [7,8]. To achieve this goal, the definition of a set of generic
structures representing models and the definition of generic operations on these struc-
tures are required.



According to the IRDS standard [18], metamodels are languages to define mod-
els. Examples for metamodels are XML Schema or the UML Metamodel. The same
terminology is adopted in the specifications of the Object Management Group (OMG,
http://www.omg.org) for MOF (Meta Object Facility) and MDA (Model Driven
Architecture). Models are the description of a concrete application domain. Within an
(integrated) information system, several metamodels are used, a specific one for each
subsystem (e.g. DB system, application). Thus, the management of models in a generic
way is necessary.

1.1 The Challenge: A Generic Mechanism for Representing Models

This paper addresses the first challenge mentioned in [8], the development of a mech-
anism for representing models. Since the goal is the support of generic model man-
agement, this has to be done in some generic way. Currently, model management ap-
plications often use a generic graph representation but operators have to be aware of
the employed metamodel [10,15,23]. A graph representation is often sufficient for the
purpose of finding correspondences between schemas, which is the task performed by
the model management operator Match [28], but such a representation is not suitable
for more complex operations (such as merging of models) as it does not contain de-
tailed semantic information about relationships and constraints. For example, in [27] a
generic (but yet simple) metamodel is used that distinguishes between different types of
associations in order to merge two models. Consequently, in order to support a holistic
model management framework it is necessary to provide a detailed generic metamodel.
A more detailed discussion about the related work on the representation of models is
given in section 2.

The intuitive approach to develop a truly generic metamodel (GMM) identifies ab-
stractions of the metaclasses of different metamodels. Its goal is to define a comprehen-
sive set of generic metaclasses organized in an inheritance lattice. Each metaclass in a
given concrete metamodel then has to be mapped to a unique metaclass of the GMM.

The sketched approach exhibits a prohibitive weak point: elements of particular
metamodels often have semantics that overlap but is neither completely different nor
equivalent. For example, a generic Merge operator has to merge elements such as
classes, relations, entity types and relationship types. All of these model elements can
have attributes and should therefore be processed by the same implementation of an op-
erator. In this setting, such polymorphism is only possible if the given model elements
are represented by instances of the same metaclass in the GMM, or at least by instances
of metaclasses with a common superclass. Thus, one has to choose the features of model
elements which are combined in one metaclass.

Actually, in each metamodel there may be elements incorporating an entirely new
combination of such aspects. One approach to cope with this problem is to focus on the
“most important” features of model elements while omitting such properties which are
regarded as less important. But to decide which properties are important and which are
not results in loss of information about the model.

All properties of model elements could be retained if the GMM introduced a set of
metaclasses as comprehensive as possible and combined them with multiple inheritance
such that any combination of features is represented by a distinct metaclass. Despite the
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modeling accuracy of such a GMM, it will suffer from another drawback, namely that
it leads to a combinatorial explosion in the number of sparsely populated intersection
classes which add no new state.

1.2 Our Solution: Role Based Modeling
In such cases, a role based modeling approach is much more promising. In role based
modeling, an object is regarded as playing roles in collaborations with other objects.

Applied to generic metadata modeling this approach allows to decorate a model
element with a combination of multiple predefined aspects, thereby describing the ele-
ment’s properties as accurately as possible while using only metaclasses and roles from
a relatively small set. In such a GMM, the different features of a model element (e.g. it
is not only an Aggregate but also an Association) are only different views on the same
element. During model transformations or evolution, an element may gain or lose roles,
thereby adding and revoking features. Thus, the combinatorial explosion in the number
of metaclasses is avoided but nevertheless most accurate metadata modeling is possible.

Therefore, the GMM proposed in this work retains these characteristics by employ-
ing the role based modeling approach, resulting in the Generic Role based Metamodel
GeRoMe (phonetic transcription: dZer@Um). Implementations of model management
operators can assert that model elements have certain properties by checking whether
they play the necessary roles. At the same time the operator remains agnostic about any
roles which do not affect its functionality. Thus, while role based metamodeling allows
to formulate accurate models, the models appear to operators only as complex as nec-
essary. GeRoMe will be used only by model management applications; users will use
their favorite modeling language.

The difference between our and the naive generalization approach is similar to the
difference between the local-as-view (LAV) and global-as-view (GAV) approaches in
data integration. By defining elements of a GMM as generalization of elements of spe-
cific metamodels, an element of the GMM is defined as a view on the specific elements.
In contrast, in our approach the definition of the roles in GeRoMe is independent of a
particular metamodel, and the elements of the concrete metamodels can be character-
ized as a combination of roles. Thus, our role based approach can be seen as a LAV
approach on the meta level, which has similar advantages as the normal LAV approach
[22]. The role based metamodel is more “stable” with respect to the concrete meta-
models represented, i.e. additional modeling features of other metamodels can be eas-
ily added by defining new role classes. Thus, this change would not affect other role
classes in GeRoMe. In addition, the representations of the concrete metamodels are
more accurate as their elements can be described by a combination of role classes.

The definition of the GMM requires a careful analysis and comparison of existing
metamodels. Since it has to be possible to represent schemata in various metamodels in
order to allow generic model management, we analyzed five popular yet quite different
metamodels (Relational, EER, UML, OWL DL, and XML Schema). We identified the
common structures, properties, and constraint mechanisms of these metamodels. This
part of our work can be seen as an update to the work in [17], in which several semantic
database modeling languages have been compared.

The paper is structured as follows. Section 2 provides some background information
on model management and role based modeling, and presents a motivating scenario. In



section 3, we analyze and compare existing metamodels and derive the Generic Role
based Metamodel GeRoMe. Section 4 shows several examples of models in different
metamodels represented in GeRoMe. Section 5 explains how model management op-
erations can be performed using GeRoMe. As an example, we describe some atomic
operations necessary for the transformation of an EER model into a a relational model.
The architecture and implementation of our model management prototype is discussed
in section 6. In particular, we present a rule-based approach to import and export mod-
els. Finally, section 7 summarizes our work and points out future work.

2 Background and Motivation

The next subsection provides an overview of model management in general. The moti-
vating scenario in section 2.2 should give an idea of the benefits of a model management
framework and the usage of a generic metamodel for model management. An overview
of work about role based modeling concludes this section.

2.1 Model Management

Model management aims at providing a formalization for the definition and modifi-
cation of complex models [8]. To achieve this goal, a model management system has
to provide definitions for models (i.e. schemas represented in some metamodel), map-
pings (i.e. relationships between different models), and operators (i.e. operations that
manipulate models and mappings). There have been earlier approaches to model man-
agement [3,20], which did address especially the transformation of models between
different metamodels. Model management has become more important recently, as the
integration of information systems requires the management of complex models. The
most important operations in model management are Merge (integration of two models),
Match (creating a mapping between two models), Diff (finding the differences between
two models), and ModelGen (generating a model from another model in a different
metamodel representation).

Rondo [23] is the first complete prototype of model management. It represents mod-
els as directed labeled graphs. Each node of such a graph denotes one model element,
e.g. an XML Schema complex type or relational table. A model is represented by a
set of edges between these nodes. A model element’s type (Table, Column, Class, . . . )
is also specified by such an edge with the label type. Furthermore, types of attributes
are specified by other dedicated edges, e.g. SQLtype. For each of the supported meta-
models a different set of types is available. Although the models are represented in a
generic graph structure, the implementation of the operators is not truly generic. For
example, the implementation of the Match operator requires two models of the same
type as input, and some operators (such as Extract) have specific implementations for
each metamodel.

Another approach to generic model representation has been introduced in [3], ex-
pressed in a relational model dictionary [1], and was recently used for the generic Mod-
elGen implementation MIDST [2]. This approach differs from our representation in that
it describes a class of model elements as a pattern built up from a set of components
such as an EER relationship type which is composed of at least two participators and



any number of attributes. A model element belongs to a class of modeling constructs
if it matches the given pattern. They map all metamodels to a very small set of mod-
eling constructs. In constrast, we regard the differences in the semantics of modeling
constructs in different metamodels as subtle but important. For example, modeling sets
with object identity and sets without object identity in the same way results in hiding
this knowledge in code of the model management system whereas it should be part of
the generic representation. In our representation we describe a model element by the set
of roles it plays and their relationships to other elements. A small difference between
two constructs can be modeled by adding a role to an element and thereby adding a new
feature to the element.

Another rule-based approach to model transformation is presented in [9]. Models
are first translated into a universal metamodel and then a sequence of rule-based trans-
formations is applied to generate a model that is valid in the target metamodel. Details
about the universal metamodel are not given in [9].

Clio [15] is a tool for creating schema mappings. Whereas schema matching al-
gorithms just discover correspondences between schemas, Clio goes one step further
and derives a mapping from a set of correspondences. The mapping is a query that
transforms the data from one schema into another schema. However, Clio supports only
XML and relational schemas.

More sophisticated model management operators such as Merge (integration of two
models according to a given mapping, resulting in a new model) require even more
semantic information about the models involved. For example, in [27] a meta model
with several association types (e.g. has-a, is-a) is used.

The various approaches to model management show that each operator requires a
different view on a model. Schema matching focuses on labels and structure of schema
elements, whereas merging and transformation of models require more detailed infor-
mation about the semantics of a model (e.g. association types, constraints). These dif-
ferent views are supported by our role based approach, as operators will see only those
roles which are relevant in their context.

2.2 Scenario

The following simplified scenario should provide an idea of what model management
is about and of the benefits of utilizing a generic metamodel for model management.

Complex information systems undergo regular changes due to changes of the re-
quirements, of the real world represented by the information system, or of other systems
connected to the information system. As an example, we consider the following eBusi-
ness scenario: a supplier of an automotive manufacturer receives orders from a business
partner in some XML format (XS1). The orders are entered into the ERP system of the
supplier by a transformation program, which uses a mapping between the XML schema
and the relational DB (RM2) of the ERP system.

In order to generate this mapping, the two models are represented as models in a
generic metamodel (GM1 and GM2). A Match operator can then be used to create a
mapping GM1 GM2 between the two models, which can be further translated into the
desired mapping XS1 RM2 between the original models, e.g. by exporting the mapping
with an operator which generates a set of data access objects for RM2 and a parser
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Fig. 1. Schema evolution using GeRoMe and Model Management

for XML documents conforming to XS1 as well as glue code which uses the mapping
information for adapting these classes to each other.

Due to a change in the system of the manufacturer, the schema of the orders has
changed. This change has to be propagated to the mapping between the XML schema
and the relational DB. Focusing on the models, this scenario can be seen as an example
of schema evolution (Fig. 1). The original XML schema XS1 is mapped to the relational
model (RM2) of the DB using the mapping XS1 RM2. The schema evolution generates
a new version of the XML schema, namely XS1’.

Again, instead of applying the model management operators to the level of specific
schemas, we will first generate a corresponding representation of the specific model in
GeRoMe (GM1’). Then, we have to apply the Match operator to GM1 and GM1’, result-
ing in a mapping GM1’ GM1 between these models. This match operation should be
simpler than matching the new version GM1’ with GM2 directly, as two versions of the
same model should be quite similar. Then, we can compose the mappings GM1’ GM1
and GM1 GM2 to a new mapping GM1’ GM2. Note, that this operation has just to con-
sider mappings between models represented in GeRoMe, which should simplify the
implementation of such an operator. The result of this step is a mapping from GM1’ to
GM2 of those elements which are also present in GM1.

In order to map elements which have been added during the schema evolution a
Diff operator has to be used on GM1’ and GM1 which takes into account the mapping
GM1’ GM1. The difference then has to be mapped individually.

The important difference to other approaches is that the operations in GeRoMe are
truly generic, they do not have to take into account different representations of models.
Therefore, the operators have to be implemented only once, namely for the GeRoMe
representation. In the example the same match operator can be used in both cases, to
match the two versions of the XML Schema and to match the XML Schema with the
relational model.

2.3 Role Based Modeling

The concept of role (or aspect) based modeling has first been described in detail in
the context of the network model [4] and later on in several works on object-oriented
development and object-oriented databases [11,29,30].

Different formalizations have been proposed, which exhibit significant differences,
but all have in common that a role extends the features of an existing object while being
a view on the object and not an object in its own right. In [11] multiple direct class
membership is considered as a solution to the problem of artificial intersection classes.



That is, instead of defining an intersection class, the combination of state and behavior
is achieved by defining an object to be instance of several classes at the same time,
which are not necessarily on the same specialization path.

In [29] the notion of aspects of objects is discussed. It is stated that at any given mo-
ment an entity may have many different types that are not necessarily related. Often this
issue cannot be handled by multiple inheritance since this would lead to a large number
of sparsely populated “intersection classes” which add no new state. This approach is
different from multiple direct class membership in that each object can have multiple
aspects of the same type, e.g. a person can at the same time be a student at more than
one university while still being the same individual.

[6] presents an approach to avoid large class hierarchies in chemical engineering
applications that is also based on aspects. Aspects divide a class into separately in-
stantiatable partitions. Thus, aspects are a “part” of the object whereas roles are more
“external” objects attached to another object, thereby providing different views on that
object. A comparison of aspects and roles and issues concerning their implementation
are discussed in [14].

Other approaches, such as the one considered in [30], treat the different features of
an object as roles, which are themselves instances of so called role classes and have
identity by state. This representation also allows model elements to play directly or
implicitly more than one instance of the same role. In addition, [30] introduces the
concept of role player qualification which means that not every object may play every
role but that certain conditions have to hold.

3 The Generic Role based Metamodel GeRoMe

In this section, we will first explain the role model which we have employed to define
GeRoMe. Based on our analysis of existing metamodels (section 3.2), we have derived
the Generic Role based Metamodel, which is described in detail in section 3.3.

3.1 Description of the Role Model

GeRoMe employs the following role model. A model element is represented by an
object which has no characteristics in its own right. Roles can be combined to describe
a model element encompassing several properties. Thus, the model element is decorated
with its features by letting it play roles. A role maintains its own identity and may be
player of other roles itself. Because a model element without roles does not have any
features, every model element has to play at least one role. Every role object has exactly
one player. In our model, some role classes may be used more than once by an element,
e.g. an Attribute may play the role of a Reference to more than one other Attribute.
Thus, the complete representation of a model element and its roles forms a tree with the
model element as its root.

We used three different relationships between role classes, namely inheritance, play,
and precondition. The play relationship defines which objects may be player of certain
roles. For example, an Attribute role may play itself the role of a reference. In addition,
a role may be a precondition of another role. Thus, in order to be qualified to play a role
of a certain class, the player must be already the player of another role of a certain other



class. Except for namespaces, all links between model elements are modeled as links
between roles played by the elements.

To tap the full power of role modeling, we have to define role classes in such a way
that each of them represents an “atomic” property of a model element. Then roles can
be combined to yield the most accurate representation of an element.

3.2 Role Based Analysis of Concrete Metamodels

A generic metamodel should be able to represent both the structures and constraints
expressible in any metamodel. Thus, to define such a metamodel it is necessary to an-
alyze and compare the elements of a set of metamodels. Our choice of metamodels
comprises the relational model (RM) [12] and the enhanced entity relationship model
(EERM) [12] because these two models are rather simple and are in widespread use.
The metamodel of the Unified Modeling Language (UML, version 1.5) has been ana-
lyzed as an example for object-oriented languages. The description logics species of the
Web Ontology Language (OWL DL, http://www.w3.org/2004/OWL/) has been in-
cluded since it follows different description paradigms due to its purpose. For example,
properties of concepts are not defined within the concepts themselves but separately.
Finally, XML Schema (http://www.w3.org/XML/Schema) has been analyzed as it
is the most important metamodel for semistructured data.

We analyzed the elements and constraints available in these five metamodels and
identified their differences and similarities. In doing so, we determined the role classes,
which constitute our role based metamodel. In total, we compared about seventy struc-
tural properties and elements and twenty types of constraints. Some of them are very
easily abstracted, such as data types or aggregates. Others, such as the XML Schema
element or OWL object properties, are rather intricate and need closer inspection. The
XML Schema element is an association (associating a parent element with its children).
The root element of a document is a special element which does not have a parent. Fur-
thermore, an XML Schema may allow different types of root elements for a document.
Another problematic example are object properties in OWL DL: the Association role is
played by a “pair of properties” and the ObjectAssociationEnd role is played by object
properties. Furthermore, some metamodels provide redundant options for representing
the same semantics, e.g. there is no semantic difference between an XML Schema at-
tribute and a simple-typed XML Schema element with a maximum cardinality of 1.
Thus, it is difficult to represent such specific model elements in a GMM. In section 4,
we describe some of the representation problems in more detail.

Table 1 shows a selection of role classes and states the related model elements in
the considered metamodels. The table contains roles which are used to define structural
model elements (e.g. relation, class) and roles to define relationships and constraints
(e.g. association, disjointness). Due to space constraints, the table does not embody all
metamodel elements and correspondences in the different metamodels.

3.3 Description of GeRoMe

Figure 2 presents the Generic Role based Metamodel GeRoMe at its current state, based
on the analysis of the previous section. All role classes inherit from RoleObject but we
omitted these links for the sake of readability. Although we use here the UML notation
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Role EER Relational OWL DL XML Schema UML
Domain domain domain xsd datatype any simple type datatype
Aggregate entity/rel.-ship

type, comp. attr.
relation class complex type class, association

class, struct
Association relationship type - a pair of inverse

object properties
element association, associ-

ation class
ObjectSet entity/rel.-ship

type
- class complex type,

schema
class, ass. class, as-
sociation, interface

Base-
Element

supertype in isA,
subset in Union

base of anony-
mous domain

superclass,
superproperty

base simple / com-
plex type

superclass, imple-
mented interface

Derived-
Element

subtype in isA or
union type

anonymous do-
main constraint

subclass, sub-
property

derived simple /
complex type

subclass, subinter-
face, implementa-
tion

Union derivation link of
union type

- derivation link
of union class

derivation link of
union type

-

IsA isA derivation
link

- subclassing
derivation link

restriction / exten-
sion derivation link

subclassing, imple-
mentation

Enumeration enumerated do-
main restriction

enumerated do-
main restriction

enumeration enumeration enum, constants in
interface (constant
inheritance)?

Attribute (composite / mul-
tivalued) attribute

column data type prop-
erty

attribute, element
with simple type

attributes in struct,
member variables,
properties

Object-
Association-
End

link between rela-
tionship type and
its participator

- object property link between ele-
ment and its nested
or enclosing com-
plex type

point where associ-
ation meets partici-
pator

Literal-
Association-
End

- - - link between an
element and its
nested simple type

-

Literal instance of a do-
main

domain value data type value simple type value constant, value of
simple type

Structured-
Instance

instance of a
structured type

tuple individual valid XML value of struct, ob-
ject

Visible entity type, rel.-
ship type, attr.

relation, col-
umn

named class,
property

named type, at-
tribute element

anything not
anonymous

Reference - foreign key
comp.

- keyref component -

Foreign Key - foreign key - keyref -
Disjointness constraint on sub-

types
- constraint on

classes
- constraint on

classes
Injective primary/partial

key
unique, primary
key

inverse func-
tional

unique, key -

Identifier primary/partial
key

primary key - key -

Universal anonymous do-
main of attribute

anonymous do-
main constraint
of column

allValuesFrom restriction of com-
plex type

- (covariance
breaks polymor-
phism)

Existential - - someValuesFrom - -
Default - default value - default value default value

Table 1. Roles played by concrete metaclasses



to describe the metamodel GeRoMe, it has to be stressed that UML or the related MOF
standard (http://www.omg.org/mof/) are not suitable for expressing models for
generic model management applications, since – as we discussed above – the use of
multiple inheritance instead of a role based approach would lead to a combinatorial
explosion of classes in the metamodel. Below, we will describe the elements of GeRoMe
according to their basic characteristics: structural elements, derivations, and constraints.

Structural Elements Every model element representing a primitive data type plays the
role of a Domain. GeRoMe contains a collection of predefined domains such as int and
string. In contrast, model elements which may have attributes play an Aggregate role
(e.g. entity and relationship types, composite attributes in EER; relations, classes and
structs in other metamodels).

Thus, the Aggregate role is connected to a set of Attribute roles. Each of these
Attribute roles is part of another tree-structured model element description. An Attribute
role is a special kind of Particle and has therefore the min and max attributes which can
be used to define cardinality constraints. Every attribute has a Type, which may be a
primitive type or an Aggregate in the case of composite attributes.

The Aggregate role and the Domain role are specializations of Type. Type is a spe-
cialization of DerivableElement which is the abstract class of roles to be played by
all model elements which may be specialized. Another kind of DerivableElement is
the Association role. Properties of associations are AssociationEnd roles. For example,
association roles are played by EER relationship types, UML associations, or UML as-
sociation classes. A model element which provides object identity to its instances may
participate in one or more associations. This is modeled by specifying the element’s Ob-
jectSet role to be the participator of one or more ObjectAssociationEnd roles. Thus, an
association end is a model element in its own right, and the association is a relationship
between objects and values. In addition, the roles AggregationEnd and CompositionEnd
can be used to model the special types of associations available in UML. In order to be
able to represent the aforementioned special case of XML Schema elements having a
simple type, we had to introduce the LiteralAssociationEnd as a role class. Furthermore,
an Attribute or LiteralAssociationEnd role may itself play the role of a Reference, which
defines a referential constraint referencing another Attribute of the same type.

The Association and Aggregate role classes are an intuitive example of two role
classes that can be used in combination to represent similar concepts of different meta-
models. If the represented schema is in a concrete metamodel which allows relationship
types to have attributes, such as the EER metamodel, then every model element playing
an Association role may play additionally an Aggregate role. If associations may not
have attributes, which is the case in OWL, a model element may only play either of
both roles. On the other hand, the representation of a relational schema may not contain
Association roles at all. Thus, these two roles can be combined to represent the precise
semantics of different metamodel elements. Of course any of these combinations can
be further combined with other roles, such as the ObjectSet role, to yield even more
description choices.

We have defined a formal semantics for models represented in GeRoMe that allows
to specify Instances for model elements which play a Set role. Values of Domains are
modeled as elements playing a Literal role. On the other hand values of elements play-
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Fig. 2. The Generic Role based Metamodel (GeRoMe)



ing ObjectSet, Aggregate, or Association roles, or combinations thereof are represented
by elements playing a StructuredInstance role. These are for example rows in a table,
values of structs in UML, or instances of classes or association classes. An Abstract role
marks a Set as being not instantiable. The Any role is used as a wildcard, in cases where
types or associations or attributes are not constrained. This is commonly used in XML
Schema where you can specify components of a complex type with anyAttribute
or anyElement, for instance. Each Instance can also play the role of a Default value
with respect to any number of properties. Our formal semantics defines also the shape
of the structured instance such that it conforms to the structure defined by its value set.
But we abstain here from further elaborating on that issue since this topic abandons the
model level for the instance level.

Finally, model elements can be Visible, i.e. they can be identified by a name. The
name attribute of a Visible role has to be unique within the Namespace it is defined in.
Furthermore, a visibility can be chosen for a Visible element from a predefined enumer-
ation. A model’s root node is represented by a model element which plays a Namespace
role.

Derivation of New Elements A BaseElement role is played by any model element
that is a superset in the definition of a derived element. Thus, a DerivedElement can
have more than one BaseElement and vice versa. These roles can be played by any
DerivableElement.

The BaseElement and DerivedElement roles are connected via dedicated model el-
ements representing the DerivationLink. Each DerivationLink connects one or more
BaseElements to one DerivedElement. The IsA role can be used to define specialization
relationships. It extends the definition of a superclass by adding new properties (e.g.
inheritance in UML). A DerivedElement role which is connected to an IsA role with
more than one BaseElement role can be used to define a type which is the intersection
of its base elements. A Subtrahend is an element whose instances are never instances
of the derived element (e.g. a complementOf definition in OWL).

We identified two different kinds of isA relationships which are often not distin-
guished from each other. All surveyed metamodels allow extension (i.e. the subtype
defines additional attributes and associations) if they allow specialization at all. In EER
and OWL, model elements can specialize base elements also by constraining the ranges
of inherited properties. In EER, this is called predicate defined specialization [12, p.80],
whereas in OWL it is called restriction and comprises a very important description fa-
cility for inheritance. Such derivations can be expressed in our metamodel by deriving
the constrained property from the original one and letting it play the role of a Univer-
sal or Existential restriction. This Restriction role must reference the DerivedElement
role of the respective subclass. These restrictions cannot be used in UML. For exam-
ple defining a universal restriction on an association would amount to covariance, that is
specialization of a property when specializing a class. Covariance breaks polymorphism
in UML (or object oriented programming languages); it is therefore not allowed.

Special kinds of derivations are for example enumerations and intervals. We model
such derivations by letting the IsA link play additional roles. This is similar to the facets
of XML Schema simple types and allows to orthogonally specify conditions of the de-
rived Set. Obviously some of these roles may only be applied when deriving Domains.



You can define new structural elements by using an Enumeration role and enumerating
those Instances which are element of the new Set. Furthermore, derivations may define
intervals of existing Domains or restrict the length and precision of their values. In case
the base element is the built-in domain string or a subtype thereof a regular expression
can define a new subtype. In XML Schema, named domains can be derived from others
whereas in the relational metamodel derived domains occur only as an anonymous type
of attributes with enumeration or interval domains.

Constraints Constraints are represented by separate model elements. For example, a
disjointness constraint on a set of derived elements (or any other types) has to be defined
by a model element representing this constraint. The element has to play a Disjointness
role which references the types to be disjoint. In the case of OWL or UML, any col-
lection of classes can be defined to be disjoint. When representing an EER model, this
constraint can be used to define a disjoint isA relationship by referencing at least all of
the derived elements.

Another constraint is the Functional constraint which declares a property or a set
of properties to have the characteristics of be a function (uniqueness and completeness)
and is used for example to represent certain OWL properties. Correspondingly, an In-
jective property is a functional property that specifies a one-to-one relationship. Such
an Injective role is equivalent to a uniqueness constraint in XML Schema or SQL. It
can also define a composite key by being connected to multiple properties. An injective
constraint playing an Identifier role defines a primary key. This reflects the fact that a
primary key is only a selected uniqueness constraint, and thus, only one of multiple
candidate keys.

The ForeignKey constraint is a collection of Reference roles which defines a (pos-
sibly composite) reference to an Identifier. This is used to model foreign keys in the
relational model or key references in XML Schema.

Additional restrictions on the structure of Aggregates or Associations can be given
by Group constraints which reference a set of Particles. For instance, the Sequence con-
straint defines the order of appearance of properties. The XOr constraint is a modeling
feature that is available in the UML metamodel or in XML Schema. It states that an
object may participate only in one of the related associations or that only one of refer-
enced attributes occurrs. Such Group constraints can also be nested which corresponds
to the nesting of the respective model groups in XML Schema and allows to define them
recursively together with cardinality constraints.

We are aware that there are subtle differences in the semantics of constraints for
the various metamodels. However, these differences stem from the objectives of the re-
spective modeling languages and apply only to the data level. In contrast, the goal of
GeRoMe is to represent models and to provide a generic data structure for manipulating
them. For instance, in a relational database a uniqueness constraint is checked when-
ever a row is inserted or updated whereas in an ontology such a constraint will only
narrow the interpretation of the model such that individuals with the same value for the
unique property are classified as being equal. On the model level the constraint is just a
statement about the property.

Another issue are constraints that can be attached as an expression in some for-
mal constraint language to the model (e.g. OCL constraints or SQL assertions). Such



constraints cannot be represented in a generic way, as this would require a language
that unifies all features of the various constraint languages. Thus, a generic constraint
language would be difficult to interpret because of the complexity of the language or
it would be undecidable whether a constraint can be satisfied or not. Currently, we are
able to express constraints as first-order logic formulas (using predicates referring to the
instance level as defined in appendix A.1) which certainly cannot cover all constraints
(e.g., SQL assertions with aggregations or functions). Therefore, a translation of exist-
ing contraint languages into our language could be done only partially. The opposite
way, however, will be possible, e.g. generating executable code from these constraints.
This is especially important for mappings between different models as these mappings
will be used to transform data from one model into another model.

GeRoMe can be extended with new role classes representing other features of con-
straints and structures while existing models and operators still remain correct.

4 Representation Examples

This section presents some example models based on a small airport database in [12,
p.109] (see fig. 3). We represented EER, XML Schema and OWL DL models for this
example. The model contains simple entity types composed of attributes as well as
some advanced features, which are not supported by all metamodels (e.g. composite
attributes, isA relationship).
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Fig. 3. Part of an airport EER schema

4.1 Representation of an EER Schema

Fig. 4 shows a part of the representation of the airport model in GeRoMe. The GeRoMe
representation shows each model element as a ModelElement object (gray rectangle)
which plays a number of roles (white squares) directly or by virtue of its roles playing
roles themselves. Each such role object may be connected to other roles or literals,
respectively. Thus, the roles act as interfaces or views of a model element. The links
between role objects connect the model element descriptions according to the semantics
of the represented schema.

For the sake of readability, we refrain here from showing the whole model and
omitted repeating structures with the same semantics such as links from namespaces
to their owned elements or Visible roles. A model element plays a Visible role if it has
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Fig. 4. GeRoMe representation of an EER schema

a name. We represent this in the following figures by assigning a simple label to the
gray box resembling the element. In case of anonymous elements, which do not play a
Visible role, we prefix the label with an underscore.

The root model element of the airport schema is a model element representing the
schema itself ( AirportSchema). It plays a Namespace role (NS) referencing all model
elements directly contained in this model.

The Name attribute is a visible model element and therefore its model element ob-
ject plays the Visible role (Vis). The role defines a name of the element as it could be
seen in a graphical EER editor (note that we omitted other occurrences of the Visible
role class).

Since entity types are composed of attributes, every object representing an entity
type plays an Aggregate role (Ag). Furthermore, instances of entity types have object
identity. Consequently, representations of entity types also play an ObjectSet role (OS).
The Aggregate role is again connected to the descriptions of the entity type’s attributes.

The EER model defines a primary key constraint on the SSn attribute. Therefore, a
model element representing the constraint ( Const1) and playing an Injective role (Inj)
is connected to this attribute. This is a uniqueness constraint which is special in the
sense that it has been chosen to be a primary key for the entity type Person. This fact
is represented by the constraint playing an Identifier role (Id1) connected to the identi-
fied aggregate. Since Person’s subtypes must have the same identifier, the injectiveness
constraint plays also Identifier roles (Id2, Id3) with respect to these model elements.



In the EER model, it is usually not possible to specify domain constraints, but the
addition of default domains does not hurt. Therefore, attributes always have a type in
GeRoMe. Domains are themselves represented as model elements playing domain roles
(D) (e.g. string). It is also possible to derive new types from existing ones as this is also
possible in most concrete metamodels.

In addition, note that the composite attribute Name has not a domain but another
Aggregate as type. Unlike the representation of an entity type, NameType is not player
of an ObjectSet role. Consequently, this element cannot be connected to an Association-
End, which means that it cannot participate in associations. Furthermore, NameType
is not visible as it is an anonymous type. However, the representation is very similar
to that of entity types and this eases handling both concepts similarly. For example, in
another schema the composite attribute could be modeled by a weak entity type. If these
two schemata have to be matched, a generic Match operator would ignore the ObjectSet
role. The similarity of both elements would nevertheless be recognized as both elements
play an Aggregate role and have the same attributes.

Furthermore, the figure shows the representation of the isA relationship. Since ev-
ery instance of Pilot and Employee is also an instance of Person, the Person model
element plays a BaseElement role (BE) referenced by two IsA roles (IsA). These roles
define two children, namely the DerivedElement roles (DE) which are played by the re-
spective subtypes Employee and Pilot. Any attribute attached to the Aggregate roles of
the subtypes defines an extension to the supertype. The children could also be defined
as predicate-defined subtypes by associating to the DerivedElement roles a number of
Restriction roles.

The subtype Pilot participates in the relationship type Flies. The representation of
this relationship contains an Association role (As) which is attached to two Object-
AssociationEnds (OE) (i.e. a binary relationship). Furthermore, the relationship has an
attribute, and consequently, it plays the role of an Aggregate. The representations of the
two association ends define cardinality constraints and are linked to the ObjectSet roles
(OS) of their respective participators. They also may play a Visible role which assigns
a name to the association end.

4.2 Representation of an XML Schema

Figure 6 shows part of an XML Schema for the airport domain whereas figure 5 shows
the representation of this example schema in GeRoMe. The XML Schema element is a
relationship between its enclosing type and the complex type of the nested element. But
it is always a 1:n relationship since an XML document is always tree structured. Cross
links between elements in different subtrees have to be modeled by references.

But what about root elements in a schema? These elements are related to the schema
itself which in our role based model is represented by the http://../Airport model ele-
ment. This is just one example of a concrete model element which is not obviously
mapped to a generic metamodel.

An XML document conforming to an XML Schema can have any element as root
element which is defined in the schema file as a direct child of the schema element.
Consequently, any such element is represented in GeRoMe as a model element playing
an association role with its complex type as one participator and the schema node as
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Fig. 5. Representation of a similar XML Schema

the other participator. In the example, Airport is the only such element. This element
is visible and its name is “Airport”. AssociationEnds of XML elements have no names
attached and therefore are anonymous. Complex types may be anonymously nested into
an element definition. In the example, this is the case for AirportType. Since definitions
of keys have labels in XML Schema, the identifier of Person plays a Visible role with
its label “personKey” assigned to it.

Model elements defined within other model elements such as attributes and XML
elements are referenced by the Namespace role of the containing element. For example,
the element Flies is owned by the Namespace role of PilotType. Another consequence
of the structure of semistructured data is that the AssociationEnd of the nested type
always has cardinality (1, 1), i.e. it has exactly one parent. Finally, the model element
PilotEmpType has been introduced as it is not possible to represent overlapping types
in XML Schema.

4.3 Representation of an OWL DL Ontology

In table 1, we stated that OWL DL object properties are represented by model elements
playing ObjectAssociationEnd roles and that a pair of these model elements is con-
nected by an Association. This is another good example for the problems which occur
when integrating heterogenous metamodels to a GMM. The reasons for the sketched
representation can be explained with the semantics of the relationship type WorksOn in
fig. 3. The representation of the corresponding OWL DL elements is shown in figure 7.

Intuitively and correctly, one represents WorksOn as a model element playing an
Association role. WorksOn has two ObjectAssociationEnds: one with cardinality (0,n)
pointing on PlaneType and one with cardinality (1,n) pointing on Employee. This is



<xsd:schema xmlns="http://../Airport">
<xsd:element name="Airport">

<xsd:complexType>..</xsd:complexType>
<xsd:key name="personKey">

<xsd:selector xpath="./Person" />
<xsd:field xpath="@SSn" />

</xsd:key>
</xsd:element>
<xsd:complexType name="PersonType">

<xsd:attribute name="SSn" type="xsd:string" />
</xsd:complexType>
<xsd:complexType name="PilotType">

<xsd:complexContent>
<xsd:extension base="PersonType">

<xsd:sequence>
<xsd:element name="Flies">

<xsd:complexType>...</xsd:complexType>
</xsd:element>

</xsd:sequence>
<xsd:attribute name="Lic_Num" type="xsd:string" />
<xsd:attribute name="Restr" type="xsd:string" />

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
<xsd:complexType name="PilotEmpType">

...
</xsd:complexType>

</xsd:schema>

Fig. 6. An XML Schema for the airport domain

represented analogous to Flies in fig. 4. Now what are the problems if you would regard
an object property WorksOn as corresponding to the given relationship type?

Firstly, an object property always has domain and range. Thus, it has a direction. But
the direction of a relationship type is only suggested by its name. On the other hand, an
association end has a direction. The role name describes the role which the participator
plays in the relationship type with respect to the participator at the opposite end. Fur-
thermore, these role names are often phrasal verbs as are the names of object properties
in OWL. Actually, in description logics object properties are often called roles. Thus,
“WorksOn” should be the role name assigned to the link between the relationship type
and the entitiy type PlaneType.

Secondly, an object property may have one cardinality restriction, whereas a rela-
tionship type has at least two (one for each participating entity). This shows that an
object property corresponds to an association end, and that a pair of object properties
(one of which is the inverse of the other) is correctly represented as a binary association.
Note that OWL DL allows only binary relationships.

In order to allow other constraints, such as Symmetric, new roles can be added to
GeRoMe. Adding a new role to the metamodel will render existing models and operator
implementations valid and correct. Thus, it is also easy to extend GeRoMe if this is
necessary in order to include new modeling constructs.
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5 Model Management using GeRoMe Models

In this section, we show how model management operators can make use of GeRoMe.
Transformation of models is a typical task for model management applications. Our im-
plementation of generic ModelGen operators is comparable to the approach described
in [26] which is imperative as well. Another approach is the rule-based model transfor-
mation of [2]. We implemented our Import and Export operators based on equivalence
rules between the concrete metamodels and GeRoMe (cf. section 6.3). A rule based ap-
proach is particularly useful for this task as equivalence rules enable consistent import
and export of models since they are applicable in both directions.

We will explain the transformation of the EER model of fig. 4 into a relational
schema. Therefore, the original representation has to undergo several transformations
in order to become a representation of a relational schema. Fig. 8 shows the final result
of the transformation steps which will be discussed in detail in the following.

5.1 Transformation of GeRoMe Models

In model management, transformation of models is performed by a ModelGen operator,
i.e. the operator generates a model from another existing model. We have implemented
the transformation of constructs such as composite attributes or inheritance from an
EER schema by several ModelGen X operators. Each operator transforms the modeling
constructs not allowed in the relational model into modeling elements of the relational
model. The decomposition of the operators into several “atomic” operators has the ad-
vantage that they can be reused in combination with other operators to form new oper-
ators. Note that the following operators are not aware about the original representation
of the models, i.e. the operators just use the GeRoMe representation. Thus, they could
also be used to transform a UML model into XML Schema if similar transformation
tasks are required (e.g. transformation of associations to references).

It has to be emphasized that mapping of models from one metamodel to another is
just one popular example application of model management. The goal of our generic
metamodel is not only to provide a platform for schema translation but to provide a
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generic model representation that serves as a foundation for the polymorphic usage of
any model management operator. Thereby, other applications of model management,
such as schema evolution, are also supported in a generic way.

Transformation of Relationship Types Relationship types are not allowed in the rela-
tional metamodel. According to properties such as cardinality constraints, they have to
be transformed to relations by executing the operator ModelGen AssocToRef for each
Association role. First, it looks for attached ObjectAssociationEnd roles, the arity of the
association, and cardinality constraints. Depending on these constraints the transfor-
mation is either performed automatically or the user is asked for a decision before the
operator can proceed. Copies of all attributes in the participators’ identifiers are attached
to the relationship’s Aggregate role. An Aggregate role has to be created first, if not yet
available. Furthermore, these copies play Reference roles (Ref) referencing the original
attributes, and thereby defining referential constraints. These reference roles constitute
a foreign key (FK). After performing all these transformations, the association ends and
the relationship’s Association role are deleted.

The result yet contains ObjectSet roles (OS), which are not allowed in a relational
model. These roles can now be removed directly, as the associations have been trans-
formed to attribute references. This yields an intermediate result which cannot be in-
terpreted as a valid schema in the EER or relational metamodel, since it now contains
constructs disallowed in both metamodels. An Export operator to the Relational or EER
metamodel would have to recognize this invalidity and reject to export.

Transformation of IsA Relationships The isA relationships also have to be removed
depending on their characteristics (partial and overlapping), the attributes of the exten-
sions Pilot and Employee thereby become attributes of the supertype.

The operator ModelGen FlattenIsA fulfills this task by receiving a BaseElement
role as input. It first checks for disjointness of connected isA relationships and whether



they are total or not. Depending on these properties, the user is presented a number of
choices on how to flatten the selected isA relationships. In the example, the base type
Person and its subtypes Pilot and Employee have been selected to be transformed to
one single aggregate due to the fact that the isA relationship is neither total nor disjoint.
The resulting aggregate contains all attributes of the supertype and of the subtypes.
Additionally, the boolean attributes isPilot and isEmployee as well as Default roles Df1
and Df2 related to these attributes have been introduced.

Transformation of Composite Attributes The transformation of composite attributes
is done by another atomic operator. First, it collects recursively all “atomic” attributes
of a nested structure. Then, it adds all these attributes to the original Aggregate and re-
moves all the structures describing the composite attribute(s) (including the anonymous
type). This operator also needs to consider cardinality constraints on attributes, since
set-valued attributes have to be transformed into a separate relation.

In this way, the whole EER schema has been transformed to a corresponding rela-
tional schema. Of course, more operators are needed to handle other EER features, such
as Union derivations of new types.

5.2 Equivalence of Models Represented in Different Metamodels

The preceding sections showed models for the airport domain in different concrete
metamodels. It can be seen that, although each of the models is designed for the same
domain, their GeRoMe representations differ from each other.

Please note that the differences in the representations stem from the constraints and
semantics of the concrete metamodels. Nevertheless the representations use the same
role classes in all models, while accurately representing the features of the constructs
in the concrete modeling languages. For example, the XML Schema PersonType plays
the same roles as the EER Person, since entity types have the same semantics as XML
Schema complex types. Furthermore, the relational Person does not play the ObjectSet
and BaseElement roles since these are not allowed in the relational model. On the other
hand, all these roles play an Aggregate role, and therefore they look the same to an
operator which is only interested in this role.

In the last section we demonstrated the tranformation of an EER model into a rela-
tional model. Because of the aforementioned differences in the semantics of represen-
tations in different concrete metamodels a model resulting from such transformations
cannot be equivalent to the original model in a formal way. For example, since the rela-
tional model does not allow relationship types, these elements have to be transformed to
relations with referential constraints. Thus, during the transformation information about
the original model is lost because the target metamodel cannot represent these concepts.

Consequently, if you transform the GeRoMe representation of an EER model into
the GeRoMe representation of a relational schema and try to reverse this, the result
may be a model which is different from the original schema. For example, it is not
possible to identify which model elements stem from entity types or relationship types,
respectively.

To summarize, a generic metamodel cannot represent models from different con-
crete metamodels identically because each concrete metamodel is designed to represent



different aspects of real world entities and their relationships. What it can do is to rep-
resent models in any metamodel with the same set of modeling elements. This allows
to implement model management operators only with respect to these elements of the
generic metamodel and to use these operators polymorphically for models from arbi-
trary metamodels.

6 Architecture and Implementation

Applications dealing with complex models require support for model management in
several ways. Therefore, our goal is to provide a library for the management of GeRoMe
models (including the definition of several operators) that can be reused in various appli-
cation settings. In the following, we will first present the architecture of our framework.
In section 6.3, we will explain how we have realized the import and export of GeRoMe
models, which is based on a logical formalization presented in section 6.2. More infor-
mation about the import and export of models and also the transformation of models
using a rule based approach in GeRoMe can be found in [21].

6.1 Architecture

In order to make the functionalities of GeRoMe available to several applications, we
developed an API for the manipulation of models represented in GeRoMe. Manipu-
lations are performed by a set of model management operators. These can be atomic
operators or operators composed of existing operators. Figure 9 presents the structure
of our API as well as the general architecture of model management applications based
on GeRoMe.

Metadatabase
Models, Mappings

Library of composed Operators Atomic Operators

GeRoMe-API: 
Interfaces and Base Implementations

Domain-dependent metadata intensive application

Implementation
of GeRoMe-API

Fig. 9. Architecture of a metadata intensive application based on GeRoMe

Our implementation of a model management platform is based on a multi-layered
architecture. The lowest layer provides facilities to store and retrieve models in the
GeRoMe representation and is implemented using the deductive metadatabase system
ConceptBase [19]. ConceptBase uses Telos as modeling language [25], which allows
to represent multiple abstraction levels and to formulate queries, rules and constraints.
Objects are represented using a frame-like or graphical notation on the user side, and a



logical representation (triples similar to RDF) based on Datalog¬ internally. The logical
capabilities of ConceptBase can be used to analyze the models or to encode the seman-
tics of models in logical rules (e.g. inheritance of attributes)1. In addition, GeRoMe
models can be stored as and constructed from a set of logical facts which is used for the
import and export of models. This will be discussed in more detail below. Furthermore,
it is possible to store models represented in GeRoMe in an XML format to ease the
exchange of metadata.

On top of the storage layer, an abstract object model corresponding to the model in
fig. 2 has been implemented as a Java library. This is a set of interfaces and base imple-
mentations in Java. An implementation of these interfaces can be chosen by instantiat-
ing a factory class. Consequently, the object model is independent from the underlying
implementation and storage strategy. The relationship between roles and model ele-
ments is represented in member variables and methods which allow to add and delete
roles from model elements (or other roles). A role has also a link to its player. A model
element can be queried for the roles it plays or all roles of a specific class can be re-
trieved. Some convenience methods in the model element interface allow direct access
to the role object (e.g. getAggregate()). The GeRoMe API is also independent
from any original metamodels; the relationship between models represented in GeRoMe
and models represented in the original metamodels is established by import and export
operators as described below in section 6.3.

The next layer is formed by atomic operators based on the GeRoMe API. Operators
have to be implemented “as atomically as possible” in order to allow maximum reuse.
These atomic operators are not aware of the original metamodel, i.e. their implementa-
tions use exclusively roles and structures in GeRoMe.

By “atomic” we denote that when implementing an operator such as ModelGen RM,
this shall not be implemented as a black box. Instead, the developer should extract
certain steps that can be seen as meaningful units of manipulation and can be reused in
other tasks. Such an atomic operator should not implicitly encode any knowledge about
the native metamodel it operates on.

Atomic operator implementations can be combined to form new, more complex,
composite operators. In doing so, the reuse of operators is increased in two ways. On
the one hand, operators have to be implemented only once for the generic metamodel
and can be used for different concrete metamodels.

For example an operator for the transformation of association ends to referential
constraints can be reused by a composite operator ModelGen RM which computes a
relational model from an EER model and by another composite operator ModelGen XS
for computing an XML Schema from an OWL ontology.

On the other hand, operators such as Match or Merge can be reused to compose
new operators for solving different metadata related tasks. Thus, a metadata intensive
application uses atomic and composite operators to implement its model manipulation
functionality.

1 We are aware of the fact that Datalog cannot be used to support full reasoning on all model-
ing languages, especially not OWL DL. However, this is not the goal of GeRoMe, it is used
to represent the explicit knowledge about models which will be used in model management
operators. Full reasoning about models has still to be done by special purpose reasoners for
the specific metamodels.



6.2 Logical Formalization

A logical formalization of GeRoMe enables the specification of several model man-
agement tasks in a declarative way. As we will describe in the next section, import
and export of models can be easily defined by rules using such a formalization. Further-
more, this logical representation enables also more sophisticated reasoning mechanisms
on models, for example, to check the consistency of models or the correctness of trans-
formations.

Formally, GeRoMe is defined by a set of role types R = {r1, . . . , rn} and a set
of attribute types A = {a1, . . . , am} which can be applied to role types. In addition,
V denotes a set of atomic values which may be used as attribute values. A model M
represented in GeRoMe is defined by a tuple M = 〈E,R, type, plays, attr〉, where

– E = {e1, . . . , ek} is a set of model elements,
– R = {o1, . . . , op} is a set of role objects,
– type : R → R is a total function that assigns exactly one role class to each role

object,
– plays ⊆ (E ∪ R)× R represents the aforementioned relation between model ele-

ments (or role objects) and role objects,
– attr ⊆ (R × A) × (R ∪ V) represents the attribute values of a role object (i.e.

attributes may also refer to other role objects).

To make the representation more human-readable, we have used a simplified no-
tation in the formulation of the import/export rules below. The fact that an object e
is a model element (e ∈ E) is represented by the statement modelElement(e).
Role objects are not explicitly represented; they are denoted as terms which have the
name of their role class as functor and all objects on which they depend as argu-
ments. For example, objectAssociationEnd(e) states that the model element
e plays the ObjectAssociationEnd role. The same term can be used to identify the role
object. The attr relationship is also reified: a term like attrName(o,v) denotes
that the object o has the value v for the attribute called attrName. For example,
min(objectAssocationEnd(e),1) specifies that the min-attribute of the role
object defined above is 1.

We have also defined a formal semantics for GeRoMe to characterize data instances
(see appendix A.1), which is in line with the logical formalization given above. Data
instances are also used at the model level (see role Instance), e.g. as default values or
boundaries of a type defined by an interval. The main goal of the formal semantics is
however the formal definition of mappings between models, which should finally be
used to translate data instances from one model to another model. As this is out of the
scope of this paper, we do not elaborate on the formal semantics here.

Using the logical representation for GeRoMe models and a similar representation
for models in specific metamodels, we can use a rule-based approach for the import and
export of models as we will present in the next section. Moreover, this representation of
a model is a fine grained representation, because each feature (or property) of a model
element is represented by a separate fact. This is especially useful for the Diff operator
in which we need to identify the differences of model elements.



6.3 Import and Export Operators

We do not continuously synchronize a GeRoMe model with underlying native metadata.
Instead, we import the native metadata into GeRoMe and after manipulating this model
we export it into some native format. A process that has also been used in [3]. In general,
it is not even possible to enforce consistency of the native schema with the GeRoMe
model since manipulations may yield an intermediate result that is not valid in neither
the source nor the target modeling language. Consider the example of section 5. An
EER model in which some of the relationship types have been transformed into foreign
keys but others have not, is neither a valid EER model, as it contains references, nor a
valid relational schema as it still contains relationship types. Consequently, the GeRoMe
model cannot be synchronized with a native schema. Instead, only the input and output
must be representations of valid native models.

Import and export operators to the native format of the various modeling languages
are currently being implemented. The operators use the logical representation presented
before and a rule-based approach: the relationship between a concrete metamodel and
GeRoMe is represented by a set of equivalence rules. The left hand side of a rule refers
to elements of the concrete metamodel, the right hand side refers to GeRoMe elements.

Using a rule-based approach for specifying the import/export operators has the ad-
vantage that the semantics of these operators can be specified in a declarative way and
is not hidden in the code of a complex transformation function. Furthermore, our ap-
proach is fully generic; it uses reflection and annotations in Java to create objects or to
generate facts from an existing GeRoMe model. Therefore, the code required to support
another metamodel is limited to the generation of the metamodel-specific facts and the
specification of the equivalence rules. This reduces the effort for the implementation of
import/export operators significantly.

Formally, a GeRoMe model is represented by a set of ground facts KBGeRoMe

which uses only vocabulary (functions, predicates, ..) from the logical GeRoMe repre-
sentation (e.g.modelElement(Person), attribute(Person,Name), . . .). The model
itself corresponds to the one and only logical model M of KBGeRoMe. This interpreta-
tion is trivial but it has to be noted that there must be only one logical model, otherwise
KBGeRoMe is ambigious. This is one requirement that has to be considered when im-
plementing the rules for import and export.

Now, a model in a concrete metamodel (say EER) is also represented by a set of
ground facts KBEER about model elements which uses only vocabulary from the
concrete metamodel (UMLAssociationEnd(as, ae, rn,min,max), RMTable(x),
EEREntityType(. . .), . . .). The import amounts to applying a set of rules to the facts
KBEER (say SEER↔GeRoMe). The left hand side of the implication contains only
vocabulary from the concrete metamodel, the right hand side contains only vocabulary
from GeRoMe. The result is a set of ground factsKBGeRoMe (instantiations of the right
hand sides). The export of a model is performed the other way around; to have consis-
tent import and export operators, the rules are expressed as equivalence rules which can
be interpreted from left to right or vice versa.

Fig. 10 gives an example for such rules. The rules are expressed in standard Prolog
syntax, i.e. labels starting with an upper-case letter denote variables. They are evaluated
using a meta-program implemented in Prolog, which is able to handle rules with mul-



sql_column(ID),
sql_column_table(ID, TableID),
sql_column_name(ID, Name),
sql_column_type(ID, Type) <=>

modelElement(ID),
owned(namespace(TableID), ID),
visible(ID),
name(visible(ID), Name),
attribute(ID),
property(aggregate(TableID), attribute(ID)),
domain(attribute(ID), domain(Type)),
max(attribute(ID), 1).

sql_column_nullable(ID, true) <=>
min(attribute(ID), 0).

Fig. 10. Example rules for the Import/Export of SQL models

tiple predicates on both sides of the equivalence. The example defines the import of a
column of a SQL table into a GeRoMe model. The column with the identifier ID be-
longs to a table and has a name and a type. In GeRoMe, we will create a model element
with the same ID. The second statement defines the relationship between the name-
space role of the table and the newly created model element. The following statements
define that the element is visible and has a name. Then, we have to specify that the new
model element plays also the attribute role, and link this role to the aggregate role of the
model element representing the table. Finally, the domain of the attribute is defined by
linking it to the domain role of the type, and the maximum cardinality of the attribute is
set to 1. The second rule represents the special case in which NULL-values are allowed
for the column, which is represented in GeRoMe by a minimum cardinality of 0.

In the example of Fig. 10 we have used terms as arguments of some predicates
(e.g. namespace(TableID)). As described above, these terms represent the role
objects. With a pure logical view, one could also interpret these terms just syntactically
as Skolem functions, which have been introduced on the right hand side to replace ex-
istentially quantified variables, i.e. variables that would appear only on one side of the
rule. As the goal is to construct objects using the GeRoMe-API, these functions must
return meaningful objects. Therefore, while creating the GeRoMe objects from a set
of facts, these functions will return the corresponding role objects of the given model
elements, e.g. namespace(TableID) returns the Namespace role of the model el-
ement TableID. By doing so, we make sure that the same objects are used, even if
they are referenced in different rules; for example, the attribute role of ID is referenced
in both rules of fig. 10. Note that in some cases, objects can play multiple roles of the
same type (e.g. attributes may play several reference roles); in this case, these functions
have more than one argument (i.e. all objects that are necessary to identify the role).

Fig. 11 presents an example of import/export rules for complex types of XML
schemas. The first part of the right hand side of the rule is similar to the example before;
it defines a model element which is contained in a namespace and which plays a visible
role. In addition, the model element plays also the ObjectSet role, as complex types
participate in associations. The second rule adds an aggregate rule to the model element



xs_namespace(NamespaceID),
xs_complextype(ID),
xs_complextype_ns(ID, NamespaceID),
xs_complextype_name(ID, Name) <=>

modelElement(ID),
owned(namespace(NamespaceID),ID),
visible(ID),
name(visible(ID),Name),
objectSet(ID).

xs_attribute(ID),
xs_attribute_of(ID, ComplexTypeID) <=>

aggregate(ComplexTypeId),
modelElement(ID),
attribute(ID),
property(aggregate(ComplexTypeID),attribute(ID)),
...

Fig. 11. Example rules for the Import/Export of XML Schemas

of this complex type, if the complex type contains also attributes. The rule creates also
a model element (ID) for the attribute and links the attribute role of this object to the
aggregate role of the complex type. We omitted further statements for the definition of
namespaces, etc.

Note that the rules can be used in both ways. Thus, it is also possible to export
GeRoMe models using these rules. Depending on the desired target metamodel, the cor-
responding rule set will be activated and evaluated based on a set of facts representing
the GeRoMe model. Evaluating the rules is only one step of the export operator: before
a model can be exported to a concrete metamodel, the export operator has to check
whether all roles used can be represented in the target metamodel. If not, the problem-
atic roles have to be transformed into different elements as described, for example, in
section 5.

Due to the role and rule based approach and the generic implementation of the
necessary Java classes the effort of supporting a new metamodel is minimized. Since the
correspondences are not hidden in imperative code, but are given as a set of equivalence
rules, the developer can concentrate on the logical correspondences and does not have
to deal with implementation details. Besides, only two classes have to be implemented
that produce facts about a concrete model from an API (e.g., the Jena OWL API, see fig.
12) or read facts and produce the model with calls to the API, respectively. These two
classes merely produce (or read) a different syntactic representation of the native model
and do not perform any sophisticated processing of schemas. Creating and processing
of facts about the GeRoMe representation is completely done with reflection. During
the export, facts about a GeRoMe model are created according to Java annotations in
the API. During the import unary facts cause model elements and role objects to be
created, binary facts establish relationships between objects and ternary facts do the
same for indexed relationships (see fig. 13). This significantly reduces the programming
effort for supporting a new metamodel. For example, import and export of SQL requires
about 250 lines of Java code for each operator, and about 200 lines of code for the



public String transformClass(OntClass cls) {
//...
List<OntClass> lClasses=cls.listSuperClasses(true).toList();

for(OntClass superClass : lClasses) {
sResID = transformClass(superClass);
Term t=Prolog.term("owl_subclass",plID,Prolog.id(sResID));
mlFacts.add(t);

}
}

Fig. 12. Example code fragement for importing OWL classes

// term is a Java object representing a Prolog term
if(term.arity() == 1) {

if(!invokeBuilder(term)) {
throw new ModelManException("No such method");

}
}
else if(term.arity() == 2 || term.arity() == 3) {

if(!invokeMethod(term)) {
throw new ModelManException("No such property");

}
}

Fig. 13. Creating GeRoMe objects using reflection

Prolog rules. The relationships between the modeling constructs could be expressed in
less than 20 equivalence rules.

6.4 Equivalence of Imported and Reexported Models

The transformations, performed by ModelGen operators such as the ones presented in
section 5, in general serve the purpose of removing constructs disallowed in the tar-
get metamodel. Therefore, the transformation cannot be reversed automatically as it
removed information from the original model which can only be regained by asking the
user. At best, suggestions can be made based on heuristics.

However, the import and subsequent export for a generic metamodel should not
lose information. It must be emphasized that an import to and an export from GeRoMe
may result in a model syntactically different from the original model, as there are re-
dundant ways to represent the same modeling construct in specific metamodels. For
example, consider an OWL object property described as being functional; this could
also be modeled by an inverseFunctional statement of the inverse property. In the im-
port/export rules, such ambiguity must be resolved by using negation, e.g. the property
will be defined as functional only if there is no (visible) inverse property that could be
declared as inverseFunctional or vice versa.

On the other hand, semantic equivalence of imported and subsequently reexported
models means that the same set of instances (individuals, tuples, XML fragments, ..)
satisfies both, the original model and the imported and reexported model. The mapping
rules for metamodels described above should be formulated in a way which ensures that
this property holds.



Equivalence between models can be defined by means of information capacity
[16,24] This definition must be adopted in our case to metamodels. Let f be a map-
ping between the native metamodel M and GeRoMe defined by a set of mapping rules
R. A subsequent import and export can only yield the original model if f is invertible,
so f−1 and f can be composed. Therefore, it must be a total and injective function
from the set of valid models in M to the set of valid GeRoMe models. Then f is
an information capacity preserving mapping [16,24] between the sets of models, and
GeRoMe dominates M via f and, naturally, the composition of f and f−1 is the iden-
tity function (an equivalence preserving mapping) on the set of models in metamodel
M . Consequently, the above notion of semantic equivalence would be satisfied.

Thus, the question of whether a model in a native metamodel can be losslessly
imported and reexported can only be answered with respect to the allowed modeling
constructs and the mapping rules R for the respective metamodel. These mapping rules
must translate every native modeling construct uniquely into a corresponding generic
modeling construct (or combination thereof) and translate the same generic construct
into the same native modeling construct. Indeed, there are some constructs, that still
cannot be represented in GeRoMe. For instance, as we concentrated on data models, we
cannot model methods in GeRoMe. But GeRoMe is designed to be extendable; if it is
not possible to represent a modeling construct in the correct way in GeRoMe, new roles
can be added to do so. We have made this experience while implementing the mapping
rules for XML Schema; it contains several modeling features which are not available
in other modeling languages. For instance, the LiteralAssociationEnd role has been
introduced to model XML elements with simple type. These could as well be modeled
as attributes, but then it would not be possible to tell whether an attribute should be
exported to an XML Schema attribute or an element.

While implementing the mapping rules for the import and export operators, we have
to assert that structures or constraints are uniquely imported into our metamodel and,
vice versa, that GeRoMe represents these features non-ambigously, so that they can
be exported again into the native format. In [2] the authors already argued for their
system that a formal proof of losslessness of translations to a generic metamodel is
hopeless as even a test for losslessness of translations between two native metamodels
is undecidable [5]. However, we tried to ease the formulation of such a mapping by
implementing import and export in a way which allows the developer to concentrate
on defining the mapping rules in a declarative way rather than distributing the mapping
over a set of Java classes.

7 Conclusion

Generic model management requires a generic metamodel to represent models defined
in different modeling languages (or metamodels). The definition of a generic metamodel
is not straightforward and requires the careful analysis of existing metamodels. In this
paper, we have presented the generic role based metamodel GeRoMe, which is based
on our analysis and comparison of five popular metamodels (Relational, EER, UML,
OWL, and XML Schema).

We recognized that the intuitive approach of identifying generic metaclasses and
one-to-one correspondences between these metaclasses and the elements of concrete



metamodels is not appropriate for generic metamodeling. Although classes of model
elements in known metamodels are often similar, they also inhibit significant differ-
ences which have to be taken into account. We have shown that role based metamod-
eling can be utilized to capture both, similarities and differences, in an accurate way
while avoiding sparsely populated intersection classes. In addition, the role based ap-
proach enables easy extensibility and flexibility as new modeling features can be added
easily. Implementations of operators access all roles they need for their functionality
but remain agnostic about any other roles. This reduces the complexity of models from
an operator’s point of view significantly. Furthermore, the detailed representation of
GeRoMe models is used only by a model management application, users will still use
their favorite modeling language.

Whereas role based modeling has yet only been applied to the model level, we
have shown that a generic metamodel can benefit from roles. In particular, GeRoMe
enables generic model management. As far as we know, the role based approach to the
problem of generic metadata modeling is new. It has been validated by representing
several models from different metamodels in GeRoMe.

We implemented a framework for the management of models including an object
model for GeRoMe models that allows operators to manipulate, store, and retrieve mod-
els. Atomic model management operators are implemented based on our generic meta-
model and can be combined to composite operators. In particular, the usage of a generic
metamodel allows to apply operator implementations polymorphically to models repre-
sented in various modeling languages which increases the reusability of operators. As
a first evaluation of GeRoMe, we have implemented some ModelGen operators.

We have developed a rule-based approach for import and export operators which is
based on a logical formalization of GeRoMe models. These operators will also be used
to verify that the model elements of different metamodels can be represented accurately
and completely in GeRoMe.

Future work will concentrate on the development of further model management
operators. We have started working on the implementation of a Match operator for
GeRoMe models and are investigating how the generic representation can be exploited
by this operator. We have defined a formal semantics for GeRoMe which was necessary
to describe the structure of instances of GeRoMe models. The semantics is also used
for a formal definition of mappings between GeRoMe models which we are currently
designing. The mapping representation will be used by model management operators
such as Merge and Compose.

While it might be necessary to integrate new modeling features of other languages,
or features which we did not take into account so far, we are confident that our work is
a basis for a generic solution for model management.
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A Appendix

A.1 Formal Semantics of GeRoMe

The formalization of GeRoMe in section 6.2 described how GeRoMe models can be rep-
resented as a set of logical facts, and how this representation can be used to implement
the import and export operators.

To describe the semantics of a GeRoMe model, we have to characterize what are
the valid instances of a GeRoMe model. For example, we have to define for a model
element Person how intances of this model element may look like and which are valid
relationships between persons and other instances. In the following, we will first define
the formal semantics of GeRoMe, and a simplified notation for instances of GeRoMe
models that is used in data mappings.

Semantics

Definition 1 (Atoms and Object Identifiers).

– A denotes a set of atoms, which are literal values of simple datatypes, e.g. ”HLX”,
”Boeing-747”, ”John”, ”Smith”, ”5.2”.



– O denotes a set of object identifiers, which are used to distinct two instances with
the same component values from each other if they are instances of an ObjectSet.

Definition 2 (GeRoMe Interpretation). An interpretation I in GeRoMe is a tuple
I =< I,O,P,V, A,O, ε > where O is a set of object identifiers and A is a set of
atoms (literals, ..) as defined before. ε 6∈ O ∪A is the null value, which can be used for
null data values (for attributes), null participators (for association ends), or null object
identifiers (for elements without object identity).

I is the interpretation mapping which maps a model element (specifying a data set,
not a constraint) to a set of instances.
O maps a model element to the set of its object identifiers.
P maps a model element to a set of Association instantiations.
V maps a model element to a set of data values.

The interpretation mapping is defined as follows:

– If m is a Domain then I[m] ⊆ A is the set of atoms in m.
– If m is an ObjectSet, an Association, an Aggregate, or any combination of these

then
I[m] ⊆ [O[m]× V[m]× P[m]] where
• If m is an ObjectSet then O[m] ⊆ O is the set of object identifiers of instances

of m, otherwise O[m] = {ε}.
• If m is an Association with AssociationEnds AEi i = 1, . . . , n then
P[m] ⊆ [(O[AE1.participator] ∪ ε) × . . . × (O[AEn.participator] ∪ ε)],
otherwise P[m] = {ε}. The participator of an AssociationEnd is always an
ObjectSet. Consequently, this defines a set of tuples of object identifiers. If an
association end may be null, ε may be the value of this participator. If an asso-
ciation end may participate more than once, each participation is instantiated
by another tuple, that is, another element of I[m]. Thus, multiple participations
of one participator are multiple instances of the association.

• If m is an Aggregate with Attributes Ai i = 1, . . . , n then
V[m] ⊆ [P(I[A1.type])× . . .× P(I[An.type])],
otherwise V[m] = {ε}. Infinite, recursive structures are not allowed, i.e. an
element x of V[m] must not contain any element in which x occurs. The cardi-
nality of a component of V[m] must be within the (min,max) constraints of the
attribute.

Examples Figure 14 gives an example schema containing various combinations of the
ObjectSet, Asssociation and Aggregate roles. A possible interpretation are the follow-
ing: O = {1, 2, 3},
A = {”InsuranceCorp.”, ”0815”, ”John”, ”Smith”, 2500.00},
O[Company] = {1},
O[Person] = {2},
O[Employment] = {3},
O[ theAnonType] = {ε},
c ∈ I[Company] with c =< 1, ε, < ”InsuranceCorp.” >>,
p ∈ I[Person] with p =< 2, ε, < ”0815”, < ε, ε, < ”John”, ”Smith >>>,
n ∈ I[ theAnonType] with c =< ε, ε,< ”John”, ”Smith” >>,
e ∈ I[Employment] with c =< 3, < 1, 2 >,< 2500.00 >>,
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Fig. 14. An example schema about persons and companies

Simplified Notation For the formulation of constraints, queries, and mappings, we
choose a simpler representation that uses flat logical predicates instead of the complex
terms used before.

Definition 3 (Notation of instances as logical facts). The interpretation I of a model
M is represented by a set of facts DM as described below.

– The interpretation of a model element I[m] is represented by a set of abstract iden-
tifiers {id1, . . . , idn}. The set of all abstract identifiers is denoted by T . inst(idi,m) ∈
DM means that the object represented by idi is an instance of m.

– ∀ model elements m playing a Domain role and ∀v ∈ I[m] : value(idi, v) ∈ DM

and inst(idi,m) ∈ DM .
– ∀ model elements m playing an ObjectSet role and ∀o ∈ O[m]: oid(idi, o) ∈ DM

and inst(idi,m) ∈ DM . Each idi has at most one object identifier o, and each
object identifier o is related to exactly one idi. There is no oid(idi, o) ∈ DM with
o = ε.

– ∀ model elements m playing an Aggregate role and having the attribute a (model
element), and this instance has the value v ∈ T for that attribute: attr(idi, a, v) ∈
DM and inst(idi,m) ∈ DM .

– ∀model elementsm playing an Association role in which the object with identifier o
participates for the association end ae: part(idi, ae, o) ∈ DM and inst(idi,m) ∈
DM .

– There are no other elements in DM .

Please note that the existence of a predicate like attr(id, a, v) or part(id, ae, o) in
DM requires the existence of other predicates in DM to assure a consistent model (e.g.,
an attribute value has to be an instance of the type of that attribute).

The “artificial” identifiers idi are introduced here to reify the complex tuples of an
interpretation I in order to have flat tuples.



Example The example given above is represented by the following set of facts ( T =
{#1,#2,#3, . . .}):

oid(#1, 1) oid(#2, 2)
oid(#3, 3)
attr(#1, Name,#5) attr(#2, SSN,#6)
value(#5, ”InsuranceCorp”) value(#6, ”0815”)
attr(#2, Name,#4) attr(#4, FName,#7)

value(#7, ”John”)
attr(#4, LName,#8) attr(#3,Wage,#9)
value(#8, ”Smith”) value(#9, ”2500”)
part(#3, EmployedBy,#1) part(#3, Employs,#2)
inst(#1, Company) inst(#2, Employee)
inst(#3, Employment) inst(#4, theAnonType)
inst(. . .) for values

A.2 Queries and Mappings in GeRoMe
Using the formal semantics of GeRoMe models, it is straightforward to represent for-
mulas over GeRoMe models that can be used as queries or mappings.

A query in GeRoMe is a conjunctive query using the predicates defined above in
definition 3. A mapping is basically a relationship of queries over two different models.
As it has been proven in [13], mappings expressed second-order tuple generating depen-
dencies (SO tgds) are closed under composition, but first-order tgds are not. Therefore,
we use SO tgds to express mappings between models.

Definition 4 (GeRoMe model mapping). A GeRoMe model mapping (or, in short,
mapping) is a triple M = (S,T, Σ), where S and T are the source model and the
target model respectively, and Σ is a finite set of formulas of the form

∃f((∀x1(ϕ1 → ψ1)) ∧ . . . ∧ (∀xn(ϕn → ψn)))

where each member of f is a function symbol, and where each ϕi is a conjunction of
atomic formulas and/or equalities over S and ψi is a conjunction of atomic formulas
over T as defined in definition 3. Furthermore, the variables of xi appear in at least
one atomic formula of ϕi.

The predicates from definition 3 can also be used in first-order logic formulas to ex-
press constraints on models. For example, the following formula states that employees
working at “Insurance Corp.” earn more than 2000 EUR.

∀x, y, z, v, n inst(x,Employment) ∧ attr(x,Wage, y) ∧ value(y, v) ∧
part(x,EmployedBy, z) ∧ attr(z,Name, n) ∧ n = ”InsuranceCorp.”
⇒ v > 2000

As it would be very inefficient to transform data into the GeRoMe representation,
it is not intended that these queries, mappings, and constraints are actually evaluated
on the GeRoMe models. Instead, these expressions will be translated into the native
query format of the original metamodel (e.g. SQL for a relational database schema) and
executed by the specific query evaluation engines.
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