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Abstract

In this article we present extensional mappings, that are based on second order tuple gener-
ating dependencies between models in our Generic Role-based Metamodel GeRoMe. Our
mappings support data translation between heterogeneous models, such as XML Schemas,
relational schemas, or OWL ontologies. The mapping language provides grouping func-
tionalities that allow for complete restructuring of data, which is necessary for handling
object oriented models and nested data structures such as XML. Furthermore, we present
algorithms for mapping composition and optimization of the composition result. To verify
the genericness, correctness, and composability of our approach we implemented a data
translation tool and mapping export for several data manipulation languages. Furthermore,
we address the question how generic schema mappings can be harnessed for answering
queries against an integrated global schema.

Key words: Model Management, Schema Mappings, Mapping Composition, Executable
Mappings, Data Integration

1 Introduction

Information systems often contain components that are based on different models or
schemas of the same or intersecting domains of discourse. These different models
of related domains are described in modeling languages (or metamodels) that fit
certain requirements of the components such as representation power or tractability.
For instance, a database may use SQL or an object oriented modeling language.
A web service described in XML Schema may be enriched with semantics by
employing an ontology of the domain. All these different types of models have to
be connected by mappings stating how the data represented in one model is related
to the data represented in another model. Integrating these heterogeneous models
requires different means of manipulation for models and mappings which is the goal
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of a Model Management system [1]. It should provide operators such as Match that
computes a mapping between two models [2], ModelGen that transforms models
between modeling languages [3], or Merge that integrates two models based on a
mapping in between [4].

An important issue in a model management system is the representation of mappings
which can be categorized as intensional and extensional mappings [5]. Intensional
mappings deal with the intended semantics of a model and are used, for example, in
schema integration [4]. These mappings interrelate model elements by set relation-
ships such as equality and subset relationships. However, they do not refer explicitly
to instances of models and therefore cannot be used for data translation. Extensional
mappings define interschema constraints which must hold for all valid instances of
the related schemas [6; 7]. If they are specified as source-to-target mappings, they
can be used also for data translation, i.e. extracting data from a source and transform-
ing it into a target schema. We denote such mappings as executable mappings. In
this article, we will deal only with extensional mappings which are source-to-target
as our goal is to have a generic representation for executable mappings.

1.1 Motivation

To motivate our approach for a generic mapping language, consider the data inte-
gration scenario of fig. 1. In this example, we want to integrate a relational data
source and an XML document into another XML document. The relational source
can be mapped via an existing OWL ontology with the integrated XML schema.
The first challenge to be addressed in this scenario is the heterogeneity of modeling
languages involved. Other approaches for heterogeneous data integration use some
form of wrapper to translate the data of the source into a common format, such as
relations or XML. The disadvantage of this approach is that it requires additional
overhead for data translation in the wrapper and constraints specified in the source
schema might be lost due to the limited expressivity of the modeling language
for wrapped schemas. Therefore, a mapping language is required which can map
between heterogeneous metamodels and which can be translated into executable
queries for a specific modeling language.

Another problem indicated in the scenario is the restructuring of nested data. The
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Fig. 1. A simple data integration scenario
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XML source groups student elements in a university element, whereas the target
reverses this nesting structure. Consequently, a mapping language must support
nested data structures as well as such restructuring operations.

A third requirement is the composability of mappings: in the example, there are
already mappings from the relational source to the OWL ontology, and from the
OWL ontology to the integrated XML schema. If we could compose these two
mappings, we could have a direct mapping from the RDB to the XML document.

An extensional mapping can be represented as two queries which are related by
some operator (such as equivalent or subset) [7]. As the query language depends
on the modeling language being used, the question of mapping representation is
tightly connected to the question how models are represented. In schema matching
systems, which often represent the models as directed labeled graphs, mappings
are represented as pairs of model elements with a confidence value which indicates
their similarity [2]. Such mappings can be extended to path morphisms that are
defined on a restricted form of relational schemas. Path morphisms can be translated
into an executable form but have limited expressivity [8]. Most formal mapping
representations also rely on the relational data model, e.g. source-to-target tuple-
generating dependencies (s-t tgds, also known as GLAV mappings) [9] or second
order tgds (SO tgds) [10]. Tuple generating dependencies (tgds) are dependencies of
the form ∀x(ϕ(x)→ ∃yψ(x,y)) where ϕ and ψ are conjunctions of relation atoms
and x and y are disjoint sets of variables. If ϕ contains only relation symbols from
the source schema and ψ contains only relation symbols from the target schema,
the dependency is called a source-to-target tgd (s-t tgd). Second order tgds (SO
tgds) are in our context also source-to-target and have the form ∃f((∀x1(ϕ1 →
ψ1) ∧ . . . ∧ (∀xn(ϕn → ψn)). Each ϕi is a conjunction of relation atoms based on
xi and equalities based on xi and f , and each ψi is a conjunction of relation atoms
based on terms of xi and f . Thus, the existentially quantified variables in s-t tgds are
replaced by existentially quantified function symbols. For a nested relational model,
a nested mapping language has been proposed [11].

Each mapping representation has its strengths and weaknesses regarding the re-
quirements for a mapping language mentioned above. Similar requirements have
been also stated in [1]: (i) mappings should be able to connect models of different
modeling languages; (ii) the mapping language should support complex expressions
between sets of model elements; (iii) support for the nesting of mappings (to avoid
redundant mapping specifications) and nested data structures should be provided;
(iv) mappings should have a rich expressiveness while being generic across modeling
languages; (v) mappings should support data translation between the instances of
the connected models. While each of the mapping representations mentioned before
fulfills some of these requirements for the (nested) relational model, they fail at
being generic as they do not take into account other modeling languages.
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1.2 Contributions

The main contribution of this article is the definition of a mapping representation
which is generic across several modeling languages and still fulfills the requirements
regarding expressiveness and executability. This allows for a generic implementa-
tion of model management operators which deal with these mappings. Furthermore,
using a generic mapping representation, questions such as composability, invertabil-
ity, decidability, and executability have to be addressed only once for the generic
mapping representation and do not have to be reconsidered for each combination
of mapping and modeling language. The mapping language presented in this paper
is based on second order tgds for which a composition algorithm has been defined
[10]. This algorithm has been adapted to our mapping language and complemented
by optimization steps to deal with the exponential complexity of the algorithm.

A prerequisite for a generic representation of mappings is a generic representation
of models. Our work is based on the role based generic metamodel GeRoMe [12].
It provides a generic, but yet detailed representation of data models originally
represented in different metamodels and is the basis for our model management
system GeRoMeSuite [13]. GeRoMeSuite provides a framework for holistic generic
model management; unlike other model management systems it is neither limited by
nature to certain modeling languages nor to certain model management operators.
The generic mapping language shown here is the basis for the data translation
component of GeRoMeSuite, which can also translate mappings into a specific data
manipulation language such as SQL. This generation of executable queries and
update statements for SQL and XML is also presented in this article.

The generic metamodel allows us to represent arbitrary model structures, e.g. flat
relational tables as well as nested XML documents. Thus, the generic mapping
language supports also nested structures and provides grouping and nesting function-
ality. Another contribution of this paper is the application of our generic mappings
in data integration by using them for query answering.

The contributions of our work define also the structure of the paper. After providing
some background information on GeRoMe in section 2, we will define in section
3 a generic mapping representation based on the semantics of GeRoMe. To show
the usefulness and applicability of our mapping representation, we will present
in section 4 an algorithm for mapping composition, and, in section 5, algorithms
to translate our generic mapping representation into executable mappings. The
evaluation of our approach with several examples of the recent literature is shown in
section 6. Section 7 then addresses query answering in data integration systems. In
section 8, we discuss our approach and compare it with other related work. Section
9 concludes our paper and gives an outlook on future work.

This paper is an extended version of our previous paper [14]. Compared to the
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previous version, this paper provides an updated version of the mapping definition,
explains this in more detail using more examples, provides a proof of the composition
algorithm, explains the query and update generation in more detail, updates the
evaluation results, and adds the section about query answering.

2 Background

The Generic Role based Metamodel GeRoMe was presented in [12], including a
formalization and a definition of the semantics of GeRoMe. As this representation
forms the basis for our mapping representation presented in section 3, we briefly
summarize it in this section by using an example.

2.1 The Generic Metamodel GeRoMe

In GeRoMe each model element of a native model (e.g. an XML schema or a
relational schema) is represented as an object that plays a set of roles which decorate
it with features and act as interfaces to the model element. Figure 3 shows an
example of a GeRoMe model of the XML Schema shown in figure 2.

<xsd:schema>
<xsd:element name="University" type="UniType"/>
<xsd:complexType name="UniType">
<xsd:sequence>

<xsd:element name="Student" type="StudType"/>
</xsd:sequence>
<xsd:attribute name="uname" type="xsd:string"/>

</xsd:complexType>
<xsd:complexType name="StudType">
<xsd:attribute name="sname" type="xsd:string"/>
<xsd:attribute name="ID" type="xsd:integer"/>

</xsd:complexType>
</xsd:schema>

Fig. 2. XML Schema for universities and students
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Fig. 3. GeRoMe representation of the XML schema in fig. 2
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The gray boxes in figure 3 denote model elements, the attached white boxes repre-
sent the roles played by the model elements. These roles are instances of a fixed
set of role types that may be used in GeRoMe models. These role types are actu-
ally the available modeling constructs. Rule based import operators [15] take care
that model elements play roles according to the meaning of their native modeling
constructs. XML Schema is in several aspects different from “traditional” modeling
languages such as EER or the Relational Metamodel. The main concept of XML
Schema “element” represents actually an association between the parent complex
type and the nested type. This is true for all elements except those that are allowed
as the root element of a document. In GeRoMe, the definition of a root element
is an association between the schema node and the element’s complex type, as
there is no complex type in which the root element is nested. In the example, the
element University is an association between the model element Schema and
the complex type UniType 1 . The fact that the University element is an as-
sociation is described by the Association (As) role which connects the ObjectSet
(OS) roles of Schema and UniType via two anonymous model elements playing
a CompositionEnd (CE) and an ObjectAssociationEnd (OE) role, respectively.

The anonymous association ends are required for several reasons. Firstly, since
GeRoMe is a generic metamodel, we must take care that comparable modeling con-
structs from different modeling languages are represented uniformly. For instance,
in UML, associations may be of degree higher than two, whereas in OWL or XML,
instances of types (or classes) are always only connected via binary associations.
However, in order to allow uniform handling by model management operators we
need to represent all these types of associations in the same way. Secondly, the
specialized association end type CompositionEnd encodes the nesting structure.
Without knowing, which type is composed of which elements we would not be
able to tell whether Student is nested into University or vice versa. Another
reason is that association ends can have properties themselves. For example, they
may define cardinality constraints (which we omitted from the figure for sake of
readability).

The same structure of association and association end roles is used for the ele-
ment Student which is an association between the complex types UniType
and StudType. The two complex types have attributes; therefore, they also play
Aggregate (Ag) roles which link these model elements to their attributes. The model
elements representing attributes play Attribute (At) roles which refer also to the
types of the attributes which are, in this example, simple domains denoted by the
Domain (D) role.

1 XML documents must have only one root element. Thus, the schema needs to have
another element “Universities” to allow for a list of universities in the XML document. For
reasons of simplicity, we omitted this extra element in our example and assume that XML
documents may have multiple elements at the top-level.
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Definition 1 (GeRoMe model) Formally, the GeRoMe metamodel is defined by a
set of role types R = {r1, . . . , rn} and a set of property types P = {p1, . . . , pm}
which can be applied to role types. V denotes a set of atomic values which may be
used as property values. A model M represented in GeRoMe is defined by a tuple
M = 〈E,R, type, plays, property〉, where

• E = {e1, . . . , ek} is a set of model elements,
• R = {o1, . . . , op} is a set of roles,
• type : R→ R is a total function that assigns exactly one role type to each role,
• plays ⊆ (E ∪ R) × R represents the aforementioned relation between model

elements (or roles) and roles,
• property ⊆ (R×P)× (R ∪ V ∪E) represents the property values of a role (i.e.

properties may also refer to other roles and model elements).

The sets sets R and P are actually the modeling constructs that can be used in a
GeRoMe model. Consequently, they are fixed. R is the set of available role types
(e.g. As, OE, CE, Ag, etc. as introduced in the example of fig. 3) and P is the set
of properties of these role types which are either simple properties or connect roles
to each other. Examples of property types are the name property of a named model
element (as opposed to an anonymous model element) or the participator property
of an AssociationEnd that connects the association end to the participating ObjectSet
role. In EER models this could be any number of association ends, whereas XML
elements always connect their own (nested) type to the containing complex type.

It is important to emphasize that the representation of models in GeRoMe is not to
be used by end users for modeling schemas. Instead, it is a representation employed
internally by GeRoMeSuite, with the goal to generically provide more information
to model management operators than a simple graph based model.

2.2 GeRoMe Semantics: Instances of a GeRoMe Model

Before we can formally define GeRoMe mappings, we first need to define the formal
semantics of GeRoMe instances. Data instances are also used at the model level,
e.g. as default values or boundaries of a type defined by an interval. However, the
main goal of the formal semantics is the formal definition of executable mappings
between models. Our mappings are second-order tuple generating dependencies
(SO tgds), which require that the instances are represented as a set of logical facts.
In addition, the semantics should also capture all the structural information that is
necessary to reflect the semantics of the model. To fulfill both requirements, the
semantics should contain facts that record literal values of an instance of a model
and also facts that describe the structure of that instance. To record the literal values
of an instance, value predicates are used to associate literal values with objects. To
describe the structure of an instance, we identify Attribute and AssociationEnd as
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<University uname="RWTH">
<Student sname="John"

ID="123"/>
</University>

inst(#0,Schema),
inst(#1,UniType), av(#1,uname,‘RWTH’),
inst(#2,StudType),
av(#2,sname,‘John’), av(#2,ID, 123),
inst(#3,University), inst(#4,Student),
part(#3,parentU ,#0), part(#3,childU ,#1),
part(#4,parentS ,#1), part(#4,childS ,#2)

Fig. 2. XML document and its representation as GeRoMe instance

Definition 1 (Interpretation of a GeRoMe model) Let M be a GeRoMe model with
A being the set of all literal values, and T the set of all abstract identifiers {id1, . . . , idn}.
An interpretation I of M is a set of facts DM , where:

– ∀ objects (represented by the abstract identifier idi) which are an instance of model
element m: inst(idi,m) ∈ DM ,

– ∀ elementsm playing a Domain role and ∀ values v in this domain: {value(idi, v),
inst(idi,m)} ⊆ DM (idi is an abstract ID of an object representing the value v).

– ∀ elementsm playing an Aggregate role and having the attribute a, and the instance
idi has the value v ∈ A for that attribute: {attr(idi, a, idv), value(idv, v)} ⊆
DM .

– ∀ model elements m playing an Association role in which the object with identifier
o participates for the association end ae: part(idi, ae, o) ∈ DM .

Thus, each “feature” of an instance object is represented by a separate fact. The abstract
IDs connect these features so that the complete object can be reconstructed. For the
example from fig. 1, an instance containing a university and a student is defined as
show in fig. 2. As the predicates attr and value often occur in combination, we use the
predicate av as a simplification: av(id1, a, v)⇔ ∃id2attr(id1, a, id2)∧ value(id2, v).
In addition, we labeled the association ends with “parent” and “child” to make clear
which association end is referred to. The first inst-predicate defines an instance of
the schema element which represents the XML document itself. Then, two instances
of the complex types and their attributes are defined. The last three lines define the
associations and the relationships between the objects defined before.

As the example shows, association roles and attribute roles are not only able to
define flat structures, e.g. tables in relational schemas, but also hierarchical structures,
e.g. element hierarchies in XML schemas. Compared to the original definition of SO
tgds, which were only used to represent tuples of relational tables, our extension to the
original SO tgds significantly improves the expressiveness of SO tgds.

3.3 Formal Definition of GeRoMe Mappings

Based on the formal definition of GeRoMe instances, the definition of GeRoMe map-
pings as SO tgds is straightforward. We extend the definition of a mapping between two
relational schemas in [4] to the definition of a mapping between two GeRoMe models:

Fig. 4. XML document and its representation as GeRoMe instance

the roles which essentially express the structure of instances.

Definition 2 (Interpretation of a GeRoMe model) Let M be a GeRoMe model
with A being the set of all literal values, and T the set of all abstract identifiers
{id1, . . . , idn}. An interpretation I of M is a set of facts DM , where:

• for every object (represented by the abstract identifier idi) which is an instance of
model element e: inst(idi, e) ∈ DM ,
• for every element e playing a Domain role and for all values v ∈ A in this

domain: {value(idi, v), inst(idi, e)} ⊆ DM (idi is an abstract ID of an object
representing the value v).
• for every element e playing an Aggregate role, having the attribute a, and the

instance idi has the object idv for that attribute as value: attr(idi, a, idv) ∈ DM .
• for every model element e playing an Association role in which the object with

abstract identifier ido participates for the association end ae: part(idi, ae, ido) ∈
DM .
• There are no other elements in DM .

Thus, each “feature” of an instance object is represented by a separate fact. The
abstract IDs connect these features so that the complete object can be recon-
structed. For the example from fig. 3, an instance containing a university and a
student is defined as show in fig. 4. As the predicates attr and value often oc-
cur in combination, we use the predicate av as a simplification: av(id1, a, v) ⇔
∃id2attr(id1, a, id2)∧ value(id2, v). In addition, we label the association ends with
“parent” and “child” to make clear which association end is referred to. However, in
practice this information is encoded in the underlying model. The first inst-predicate
defines an instance of the schema element which represents the XML document
itself. Then, two instances of the complex types and their attributes are defined. The
last three lines define the associations and the relationships between the objects
defined before.

As the example shows, association end roles and attribute roles are not only able to
define flat structures, e.g. tables in relational schemas, but also hierarchical structures,
e.g. element hierarchies in XML schemas. As we will see, the application of this
representation to SO tgds can significantly improve the expressiveness of SO tgds.
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3 Formal Definition of GeRoMe Mappings

Mapping language and modeling language are closely related. We use the formal
representation of GeRoMe instances as defined in the previous section as basis for
our mapping language. This will be applied to second order tgds, which gives a rich
expressive mapping language which still maintains features such as composability
and executability. Furthermore, the mapping language is generic across several
modeling languages. This allows for a generic implementation of model management
operators which deal with these mappings.

The main feature of our mapping language is that we use reification to describe
data structures by introducing abstract individuals to denote the instances of model
elements. In definition 2 and figure 4 these abstract individuals were denoted by
abstract identifiers. As will be seen in the following definition and the subsequent
example, our mapping language uses so-called abstract variables and abstract func-
tion terms to resemble the abstract individuals. Since each instance of a model
element is represented by an abstract variable or abstract function term, we can de-
fine references between instances using associations and their association ends. This
allows us to define also tree- and graph-structured schemas as source and target of
mappings. This is not possible in strictly relational SO tgds. Since GeRoMe models
associations as model elements (instead of properties), its formal semantics and the
mapping language reifies them as well. Therefore, the generic mapping language
can map associations of arbitrary degree. Besides providing flexibility in describing
the structure of instances, abstract functions enable grouping functionality as will
discuss in section 3.3. Therefore, we can formulate mappings between any two
models that can be described as a GeRoMe model. However, although the reified
model elements are represented as predicates, they cannot be simply interpreted as
relations.

3.1 Definition

Based on the formal definition of GeRoMe instances, we extend the definition of
SO tgds as a mapping between two relational schemas in [10] to the definition of a
mapping between two GeRoMe models:

Definition 3 (GeRoMe Mapping) A GeRoMe model mapping is a triple M =
(S,T,Σ), where S and T are the source model and the target model respectively,
and where Σ is a set of formulas of the form:
∃f((∀x1(ϕ1 → ψ1)) ∧ . . . ∧ (∀xn(ϕn → ψn))) where

(1) f is a collection of function symbols,
(2) each xi is a collection of variables,
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(3) each ϕi is a conjunction of atomic predicates over constants defined in S and
variables and/or equalities.

(4) each ψi is a conjunction of atomic predicates over constants defined on T,
variables, and function symbols.

(5) Valid atomic predicates are those defined in def. 2.
(6) We require that mappings are source-to-target, i.e. the second arguments of

inst, attr and part predicates are constants referring only to
• model elements in S (for predicates in ϕi)
• model elements in T (for predicates in ψi)

(7) Each set xi can be partitioned into a set of abstract variables xi,a and a set of
concrete variables xi,c.
• Variables in xi,a may occur only in ϕi, either as the first argument of any

predicate, or as the third argument of part predicates.
• Variables in xi,c may occur only as the second argument of value predicates

in ϕi or ψi, in equalities in ϕi, and in any function term in ϕi or ψi.
(8) Analogously, f can be partitioned into a set of abstract functions fa and a set

of concrete functions fc.
• Function symbols in fa may occur only in ψi, either as the first argument of

any predicate, or as the third argument of part predicates.
• Function symbols in fc may occur only as the second argument of value

predicates in ψi or in equalities in ϕi.
(9) The second component of a value predicate may also be a constant.

(10) Equalities are of the form t = t′ where t and t′ are terms over xi, f and
constants. Furthermore, the same safety conditions apply to variables as in
the original definition of SO tgds [10]: each variable in xi appears in some
predicate in ϕi.

Please note that the definition requires the constants identifying model elements to
be from S on the source side only, and to be from T only on the target side. Thus,
we only consider source-to-target dependencies in this work.

The intuition behind the partition of variables is that variables in xi,c play the role of
distinguished variables in conventional SO tgds. Concrete variables may be shared
on both sides of the implication whereas the abstract variables xi,a occur only on the
source side. When executing a mapping, values are bound to the variables in xi,c.
Thereby, values are “transferred” from the source to the target.

On the other hand, abstract variables on the source side replace the abstract identifiers
used in definition 2 and fig. 4. They represent the instances of model elements such as
relations or XML elements. By using reified predicates, we can query for particular
features of these elements. As abstract variables refer to instances of the source
schema, it does not make sense to use them on the target side. The identification of
instances at the target side is achieved by using the function symbols in fa, instead.
Abstract functions are handled like Skolem functions during execution. That is,
they cannot be executed but they are only instantiated as ground terms in order to
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Fig. 5. GeRoMe representation of a relational schema

uniquely identify instances of model elements on the rhs. Consequently, the choice
of arguments for an abstract function determines the identification of objects on the
target side, and thereby the grouping behaviour defined by the mapping. In addition,
since the same function symbols can be used in multiple implications, the results of
these implications can be merged due to the interpretation as Skolem functions.

In the same way as xi,c are the distinguished variables of conventional SO tgds, fc
plays the role of functions available in these SO tgds. They have to be executed in
order to transform source data into target data, such as concatenating first and last
name, or at least they must be interpreted as Skolem functions in order to generate
distinct null values depending on the values bound to distinguished variables.

The grouping functionality provided by abstract functions is not available in conven-
tional SO tgds as their relational instances are not identified by Skolem functions.
Also, on the source side of mappings the flexibility regarding the structure of in-
stances, which is enabled by part predicates and the reification style of our mappings,
is not provided by conventional SO tgds. However, we will see that our mappings
are still closed under composition. For nested mappings [11] on the other hand,
which allow grouping in tree structures, it is not known whether they are closed
under composition. This is because it is not known how to translate an SO tgd to a
nested mapping.

3.2 Example

To show an example of a mapping between models originally represented in two
different modeling languages, we define in fig. 5 a GeRoMe model representing
a relational schema for the university domain. The schema contains two relations
University(uname) and Student(id,sname,uni). The keys uname
and id are defined in GeRoMe using separate model elements representing the
key constraint. These model elements play Injective (Inj) roles to indicate that an
attribute is unique, and Identifier (Id) roles to specify the aggregates for which
the attributes are the keys. The foreign key constraint between Student and
University is also represented by a separate model element which plays a For-
eign Key (FK) role. The FK role points to a Reference (Ref) role which is played by
the attribute that references the key of the other relation.
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∃f, g ∀o0, o1, o2, o3, o4, u, s, i inst(o0,Schema) ∧ inst(o2,UniType) ∧
inst(o1,University) ∧ part(o1,parentU , o0) ∧ part(o1,childU , o2) ∧
inst(o4,StudType) ∧
inst(o3,Student) ∧ part(o3,parentS , o2) ∧ part(o3,childS , o4) ∧
av(o2,uname, u) ∧ av(o4,sname, s) ∧ av(o4,ID, i)→
inst(f(u),University) ∧ inst(g(i),Student),
av(f(u),uname, u) ∧ av(g(i),sname, s) ∧ av(g(i),ID, i) ∧ av(g(i),uni, u)

Fig. 6. Mapping from XML Schema in fig. 3 to the relational schema in fig. 5 (M12)

Now, we can define a mapping using the XML schema as source and the relational
schema as target (cf. fig. 6). The predicates in the conditional part of the rule
correspond to the instance predicates shown in fig. 4, now just with variables instead
of constants. The variables o0 to o4 represent abstract identifiers (they are abstract
variables), their function is to describe (implicitly) the structure of the source data
that is queried for. The predicate inst(o0,Schema) defines an abstract variable o0

that must be bound to an instance of the Schema, inst(o2,UniType) defines an
abstract variable o2 of type UniType, whereas inst(o1,University) defines a
variable o1 that must be bound to an instance of the University element. The
av predicates define variables for the attribute values of the complex type instances
o2 and o4, whereas the part predicates are used to constrain the structure of the
elements. In the example the student element o3 is nested under the university
element o1. The predicate part(o1,childU , o2) defines the complex type instance
o2 (of type UniType) to be the participator in the association end childU . This
association end in the underlying GeRoMe model denotes the link from the XML
element University to its type. The variable o2 is also defined as the participator
in the association end parentS which links the variable o3 (denoting an instance
of the XML element Student) to its containing complex type instance. In other
approaches for mapping representation (e.g. [11]) such structures are represented by
nesting different sub-expressions of a query. Although nested mappings are easier to
read, they are strictly less expressive than SO tgds [11]. In addition, several tasks
dealing with mappings such as composition, inverting, optimization, and reasoning
have to be reconsidered for nested mappings (e.g. it is not clear how to compose
nested mappings and whether the result composing two nested mappings can be
expressed as a nested mapping). As our approach is based on SO tgds, we can
leverage the results for SO tgds for our generic mapping representation.

Similarly to the abstract variables on the source side, the functions f and g represent
abstract identifiers on the target side and therefore describe the structure of the
generated data in the target (f and g are abstract functions which generate abstract
identifiers). Please note that abstract variables and abstract functions just specify the
structure of data, there will be no values assigned to abstract variables or evaluation
of abstract functions during the execution of a mapping. Instead, as we will present in
section 5, abstract identifiers and functions determine the structure of the generated
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code to query the source and to insert the data into the target.

The difference of our mappings from conventional SO tgds is that our mappings do
not map relations to other relations but instead use reification to represent mappings
between graph structures. Instead of mapping to the relation Student(s, i, u) we
use the set of predicates from the right hand side of the above mapping to make
statements about an object g(i) which is an instance of that relation. On the left
hand side of this mapping, part predicates define relationships between instances of
XML complex types and XML elements. Whereas this example features an XML
Schema, such reified statements about model elements can be utilized to describe
arbitrary data structures, such as relationships between class instances in an object
oriented model. Furthermore, by using the part predicates, the mapping language
allows us to define even n-ary relationships between model elements as there is
no limitation to the number of association ends defined for an association. This
could be employed for mappings between object oriented models, which allow
relationships of degree higher than two. Additionally, the part predicates together
with the Skolem functions occurring on the right hand side of our reified mappings
allow for arbitrary grouping based on the values bound to concrete variables. This is
done by using the concrete variables as arguments of the Skolem functions and, in
doing so, defining the instances of model elements.

To describe the structure of the target data, it is important to know which values
are used to identify an object. According to the definition of the relational schema,
universities are identified by their name (u) and students by their ID (i); that is why
we use u and i as arguments of the abstract functions f and g. We will explain below
that for nested data these functions will usually have more than one argument.

In addition to abstract functions, a mapping can also contain concrete (“normal”)
functions for value conversions or other types of data transformation (e.g. concate-
nation of first and last names). While executing a mapping, these functions must be
actually evaluated to get the value which has to be inserted into the target.

3.3 Grouping and Nesting

The generation of complex data structures which can be arbitrarily nested is an im-
portant requirement for a mapping representation. In order to show that our mapping
language is able to express complex restructuring operations in data translation, we
use an example that transforms relational data into XML. The relational schema is as
in fig. 5 with the exception that we now assume that students may study at multiple
universities. To have a schema in 3NF, we add a relation Studies with two foreign
keys uni and id. The foreign key from the Student relation is removed. On the
target side, the data should be organized with students at the top level, and the list of
universities nested under each student. In addition, the courses taken by a student at
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Fig. 7. XML Schema with reversed nesting structure

∃f, f ′, g, g′, d ∀o1, o2, o3, u, s, i

inst(o1,University) ∧ inst(o2,Student), inst(o3,Studies)
av(o1,uname, u) ∧ av(o2,sname, s) ∧ av(o2,ID, i) ∧ av(o3,uni, u) ∧ av(o3,id, i)→

inst(d(),Schema) ∧ inst(f(i),Student) ∧ part(f(i),parentS , d()) ∧
part(f(i),childS , f ′(i)) ∧ av(f ′(i),sname, s) ∧ av(f ′(i),ID, i) ∧
inst(g(i, u),University) ∧ part(g(i, u),parentU , f

′(i)) ∧
part(g(i, u),childU , g′(i, u)) ∧ av(g′(i, u),uname, u)

Fig. 8. Mapping from an extended version of the relational schema in fig. 5 to the XML
Schema from fig. 7

a university can be stored in the XML document as the innermost XML element.
The GeRoMe model of this XML schema is shown in fig. 7. The mapping between
the updated relational schema and XML schema is shown in fig. 8. As the relational
schema does not provide information about courses, the mapping does not reference
the Course or CourseType.

The source side is almost identical with the target side of the previous mapping:
the abstract functions f and g have been replaced with the abstract variables o1 and
o2; a variable o3 for the Studies relation and the corresponding av predicates
have been added. On the target side, we first generate an instance of the Student
element; as students are identified by their ID, the abstract function f has only i
as argument. f ′(i) represents an instance of StudType for which we also define
the attribute values of sname and ID. Thus, if a student studies at more than one
university and therefore occurs multiple times in the result set of the source, only
one element will be created for that student and all universities will be correctly
grouped under the Student element.

On the other hand, whereas we could use just u as the sole argument of f in the
case of the relational model to generate an instance of the University table (fig.
6), we have to include the additional argument i in the XML Schema case. This
is because each StudType instance has its own nested University element.
Therefore, we may have multiple University elements for each university, as the
universities have to be repeated for each student. This is guaranteed by using both
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identifiers (of the nesting element Student and the nested element University,
i and u) as arguments of the abstract function g. Finally, we assign a value to the
attribute uname of the instance g′(i, u) of UniType, similarly as before for the
instance of StudType.

3.4 Visualization and Editing of Mappings

Our mappings have a rich expressivity, but are hard to understand in their formal
representation, even for an information system developer who is used to working
with modeling and query languages. As mentioned above, GeRoMe should not
replace existing modeling languages, users will still use the modeling language
that fits best their needs. GeRoMe is intended as an internal metamodel for model
management applications. This applies also to the GeRoMe mappings, users will
not define mappings using the SO tgds as defined above, rather they will use a user
interface in which they can define the mappings graphically.

As part of our model management system GeRoMeSuite [13], we are currently
developing mapping editors for the various forms of mappings. In these mapping
editors, the models are visualized as trees (based on the hierarchy of associations and
aggregations), and the mapping can be defined by connecting elements of the trees.
However, such a visualization of models and mappings has limited expressivity (it
roughly corresponds to the path morphisms and tree schemas used in Rondo [16])
as not every model can be easily visualized as a tree. Even an XML schema can
break up the tree structure by having references between complex types.

Our current design for an extensional mapping editor also visualizes models as
trees. To overcome the problem of limited expressivity of trees we provide multiple
ways to convert a model into a tree, which can be seen as different views on the
same model. The editor must furthermore allow for definition of selection and join
predicates as well as implementations of concrete functions for data conversion.
Still, an appropriate visual representation of complex mappings is an active research
area [17], and we have to evaluate whether our design will be accepted by users.

4 Mapping Composition

Composition of mappings is required for many model management tasks [18]. In a
data integration system using the global-as-view (GAV) approach, a query posed to
the integrated schema is rewritten by composing it with the mapping from the sources
to the integrated schema. This application will be also shown for our mappings in
section 7. Schema evolution is another application scenario: if a schema evolves, the
mappings to the schema can be maintained by composing them with an “evolution”
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mapping between the old and the new schemas.

4.1 Semantics of Mapping Composition

In general, the problem of composing mappings has the following formulation: given
a mappingM12 from model S1 to model S2, and a mappingM23 from model S2 to
model S3, derive a mappingM13 from model S1 to model S3 that is equivalent to
the successive application ofM12 andM23 [10].

Mapping composition has been studied only for mappings which use the Relational
Data Model as basis. Fagin et al. [10] proposed a semantics of the Compose operator
that is defined over instance spaces of schema mappings. To this effect, M13 is
the composition of M12 and M23 means that the instance space of M13 is the
set-theoretical composition of the instance spaces of M12 and M23. Under this
semantics, which we will also adopt in this article, the composition mappingM13 is
unique up to logical equivalence.

According to [10], the composition of two mappings expressed as SO tgds can be
also expressed as an SO tgd. In addition, the algorithm proposed in [10] guarantees,
that predicates in the composed SO tgd must appear in the two composing mappings.
Thus, the composition of two GeRoMe mappings is always definable by a GeRoMe
mapping. It is important that GeRoMe mappings are closed under composition,
because otherwise the Compose operator may not return a valid GeRoMe mapping.

However, due to the extensions made in the definition of our generic SO tgds we
have to do some adaptations to the original composition algorithm. In the following,
we will first show this adaptation of the algorithm of [10] to GeRoMe, which enables
mappings between heterogeneous metamodels. In the second part of this section,
we address an inherent problem of the composition algorithm, namely that the size
of the composed mapping is exponential in the size of the input mappings. We have
developed some optimization techniques which reduce the size of the composed
mapping using the semantic information given in the mappings or models.

4.2 Composition Algorithm

The composition algorithm shown in fig. 9 takes two GeRoMe mappingsM12 and
M23 as input. The aim is to replace predicates on the left hand side (lhs) of Σ23,
which refer to elements in S2, with predicates of the lhs of Σ12, which refer only to
elements in S1. As the first step, we rename the predicates in such a way that the
second argument (which is always a constant) becomes part of the predicate name.
This lets us avoid considering the constant arguments of a predicate when we are
looking for a “matching” predicate, we can just focus on the predicate name. Then,
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we replace each implication in Σ12 with a set of implications which just have one
predicate on the right hand side (rhs). We put the normalized implications from Σ12

with the updated predicate names into S12. For the implications in Σ23, we just need
to change the predicate names, and then we insert them into S23.

The next step performs the actual composition of the mappings. As long as we have
an implication in S23 with a predicate P.c(y) on the lhs that refers to S2, we replace
it with every lhs of a matching implication from S12. Moreover, we have to add a set
of equalities which reflect the unification of the predicates P.c(y) and P.c(ti).

To illustrate the composition algorithm, consider the mapping given in fig. 10 which
maps the simple relational schema from fig. 5 to the relational schema with the
additional Studies relation. This mapping (called M23 in the following) will
be composed with the mapping from fig. 6 to which we will refer as M12. As
an example, we will replace the predicate av(p2,uni, x) in M23, which can be
unified with av(g(i),uni, u) from the rhs ofM12. The equalities which have to
be introduced are p2 = g(i) ∧ x = u. Now, the predicate av(p2,uni, x) can be
replaced with the lhs ofM12. This leads to the following intermediate result: 2

inst(p1,Universityr) ∧ inst(p2,Studentr) ∧
av(p1,name, x) ∧ av(p2,name, y) ∧ av(p2,ID, z) ∧
inst(o0,Schema) ∧
inst(o1,Universityx) ∧ part(o1,parentU , o0) ∧ part(o1,childU , o2) ∧
inst(o3,Studentx) ∧ part(o3,parentS , o2) ∧ part(o3,childS , o4) ∧
av(o2,name, u) ∧ av(o4,name, s) ∧ av(o4,ID, i)
p2 = g(i) ∧ x = u→ φ

The first two lines are the original predicates ofM23 which have not been replaced,
yet. The next four lines are the lhs ofM12 and the last line contains the equalities
which have to be introduced to make the “join” between these two parts. φ represents
the unchanged rhs ofM23.

These steps have to be done for each predicate on the lhs of M23. As there can
be multiple implications inM12 which match a predicate ofM23, the size of the
composed mapping may grow exponentially during this step. Please note also, that
the predicates of the lhs ofM12 will be repeated six times (once for each predicate
on the lhs ofM23) with different variables. This is due to the fact that the algorithm
considers only one predicate at a time and does not replace a set of predicates. In the
next section, we will explain how we can simplify the composition result, by using
logical transformations which transform the mapping into an equivalent simpler
mapping, and by using the constraints of the schema to remove redundant predicates.

2 We added indices r and x to the model elements to indicate whether they refer to the
relational schema or to the XML schema. Furthermore, we abstained from renaming the
predicates in order to avoid introducing a new notation.
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Input: Two GeRoMe mappingsM12 = (S1,S2,Σ12) andM23 = (S2,S3,Σ23)
Output: A GeRoMe mappingM13 = (S1,S3,Σ13)

Initialization: Initialize S12 and S23 to be empty sets.

Normalization:
for each predicate P (x, c, y) (or P (x, c)) in Σ12 (and Σ23, respectively)

where P ∈ {inst, attr, av, part}
replace P (x, c, y) with P.c(x, y) and replace P (x, c) with P.c(x))

endfor
for each implication of the form φ→ p1 ∧ . . . ∧ pn in Σ12

replace the implication with set of implications φ→ p1, . . . , φ→ pn
endfor
put the resulting implications into S12 and S23, respectively.

Composition:
while there are implications of the form χ = ψ → σ ∈ S23

where ψ contains a predicate P.c(y) which refers to S2:
for each implication φ(x)→ P.c(t) ∈ S12

create a copy φ(xi)→ P.c(ti) using new variable names
add a new implication χi = ψ → σ to S23

in χi replace P.c(y) in ψ with φi(xi) ∧ θi
where θi are the component-wise equalities of y and ti

endfor
remove χ from S23

Optimization I:
for each implication χ ∈ S23

repeat
(i) introduce equalities based on abstract functions
(ii) introduce equalities based on schema constraints
(iii) for each implication χ in S23,

select an equality y = t,
and replace all occurences of y in χ by t.

endfor
until no changes can be made to the implication

endfor

Optimization II:
for each pair of implications A1 → C1 ∈ S23 and A2 → C2 ∈ S23

if A1 → A2 and C2 → C1 (containment test)
remove the implication A1 → C1 as it is subsumed by the other implication

endfor

Create Result: Let S23 = {χ1, . . . , χr}. Replace the predicates with their original form
(e.g. P.c(x, y) with P (x, c, y)). Then, Σ13 = ∃g(∀z1χ1 ∧ . . . ∧ ∀zrχr) with g being
the set of function symbols in S23 and zi being all the variables appearing in χi.

Fig. 9. Algorithm Compose for GeRoMe mappings based on [10]

As a first step towards a simpler result, we apply in the next step some optimizations
to each implication. Optimizations at this stage just address single implications and
are actually interleaved with the previous composition step. In the example, we
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∃f ′, g′, h′ ∀p1, p2, x, y, z

inst(p1,University) ∧ inst(p2,Student),
av(p1,name, x) ∧ av(p2,name, y) ∧ av(p2,ID, z) ∧ av(p2,uni, x)→
inst(f ′(x),University) ∧ inst(g′(z),Student), inst(h′(x, z),Studies) ∧
av(f ′(x),name, x) ∧ av(g′(z),name, y) ∧ av(g′(z),ID, z) ∧
av(h′(x, z),uni, x) ∧ av(h′(x, z),id, z)

Fig. 10. Mapping between two relational schemas (M23)

just can apply item (iii), thus, we remove the variables which were originally in
M23. This reduces the number of equalities in the mapping. In the example shown
above, this means that we replace all occurences of p2 with g(i) and of x with u.
Please recall that this step must only be applied after all predicates from the lhs of
M23 have been replaced. Consequently, it will replace abstract variables only in
equality predicates. The result of such replacements are equalities between terms
using abstract functions which can be used to derive further optimizations as we
will explain in more detail in section 4.3.

Before we create the final result, we apply another optimization step on the level
of mappings as we check for each pair of implications contained in the composed
mapping, whether one implication is subsumed by the other implication. If this is
the case, the subsumed implication can be removed.

The final step creates the composed mapping as one formula from S23. The following
theorem states that the algorithm actually produces a correct result.

Theorem 4 LetM12 = (S1,S2,Σ12) andM23 = (S2,S3,Σ23) be two GeRoMe
mappings. Then the algorithm Compose(M12,M23) returns a GeRoMe mapping
M13 = (S1,S3,Σ13) such thatM13 =M12 ◦M23.

Proof: The proof is based on the correctness of the composition algorithm in [10].
Predicate renaming and optimizations are the major difference between our and
Fagin et al.’s composition algorithm. We rename all predicates in the two given
mappings before we compose them, and we also rename all predicates in the output
mapping after we compose them. For notational purposes, we use Σ′

12 and Σ′
23 to

denote the formulas that are the results of renaming the predicates in Σ12 and Σ23

respectively, and we use Σ′
13 to denote the formulas of Σ13 without renaming its

predicates. Observe that Σ′
12 and Σ′

23 are still SO tgds. Because of the correctness
of Fagin et al.’s composition algorithm, the output, which is Σ′

13, is an SO tgd and
is the composition of Σ′

12 and Σ′
23. Therefore, we only need to prove that we can

always get a GeRoMe mapping after renaming predicates in Σ′
13, and that Σ13 is

logically equivalent to the output of applying Fagin et al.’s algorithm directly on Σ12

and Σ23.

Based on the result of Fagin et al.’s composition algorithm, all predicate names
appearing on the lhs of Σ′

13 come from the predicate names appearing on the lhs of
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Σ′
12, and all predicate names appearing on the rhs of Σ′

13 come from the predicate
names appearing on the rhs of Σ′

23. Observe that, we always get Σ12 if we apply
the renaming rules in step 4 of our algorithm on Σ′

12. Similarly, we always get Σ23

if we apply the same rules on Σ′
23. After renaming all predicates in Σ′

13, predicate
names in Σ13 are predicate names from Σ12 and Σ23 only. That is, Σ13 is an SO tgd
and contains only valid predicates for GeRoMe mappings. Thus, the output mapping
M13 is always a valid GeRoMe mapping.

To prove the logical equivalence, we take the inst predicates as an example and
prove that renaming inst predicates does not affect the logical equivalence. Consider
the following two inst predicates, inst(x, constx) on the rhs of an implication in
Σ12 and inst(y, consty) on the lhs of an implication in Σ23. After renaming, they
become inst.constx(x) and inst.consty(y). In the second step of the composition
algorithm, we replace inst.consty(y) with the lhs predicates of an implication
whose rhs is inst.constx(x), only if constx is the same constant as consty. If we
apply the composition algorithm directly on Σ12 and Σ23, we would then always
replace inst(y, consty) with lhs predicates of an implication whose right hand side
is inst(x, constx) even if constx and consty are not the same. However, in the
latter case, we would add constx = consty to the conjunction of predicates on the
lhs of the result implication. The left hand side of the result implication is always
evaluated to false if constx and consty are not the same constants. Therefore, we
can safely remove all result implications where constx and consty are not the same.
That is, only implications where constx and consty are the same constants remains
in the result. This is exactly the same as in the case where we rename predicates
before composing them. Similar results apply to part, attr, value and oid predicates.
So, our output mapping is logically equivalent to the output mapping of applying
composition without renaming predicates.

Also, the optimizations do not affect the logical semantics of the mapping as they
guarantee that the optimized mapping is logically equivalent to the unoptimized
mapping as we will discuss in the next section. 2

4.3 Semantic Optimization of the Composition Result

The proposed mapping language is capable of representing composable and exe-
cutable mappings between models in arbitrary modeling languages. This degree of
flexibility is due to the usage of reification by the meta predicates of the GeRoMe
semantics, which allows us to specify the features (properties) of the model elements
that are mapped representing arbitrary graph structures.

The composition algorithm has exponential time costs, which depend on the number
of implications in the mappings and on the number of predicates in the implications.
The reason for this is that we replace a predicate in S23 with a conjunction of
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predicates in S12 and the same set of predicates in S12 may be inserted multiple
times with different variable names. Thus, reification increases both, flexibility of the
mapping language and computational costs. Consequently, the composed mapping
has on the lhs many similar sets of predicates. Although the result is logically correct,
the predicates on the lhs of the composition seem to be duplicated.

Because the increased size of the resulting implications is due to duplicates of
predicates using different variable names, we can compensate it by collapsing
variables that must be bound to the same objects. This can be done based on the
constraints encoded in the model. The optimization steps first consider only each
implication of the mapping separately and then perform a containment test between
the implications.

A first step in optimizing the composed mapping consists of deriving equalities
of concrete variables in the mapping based on equalities of abstract functions. As
abstract functions are interpreted only syntactically like Skolem functions, the
following conditions hold for abstract functions:

∀f∀g∀x∀y(f 6= g)→ f(x) 6= g(y), f, g are abstract functions
∀x∀y(f(x) = f(y)→ x = y), f is an abstract function

The first statement says that different abstract functions have different ranges. There-
fore, we can remove implications which contain equality predicates of the form
f(x) = g(y) on the lhs, because they never can become true. The second statement
says that an abstract function is a bijection, i.e. whenever two results of an abstract
function are equal, then the inputs are equal, too. This statement can be used to reduce
the number of predicates in the composed mapping (p(x) ∧ p(y) ∧ x = y ⇔ p(x)).

Further optimization steps take the constraints of the models into account. For
example, if we know than an attribute a has maximum cardinality of 1, then we
can conclude from av(x,a, v1) ∧ av(x,a, v2) that v1 = v2. Another possibility for
optimization are uniqueness constraints: if the attribute a is unique, we can conclude
from av(x,a, v) ∧ av(y,a, v) that x = y. The same ideas can be applied also to
associations and part predicates. These steps can be applied iteratively until no
changes can be made anymore to an implication.

Finally, a pairwise containment check is applied on all implications that were
produced by the composition algorithm. Given two implications I1 = A1 → C1 and
I2 = A2 → C2 the implication I1 is contained in I2 if and only if A1 → A2 and
C2 → C1. In this case the implication I1 can be safely removed from the mapping
without changing its set of solutions. The containment test is based on the procedure
[19]; as function symbols are used only in a restricted way, it is sufficient to construct
one canonical database which might be a counter example for containment.

Furthermore, it is particularly important that this optimization step is interleaved
with the composition algorithm. Because the set of implications produced for each
predicate replaced by the algorithm serves as input for the next iteration, the number
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of implications, which is crucial for the computational costs, grows exponentially
depending on the numbers of predicates and implications. Keeping the number
of implications low during the composition already, speeds up the composition
procedure and reduces the space requirements dramatically. However, in order to
speed up the containment check, the preceding steps of collapsing variables have
also been implemented interleaved with the composition.

5 Mapping Execution

In this section we first describe the architecture of our data translation tool before
we explain how we generate queries from a set of generic mappings and how we use
these queries to produce target data from source data.

Fig. 11 shows the architecture of our data translation tool. Given the mapping and
the source model as input, the code generator produces queries against the source
schema. An implementation of this component must be chosen, so that it produces
queries in the desired data manipulation language. In the same way, the target model
code generator produces updates from the mapping and the target GeRoMe model.

Given the generated queries and updates the query executer produces variable
assignments from the evaluation of the queries against the source data. The update
executer then receives these generic variable assignments as input and produces the
target data. Hence, components related to source and target respectively are only
loosely coupled to each other by the variable assignments whereas the query/update
generator and the executer components have to fit to each other.

5.1 Generating XQuery Queries from Generic Schema Mappings

We now introduce our algorithm for generating XQueries from our generic mappings
(cf. fig. 12). However, our tool transforms data arbitrarily between relational and
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Fig. 11. The architecture of the data translation tool
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Input: The lhs of implication χ in an SO tgd Σ with source GeRoMe model S and corresponding XML Schema SXS
Output: An XQuery query over SXS .
Initialization: T = Open = Close = R = P = ∅
Find document variable: This is the only variable symbol S that occurs in a term of the form inst(S,Schema) on the

lhs of χ where Schema is the name of the schema element. Add (S, “/”) to Open and set T = (S, “/”, null)[] where
[] is an empty list.

Construct element hierarchy T :
repeat

let (X, path) ∈ Open and
let t = (X, path, label)[C] be the subtree in T with path as its second component
for each subformula inst(Id, name) ∧ part(Id, ae1, X) ∧ part(Id, ae2, Y ) in χ

where Id,X, and Y are variable symbols, name, ae1 and ae2 are model elements,
and there is no path′ with (Y, path′) ∈ Close,

add (Y, path+ name/) to Open
set t = (X, path, label)[C|(Y, path+ name/, name)[]]
remove (X, path) from Open and add it to Close

endfor
until Open = ∅

Construct return set R:
for each term av(X, a, V ) on the lhs of χ,

where X , V are variable symbols, a is a constant name of an attribute, and
(X, path, label) ∈ T ,

add (V , “$X/@a”) to R.
endfor
for each term value(X,V ) on the lhs of χ,

where X , V are variable symbols and (X, path, label) ∈ T ,
add (V , “$X/text()”) to R.

endfor
Construct condition set P :

for each predicate V1 = V2 on the lhs of χ with (V1, path1) ∈ R ∧ (V2, path2) ∈ R (explicit join condition)
add “path1 eq path2” to P

endfor
for each (V, path1) ∈ R ∧ (V, path2) ∈ R (specifies an implicit join condition)

add “path1 eq path2” to P
endfor
for each term value(V, c) on the lhs of χ, where c is a constant

add “V eq c” to P
endfor

Produce XQuery:
let T = (doc, “/”, null)[(e1,1, p1,1, l1,1)[(e2,1, p2,1, l2,1)[. . .], . . . , (e2,k2 , p2,k2 , l2,k2 )[. . .]]]
let (v1, path1), (v2, path2), . . . , (vn, pathn) ∈ R
let p1, p2, . . . , pn ∈ P .
Then produce the following XQuery query for χ:
for $e1,1 in fn:doc( fname)/l1

for $e2,1 in $e1,1/l2,1 ...
for $e2,k2 in $e1,1/l2,k2

for $e3,1 in $e2,i3,1 /l3,1 ...
where p1 and p2 and . . . and pn

return <result> < v1 >path1</v1 > . . .< vn >pathn</vn ></result>

Fig. 12. Algorithm XQueryGen

XML schemas; these generation and execution components can also be replaced by
components that handle other metamodels (e.g. OWL or UML). The construction of
SQL queries and updates will be explained later in this section.

The element hierarchy T describes the structure that is queried for, the condition set
P contains select and join conditions and the return set R assigns XQuery variables
for values of attributes and simple typed elements in the source side of the mapping.
The last step uses the computed data to produce the actual XQuery where fname
will be replaced with the actual XML file name when the query is executed.

We now generate an XQuery from the mapping in fig. 6 that can be used to query
the document in fig. 4. We first have to identify the variable which refers to the
document element. As the lhs of the mapping contains a term inst(o0, Schema),
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o0 is the variable we are looking for. Therefore, we add (o0, /) to Open and put
(o0, /, null)[] as the root into T (where [] is a yet empty list denoting the children of
the root node).

Now, we construct the element hierarchy T . For (o0, /) in Open the required pattern
is satisfied by the subformula inst(o1,University) ∧ part(o1,parentU , o0) ∧
part(o1,childU , o2). We add (o2, /University) to Open and add (o2, /Uni-
versity,University) to T as a child of (o0, /, null). As no other subfor-
mula satisfies the pattern, we remove (o0, /) from Open and add it to Close. We get
Open = {(o2, /University)}, T = (o0, /, null)[(o2, /University,Univer-
sity)] and Close = {(o0, /)}. We repeat the step for (o2, /University). The
result for T after this step is (o0, /, null)[(o2, /University,University)[(o4,
/University/Student,Student)]]. No elements are added in the last step.

The three variables on the lhs of χ are assigned by the query, u, s and i. According to
the rules described in the algorithm, we add (u, $o2/@uname), (s, $o4/@sname)
and (i, $o4/@ID) to the return set R. There are no join or select conditions in
the mapping, therefore, the condition set for this mapping remains empty. The
assignments to the variables u, s and i that are returned by the query are used as
input when executing the rhs of the mapping. The XQuery generated from χ is:

for $o2 in fn:doc( fname)/University
for $o4 in $o2/Student

return <result>

<u>$o2/@uname</u> <s>$o4/@sname</s> <i>$o4/@ID</i>

</result>

5.2 Generating and Executing SQL Queries and Updates

Generating queries and updates in SQL are both very similar. As update generation
also includes the phase in which the values retrieved from the source side have to
be inserted into the generated SQL insert commands, we focus on this part. The
algorithm in fig. 13 receives as input the rhs of an implication whose target model is
a SQL Schema. From this it generates a set of parametrized SQL update statements.

For a given implication it first computes the set of tables for which records are gener-
ated. By handling each predicate inst(f(x), a) individually, it is possible to generate
multiple records of one table. Then it fetches the set of triples av(f(x), attr, term)
from the implication where term specifies the concrete value of column attr for
record f(x). In the last step this information is used to construct the insert statement.
The statements generated are of the form “insert into . . . on duplicate key update
. . . ”. This is a variant of the insert operation for the MySQL database management
system which inserts records, or if a record with the given key already exists, the
existing record will be updated. Using this syntax we can allow multiple implications
to contribute to one record in the database. Please note that we need to assume that
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Input: The rhs of an implication χ ∈ Σ taken from a GeRoMe mappingM = (S,T,Σ)
where TSQL is the SQL Schema corresponding to the GeRoMe model T.

Output: A set of parameterized SQL update statements over TSQL

Initialization: T = C = K = ∅

Construct the table set T :
for each predicate inst(f(x), a) on the rhs of χ, where

f is an abstract function,
x is a vector of concrete variables, and
a is a model element in T that plays an Aggregate role,

add (f(x), a) to T
endfor

Construct column set C and key column set K:
for each av(f(x), attr, term) predicate on the rhs of χ, where

f is an abstract function,
x is a vector of concrete variables,
attr is a model element in T that plays the role of an Attribute of table t, and
term is a term over xi,c and fc.

if T declares attr to be a key component for table t
add (f(x), attr, term) to K.

else
add (f(x), attr, term) to C

endif
endfor

Construct the update:
for each (f(x), a) ∈ T :

let Kf(x) = {t|t = (f(x), attr, term) ∈ K} =
{(f(x), attr1, term1), . . . , (f(x), attrm, termm)}

let Cf(x) = {t|t = (f(x), attr, term) ∈ C} =
{(f(x), attr1a , term1a), . . . , (f(x), attrna , termna)}

Then construct the following SQL insert statement:
insert into a(attr1, . . . , attrm, attr1a , . . . , attrna)
values (?term1, . . . , ?termm, ?term1a , . . . , ?termna)
on duplicate key update attr1a =?term1a , . . . , attrna =?termna

endfor

Fig. 13. Algorithm SQLUpdateGen

each implication generates values for all key components of generated tuples to do
so. This is a reasonable assumption because there must be a way to identify tuples
on the target side if multiple tuples have to be merged.

Fig. 14 depicts the execution procedure for the SQL update statements. Given a
set of update statements, this procedure interprets the terms used in the implication
in the place of concrete values. It uses the implementations assigned to function
symbols in fc and the variable assignments produced by executing the query for the
lhs of the implication. Given this information the denotation of each term on the rhs
of the implication can be computed. Replacing the corresponding placeholders in the
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Input: A set of parameterized SQL insert / update statements {U1, . . . , Un} generated
from the rhs of implication χ ∈ Σ by algorithm 13
A set of variable assignments for all concrete variables in χ
An interpretation I that defines the semantics of all functions f ∈ fc

Output: A set of SQL update statements U without parameters over TSQL

Set update parameters:
for each update statement Ui and for each variable assignment µ

for each term term in Ui
let d = ||term||I,µ be the denotation of that term
replace term in Ui with its denotation d

endfor
add the ‘ground’ update statement to U

endfor

Fig. 14. Algorithm SQLUpdateExec

update statements gives a set of “ground” update statements that can be executed.

6 Evaluation of Mapping Composition and Execution

To evaluate mapping composition we used fourteen composition problems which
were taken from recent literature [10], or which were manually defined by us. The
mappings from literature had to be formulated manually in our representation before
composing them. The results of composition were logically equivalent to the results
documented in the literature. All tests were run on a Windows XP machine with a
Pentium M processor with 1.86GHz CPU and 700MB heap space.

In fig. 15, we list, for each test case, the number of implications in Σ12, Σ23 (I12 and
I23) and the average numbers of predicates in the lhs and rhs of the implications
(Pl,12, Pl,23, Pr,12 and Pr,23). All these properties of the input mappings influence the
computation time for composition and the quality of the result which we captured
with the number of implications in Σ13 (I13) and the average number of predicates
in the lhs of its implication (Pl,13).

The upper bound of the number of implications in the unoptimized composition
is O(

∑
i(I

Pi)), where I is the number of implications in the normalized Σ12 (I =
I12 ·Pr,12) and Pi is the number of predicates in the lhs of implication i in Σ23. In the
second step of our composition algorithm, a predicate on the left hand side of χ can
have at most I matching implications in S23. Since one implication is generated for
each matched implication, after replacing the predicate, the number of implications
in S23 will increase at most at the factor of I . Repeating the same reasoning for
every source predicate in Σ23 will lead to the stated upper bound.

Thus, with increasing numbers of implications in mappingM12 and increasing num-
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bers of predicates in the mappings, the number of generated implications increases
dramatically for the unoptimized case. This is because the composition algorithm
generates a new implication for each possible replacement of a predicate in the lhs of
M23. For the conferences example used in [13] (example 8) the result contained 972
implications in the unoptimized case and only one implication in the optimized case.
For composition task 14, the unoptimized composition mapping contained 9216
implications as opposed to 24 implications in the optimized case. The number of
implications is crucial as a high number of implications in an intermediate result also
produces a higher number of implications after the next predicate replacement. Thus,
the optimization algorithm improves the computation time by keeping the number
of implications low during the composition. Furthermore, although a mapping with
thousands of implications may be logically correct, it is practically unusable. Thus,
the optimization procedure is needed to improve the computation time of more com-
plex composition tasks, but also to produce an actually useful result. Furthermore,
the computation needs about 18 seconds in the unoptimized case, whereas doing
the same composition with optimization returns the composed mapping after 1.2
seconds.

Similar to the number of implications, the number of predicates per implication
in the composition mapping influences the practical usability of the mapping. In
the unoptimized case, the result of composing the conferences example yields
implications with about 200 predicates each whereas the optimized composition
algorithm produces a mapping with one single implication containing 15 predicates.
The result was the same mapping that would have been handcrafted for the two
schemas. Thus, the optimization steps performed in the loop of the algorithm
significantly reduce the number of predicates in the composition result. Furthermore,

Example I12 Pl,12 Pr,12 I23 Pl,23 I13 Pl,13 time(ms)

1 1 12 6 1 6 1 12 172
2 2 4 6 1 3 2 4 156
3 2 3 3 1 6 1 3 31
4 2 4 6 1 6 1 4 63
5 2 4 6 1 9 1 8 125
6 2 8 18 2 16 2 8 781
7 3 4 6 1 9 3 8 375
8 3 7.33 28.33 1 39 1 15 1281
9 4 4 6 1 9 3 8 250
10 5 4 6 1 18 2 16 625
11 6 4 6 1 21 2 18 735
12 7 4 6 1 24 4 24 1828
13 8 4 6 1 30 8 33 7563
14 9 4 6 1 30 24 33.33 25284

Fig. 15. Time performance of the composition algorithm with optimization
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a reduced number of predicates in the implications of course also improves the
performance of the containment test that is necessary for the optimization.

The evaluation also confirms the exponential time costs of the composition algorithm
which is inline with the results of [10] where it was proven that the computation
time of composition is exponential in the size of the input mappings.

To evaluate mapping execution we defined seven test cases between relational
databases and XML documents. The performance was linear in the size of the output
and, thus, our framework does not impose a significant overhead to data exchange
tasks. These tests included also executing the composition of two mappings from
a relational to an XML Schema and back. The result was an identity mapping and
execution of the composed mapping was about twice as fast as subsequent execution
of the mappings. Our tests showed that our mapping execution yields the desired
results satisfying both, the logical formalisms and the grouping semantics specified
in the mappings.

7 Answering Queries using Generic Schema Mappings

Data integration requires the definition of mappings between source schemas and
the global integrated schema. These mappings can be defined in various ways [7].
The basic form of a mapping is qSθqG in which qS is a query over a source schema
S, qG is a query over the global schema G, and θ is a comparison operator for sets,
such as ⊆, =, or ⊇. The usual semantics of such a mapping is that the query qS
evaluated over a valid instance of S delivers an equivalent, sub-, or super-set of the
answers of qG evaluated over the corresponding instance of G.

Such a mapping in this general form, with queries on both sides of the mapping, is
also called a “GLAV mapping” (global-local-as view) [7], as it is a combination of
the more frequently used GAV (global-as-view) and LAV (local-as-view) mappings.
In GAV mappings, each element of the global schema is described by a query over
the source schema (i.e. the query qG is a single predicate) whereas in LAV mappings,
each element of the local schemas is described by a query over the global schema
(i.e. the query qS is a single predicate).

For data integration, the problem of query answering is important. Query answering
is the process of rewriting a query defined over the global schema into queries
defined over the source schemas. Unless constraints for the global schema are given
[20], the rewriting in the case of GAV mappings can be done by unfolding the query
definition with mappings. In the case of LAV mappings, more complex algorithms
for answering queries using views have to be used [21]. As the mappings presented
in this paper are strictly source-to-target, we can use the composition algorithm
to rewrite a query over the global, integrated schema into queries over the source
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schemas. Recall, that a mapping expression is called “source-to-target if its left hand
side contains only elements from the source model and its right hand side references
only elements from the target model. Please note that the definition requires the
constants identifying model elements to be from S on the lhs only, and to be from T
only on the rhs. Thus, we only consider source-to-target dependencies in this work.

The details of this rewriting procedure will be explained in the following section.

7.1 Query Answering with Source-To-Target Mappings

We are considering a virtual data integration scenario, in which a query posed to
the integrated schema has to be rewritten into queries against the sources in order
to compute the query result from the sources. We first define a query to a GeRoMe
model in our data integration scenario.

Definition 5 (GeRoMe query) A query q to a GeRoMe model M is defined by an
expression of the form q(x) ← p1(y1) ∧ . . . ∧ pn(yn). The predicates p1, . . . , pn
can be either equalities or are those atomic predicates defined in definition 2. The
lists of arguments of these predicates are similar to definition 3: all predicates must
have abstract variables as their first argument; inst, attr and part predicates have
constants referring to model elements of M as second argument; part predicates
have also abstract variables as third argument; value predicates have concrete
variables or constants as second argument.

The set x is a set of concrete variables, in which each variable occurs at least once
as the second argument of a value predicate in p1, . . . , pn.

Thus, a GeRoMe query is basically a conjunctive query, similar to the left-hand
side of a GeRoMe mapping. As queries should return only concrete values and not
abstract identifiers, the variables in x must refer to concrete values. Furthermore, in
order to have a safe expression, each of the variables in the query head must appear
at least once in the query body; as these variables refer to values, they may only
appear as second argument of a value predicate.

As an example, we consider as integrated schema the XML schema in fig. 7 with
students, universities, and courses. A query for students with their ID and name, and
the names of courses which they take, can be expressed in the following way: 3

q(i, s, c)← inst(x,Schema) ∧ inst(se,Student) ∧ part(se,parentS , x) ∧
part(se,childS , st) ∧ av(st,sname, s) ∧ av(st,id, i) ∧
inst(ue,University) ∧ part(ue,parentU , st) ∧ part(ue,childU , ut) ∧
inst(ce,Course) ∧ part(ce,parentC , ut) ∧ part(ce,childC , ct) ∧

3 For reasons of simplicity, we omit in this query redundant inst predicates as in the
previous mapping examples.
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<course cid="1" cname="Databases" uni="RWTH">
<enrolled sid="123456"/>
<enrolled sid="234567"/>
...

</course>

Fig. 16. Structure of the XML document with courses and enrolled students
∃k, k′, g, g′, h, h′, d ∀o1, o2, o3, o4, u, cn, i, c

inst(o1,Course) ∧ part(o1,parentC , o0) ∧ part(o1,childC , o2) ∧
inst(o3,enrolled) ∧ part(o3,parentE , o2) ∧ part(o3,childE , o4) ∧
av(o2,cid, c) ∧ av(o2,cname, cn) ∧ av(o2,uni, u) ∧ av(o4,sid, i)→
inst(k(i),Student) ∧ part(k(i),parentS , d()) ∧ part(k(i),childS , k′(i)) ∧
inst(g(i, u),University) ∧ part(g(i, u),parentU , k

′(i)) ∧
part(g(i, u),childU , g′(i, u)) ∧ inst(h(i, u, c),Course) ∧
part(h(i, u, c),parentC , g

′(i, u)) ∧ part(h(i, u, c),childC , h′(i, u, c)) ∧
av(k′(i),ID, i) ∧ av(g′(i, u),uname, u) ∧ av(h′(i, u, c),cid, c) ∧
av(h′(i, u, c),cname, cn)

Fig. 17. Mapping between courses in XML as in fig. 16 and the integrated schema

av(ct,cname, c)

The query navigates through the structure of the XML document by starting at the
document root x (which is an instance of the Schema element) and following the
associations from student over university to course. As we are only interested in the
id and name of the student, and the name of the course, we just retrieve these attribute
values using av predicates; as we are not interested in the name of the universities,
we do not have an av predicate for the uname attribute of the UniType.

It is obvious that such a query language is not intended to be used by end users. For
our envisioned integration system, we plan to use a modified variant of SQL with
SELECT-FROM-WHERE clauses. On the one hand, this language will be a subset
of the original SQL language as we do not plan to support extended features such
as aggregation or grouping. On the other hand, the language will extend SQL with
path expressions to be able to navigate through nested structures or associations.

To show the basic idea of our rewriting algorithm, we use as an example two
mappings which have the integrated schema of fig. 7 as a target:

• M1 is the mapping shown in fig. 8 from the updated relational schema to the
XML schema.
• M2 is a new mapping from an XML document with courses and students enrolled

in these courses (shown in fig. 16) to the integrated XML schema. The mapping
is shown in fig. 17.

Suppose now, we have to rewrite a GeRoMe query. As the body has the same
structure as the left-hand side of a GeRoMe mapping, we can use the query as
input mappingM23 of the composition algorithm. The conjunction of the mappings
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between all sources and the integrated schema is the input mappingM12.

When building the conjunction of mappings, we have to take care of the function
symbols used in the mappings. Symbols for concrete functions are associated with a
specific implementation of a function; this does not change if we combine several
mappings in a conjunction. Abstract functions however are just interpreted as Skolem
functions (i.e. as syntactic terms). If different function symbols are used for abstract
functions that represent the abstract identifiers of the same model element in two
different mappings, then the instances of this model element cannot be matched
across these two mappings. To illustrate this problem, we used the function symbol
k in the mapping of fig. 17 to identify instances of Student, instead of the symbol
f that was used in the other mapping in fig. 8. This change is trivial, but it should
show that different function symbols could be used in different mappings to identify
the instances of the same model element.

Therefore, after constructing the conjunction of the mappings between sources and
global schema, we have to check for the mappings that for each model element of
the global schema, the same function symbols are used. We assume that, if different
function symbols are used for the same model element, then they still have the same
set of input arguments. This is not a strong limitation, as also in practice we must
have a unique way to identify identical instances in order to be able to merge the
information from different sources.

Formally, we have to check the mapping for the occurence of two predicates of the
form inst(f(x),m) and inst(g(y),m) with f 6= g. As said before, we assume that
the functions still have the same set of input arguments. As function symbols are
existentially quantified, we can replace in the whole mapping all occurences of g
with f , without changing the logical semantics of the mapping.

If we have done this transformation, we can apply the composition algorithm to the
conjoined mappings and the query. As a result, we will get a set of implications
which might refer on the lhs to multiple different source schemas. In the example,
each condition of an implication in the resulting mapping will refer to both sources,
as information about the student name (sname) can be only retrieved from the
source in mappingM1, and information about courses is only given in the source
ofM2. In order to be able to generate an executable mapping, we have to partition
the predicates in the condition according to the source schemas. If two predicates
referring to two different sources share the same variable x, we replace the variable
in all predicates of one source with a new variable x′ and introduce an additional
equality predicate x = x′. As equality predicates do not refer to any source schema,
they will be handled separatedly.

If this partitioning of the predicates is done, we can pass a set of predicates referring
to one source to the query generator component of the data translation tool, execute
the generated query and keep the variable assignment until the queries for all sources
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have been executed. In a final step, we can then evaluate the equality predicates
based on the variable assignment, which basically corresponds to a join operation
between two sources. The result of this step is the result of the query.

7.2 Optimization of the Rewritten Query

As we are using the composition algorithm presented in section 4, the same opti-
mization steps will be applied to the rewritten query to get more efficient source
queries. In addition, further optimizations can be applied to the query which were
not considered for the composition. To explain, we use again our running example:
the query asks for the id and name of students together with their course names. The
sources provide additional information such as university name and course id, which
is not directly relevant for the query result. As predicates about these attributes are
contained in the mappings between sources and global schema, these predicates will
be also contained in the rewritten query. However, these predicates can be removed
from the query if the cardinality constraints of the schema guarantee that such an
attribute exists for each instance of the corresponding type.

If we generate an executable SQL query from a GeRoMe query, the removal of an
av predicate in the query just corresponds to the removal of a term in the SELECT
clause of the query, which will probably not have a big impact on query performance.
However, for XML, we can omit one path expression to retrieve the attribute value,
which might have a bigger impact on query performance.

8 Discussion and Related Work

In this section, we review related work and compare it with our approach for generic
schema mappings. We will first present approaches for mapping representation,
then discuss the mapping composition in section 8.2, and address the execution of
mappings in section 8.3. Section 8.4 presents recent approaches for query answering.

8.1 Mappings

Many different mapping representations are used in various areas of data man-
agement, such as data translation, query rewriting and schema integration. Each
mapping representation has certain advantages and disadvantages for specific ap-
plication areas. The simplest form of mappings are binary correspondences (also
called morphisms [16]), which are usually the result of schema matching [2].
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Morphisms only state a similarity between schema elements but do not provide
any detailed semantics of the relationship. More formal mappings are required for
tasks such as schema integration and data translation. Schema integration requires
intensional mappings, which formalize the relationship of model elements with
respect to their intensional semantics [4; 22]. In contrast to extensional mappings,
intensional mappings are not directly related to a particular instance of the schema.

The topic of this article are extensional mappings which can be used for data
translation or data exchange. Extensional mappings are defined as local-as-view
(LAV), global-as-view (GAV), source-to-target tuple generating dependencies (s-t
tgds) [7; 8], second order tuple generating dependencies (SO tgds) [10], or similar
formalisms. Source-to-target tuple-generating-dependencies (s-t tgds) or GLAV
assertions are used to specify mappings between relational schemas. Therefore, they
are strict subsets of our adaptation of SO tgds. Every s-t tgd has a corresponding
GeRoMe mapping but not vice versa. GeRoMe mappings can express nested data
structures, e.g. XML data, while s-t tgds cannot.

Path-conjunctive constraints [23] are an extension of s-t tdgs for dealing with nested
schemas. However, they may suffer from several problems [11]. First, the same
set of paths may be duplicated in many formulas which induces an extra overhead
on mapping execution. Second, grouping conditions cannot be specified, leading
to incorrect grouping of data. Nested mappings [11], which are used in Clio [24],
extend path-conjunctive constraints to address the above problems. Nested mappings
merge formulas sharing the same set of high level paths into one formula, which
causes mapping execution to generate less redundancy in the target. In addition,
nested mappings provide a syntax to specify grouping conditions. The language of
SO tgds is a strict superset of the language of nested mappings [11]. Since every
SO tgd specified for relational schemas can be transformed into a corresponding
GeRoMe mapping, our mapping language is more expressive than the nested map-
ping language. Like SO tgds, our generic mappings are closed under composition.
Furthermore, like nested mappings they are also able to handle nested data and
specify arbitrary grouping conditions for elements.

Like path-conjunctive constraints, a GeRoMe mapping cannot be nested into another
GeRoMe mapping. Thus, a common high-level context has to be repeated in differ-
ent formulas of a GeRoMe mapping. Again, this leads to less efficient execution.
However, duplication in target data is overcome by grouping conditions. We may
also borrow from the syntax of nested mappings [11] to allow nested mapping
definitions.

Another form of mappings based on a Datalog-like representation is used by Atzeni
et al. [3]. These mappings are generic as they are based on a generic metamodel, but
they require the data to be imported to the generic representation as well. This leads
to an additional overhead during execution of the mappings. In our approach, we are
able to translate the generic mapping representation into a specific query language
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of a metamodel and thereby avoid this overhead.

8.2 Mapping Composition

Mapping composition has been studied for various mapping formalisms [9; 10; 18].
A semantics for mapping composition has been proposed firstly in [9]. The authors
defined the semantics of the Compose operator relative to a class Q of queries over
the model S3 where the “equivalence” means that, for every query q inQ, the certain
answers for q wrt.M13 are the same as the certain answers for q wrt.M12 andM23.
The main drawback of this definition is that the semantics of the composition is
relative to the class of queries Q.

Mapping composition using s-t tgds was explored in [10]. It was proven that the
language of s-t tgds is not closed under composition. To ameliorate the problem,
the authors introduced the class of SO tgds and proved that (i) SO tgds are closed
under composition by showing a mapping composition algorithm; (ii) SO tgds form
the smallest class of formulas (up to logical equivalence) for composing schema
mappings given by finite sets of s-t tgds; and (iii) given a mapping M and an
instance I over the source schema, it takes polynomial time to calculate the solution
J which is an instance over the target schema and which satisfiesM. Thus, SO tgds
are a good formalization of mappings and therefore, we have chosen them as the
basis for our mapping representation. We adapted the composition algorithm of [10]
to our generic mapping representation and thereby allow composition of mappings
between heterogeneous modeling languages. Furthermore, we implemented the
composition algorithm and made the observation, that the exponential complexity of
the algorithm and the result size is not applicable in a pratical solution. Therefore, we
added several optimization steps to the composition algorithm which reduces on the
one hand the runtime of the algorithm and, on the other hand, the size of the result.
Therefore, the results of our composition algorithm can be executed efficiently.

Another approach for mapping composition uses relational algebra expressions as
mappings [18]. The approach uses an incremental algorithm which tries to replace as
many symbols as possible from the “intermediate” model. As the result of mapping
composition cannot be always expressed as relational algebra expressions, the
algorithm may fail under certain conditions which is inline with the results of [10].

8.3 Executable mappings

Recall that an executable mapping is a mapping that has formal semantics and can
be used for translating data or queries between different schemas of overlapping data.
Executable mappings are necessary in many metadata intensive applications, such
as database wrapper generation, message translation and data transformation [8].
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While many model management systems were used to generate mappings that drive
the above applications, few of them were implemented using executable mappings.
The reason is probably due to the lack of rigorous semantics of model management
operators if the mappings are executable mappings.

Because executable mappings usually drive the transformation of instances of mod-
els, Melnik et al. [8] specified a semantics of each operator by relating the instances
of the operator’s input and output models. The authors also implemented two model
management system prototypes to study two approaches to specifying and manip-
ulating executable mappings. In the first implementation, they modified Rondo’s
[16] language to define path morphisms. On the positive side, this system works
correctly whenever the input is specified using path morphisms, and the input is also
closed under operators which return a single mapping. However, the expressiveness
of path morphisms is very limited. To overcome this limitation, they developed a
new prototype called Moda [8] in which mappings are specified using embedded
dependencies. The expressiveness is improved in the second implementation, but it
suffers from the problem that embedded dependencies are not closed under compo-
sition. Although they further developed a script rewriting procedure to ameliorate
this problem, it has not been completely solved.

In this article we modified the language of SO tgds such that we are able to repre-
sent generic mappings between schemas in heterogeneous modeling languages, as
opposed to mappings between relational schemas only. Despite these changes, we
have shown that our mapping language remains executable while at the same time
being closed under composition and allowing for restructuring of data.

8.4 Query Answering

Many approaches dealt with the problem of query rewriting for data integration or
data exchange scenarios [21; 7; 25; 26]. Since our mappings are strictly source-to-
target mappings, we can use mapping composition for query rewriting.

Our work on query answering and query rewriting with our mapping representation
is still work in progress. One limitation in our approach is that we assume that
the sources are sound and complete, and therefore do not consider the constraints
in the target model. Constraints on the global schema and the assumption of in-
complete sources complicate the process of query answering also for the case of
source-to-target mappings [20]. If the constraints include foreign keys which have
cyclic dependencies, query answering becomes more difficult. In order to get the
certain answers [27] to a query, the query has to be rewritten to take into account
dependencies which are defined by the foreign key relationships. Similar work, but
for a data exchange setting, is done in [26].

Our goal is to use our mappings in a peer-to-peer data integration scenario [25].

35



However, in such a system, a peer that serves as target in one mapping serves as
source in another mapping. In this case, query unfolding cannot be used for rewriting
the query. Therefore, we have to consider additional query rewriting techniques such
as query answering using views [21]. The results have to be combined with queries
rewritten by mapping composition. The expressiveness of our generic mapping
language and the generic metamodel might complicate the adaptation of existing
algorithms, but it provides on the other hand a good basis for a useful and efficient
peer-to-peer system.

9 Conclusion

In this paper we presented a rich language for schema mappings between models
given in our Generic Role-based Metamodel GeRoMe [12]. Our mapping language
is closed under composition as it is based on second order tuple-generating depen-
dencies [10]. The mapping language is generic as it can be used to specify mappings
between any two models represented in our generic metamodel. Moreover, map-
pings can be formulated between semistructured models such as XML schemas,
object-oriented models, or OWL ontologies and are not restricted to flat schemas
like relational schemas. Another feature of the proposed language is that it allows
for grouping conditions that enable intensive restructuring of data, a feature also
supported by nested mappings [11] which are not as expressive as SO tgds. However,
such grouping functionality is not supported by conventional SO tgds.

We implemented an adapted version of the composition algorithm for second order
tuple-generating dependencies [10]. Furthermore, we showed that the mapping
language is still executable by developing a tool that exports our mappings to queries
and updates in the required data manipulation language and then uses them for data
translation. Exemplarily, we introduced algorithms that translate the source side of
a generic mapping to a query in XQuery as well as algorithms for translating the
target side of a generic mapping into SQL updates and for executing these updates.
The algorithm for generating SQL updates harnesses the opportunity to specify
mappings in which multiple implications contribute to the same generated tuples.
The components for mapping export and execution can be arbitrarily replaced by
implementations for the required metamodels. The evaluation showed that both,
mapping composition and mapping execution, yield the desired results with a
reasonable time performance. Furthermore, we discussed how generic schema
mappings can be used for query rewriting and pointed out some problems that may
appear in this context.

We are currently developing techniques for visualizing our mappings with the goal
to implement a graphical editor for generic, composable, structured extensional
mappings. This editor will be integrated into our holistic model management system
GeRoMeSuite [13]. We will also investigate the relationship between our extensional
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mappings and intensional mappings that are used for schema integration [4]. Fur-
thermore, we are investigating techniques to generate executable generic schema
mappings from simple morphisms. As a starting point we adapt the techniques
employed by Clio [28] to our generic metamodel and mapping language.
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