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Abstract. The interoperability of heterogeneous data sources is an important is-
sue in many applications such as mediation systems or web-based systems. In 
these systems, each data source exports a schema and each application defines 
a target schema representing its needs. The way instances of the target schema 
are derived from the sources is described through mappings. Generating such 
mappings is a difficult task, especially when the schemas are semi structured. 
In this paper, we propose an approach for mapping generation in an XML con-
text; the basic idea is to decompose the target schema into subtrees and to find 
mappings, called partial mappings, for each of them; the mappings for the 
whole target schema are then produced by combining the partial mappings and 
checking that the structure of the target schema is preserved. We also present a 
tool supporting our approach and some experimental results. 

1 Introduction 

A broad variety of data is available on the Web in distinct heterogeneous sources. 
The exchange and integration of these data sources is an important issue in many 
applications such as mediation systems or web-based systems. 

In these systems, each data source has a schema (called source schema) that pre-
sents its data to the outside world. Applications needs are represented by target sche-
mas. The way instances of the target schema are derived from instances of the source 
schemas is described through mappings. One example of systems using these map-
pings is mediation systems, where the target schema is called mediation schema and 
the mappings are called mediation queries. The user queries are expressed over the 
mediation schema and rewritten in terms of the source schemas using the mappings. 

Defining mappings is a difficult task which requires a deep understanding not only 
of the semantics of the source schemas, but also the semantic links between the 
sources and the target schema. The complexity of this task increases when the number 
of data sources is high. The amount of required knowledge makes the manual defini-
tion of the mappings extremely difficult for a human designer. When the target 
schema and the source schemas are in XML, the definition of the mappings is more 
complex because of the hierarchical nature of the data. 

In [7], we have proposed a general framework for mapping generation. In this pa-
per, we present the algorithms for automatic mapping generation and a tool to support 
this task. We consider that the target and source schemas are described in XML 



Schema, and we assume that a set of correspondences is provided. These correspon-
dences relate elements of a source and elements of the target schema and express that 
these elements represent the same concept. Our tool produces a set of mappings, 
corresponding to different ways to derive instances of the target schema from in-
stances of the sources. The generated mappings can be expressed in a standard lan-
guage, such as XQuery or XSLT. 

Due to the semi-structured nature of XML sources, it is extremely difficult to di-
rectly define mappings for the whole target schema. The basic idea of our approach is 
(i) firstly to decompose the target schema into a set of subtrees, called target sub-
trees; (ii) then to find the different ways, called partial mappings, to define each 
target subtree from the source schemas; (iii) and finally to combine the partial map-
pings to generate the mappings for the whole schema, called target mappings. 

The paper is organized as follows. In Section 2, we give some basic assumptions 
and preliminary definitions. Section 3 presents the decomposition of the target 
schema. Section 4 and Section 5 detail the determination of the partial mappings and 
the generation of the target mappings respectively. Section 6 gives some experimental 
results obtained by our system. Some related works are presented in Section 7 and 
Section 8 concludes the paper. 

2 Preliminaries 

In this section we present the underlying assumptions of our approach: the representa-
tion of the target and the source schemas, and the correspondences between the sche-
mas.  

2.1 Representation of Target and Source Schemas 

We consider source schemas and target schema expressed using XML Schema. Fig-
ure 1 shows two source schemas and a target schema representing information about 
books in a library. To avoid confusions, in the rest of the paper, each node will be 
suffixed by the name of its schema: AuthorIds1 will refer to the node AuthorId in S1 
while ISBNs2 will refer to the node ISBN in S2. Every node in the tree may be either a 
text node (e.g. AuthorIds1), that is, a node containing only text, or an internal node 
(e.g. Chapters1). The leaf nodes of the tree are always text nodes. 

The cardinality of every node is characterized by the attributes minOccur and 
maxOccur, representing respectively the minimum and maximum number of in-
stances for this node in the tree with respect to its parent. Each node is monovalued 
(maxOccurs = 1) or multivalued (maxOccurs > 1); it is also optional (minOccurs = 0) 
or mandatory (minOccurs > 0). In Figure 1, the symbol ‘+’ represents a multivalued 
and mandatory node (e.g. Books2); the symbol ‘*’ represents a multivalued and op-
tional node (e.g. Bookts); and the symbol ‘?’ represents a monovalued and optional 
node (e.g. Abstractts). A node without symbol is monovalued and mandatory (e.g. 
Ids1).  
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Figure 1. Schemas and correspondences 

Keys are defined either in the whole schema or only in a subtree of the schema. In 
the first case, the key is absolute. In the second case, the key is relative and its scope 
is an antecessor of the identified node, except the root. In Figure 1, the nodes written 
in bold represent keys. If the name of the key node is followed by a bracket, then the 
key is a relative key and its scope is the node between brackets (e.g. Numbers2 is a 
relative key and its scope is Books2), otherwise it is an absolute key (e.g. ISBNs1). A 
schema may also contain references; each one is a set of text nodes referencing an-
other set of text nodes defined as a key. In our example, AuthorIds1 references Ids1, 
and this is represented by an arrow in Figure 1. 

2.2 Semantic Correspondences 

We suppose that a set of semantic correspondences is provided between each source 
schema and the target schema. The definition of these correspondences is an impor-
tant issue and several approaches have been proposed to solve this problem 
[4][5][12].  

In our work, we consider two kinds of correspondences: 1-1 and 1-n. A 1-1 corre-
spondence relates a target node n with a source node n’, and states that the two nodes 
represent the same concept. This correspondence is denoted n ≅ n’ (e.g. Ids1 ≅ Idts, 
Numbers2 ≅ Numberts). In Figure 1, dotted lines represent correspondences. A trans-
formation function may be applied to the source node. For example, a correspondence 
can be specified to relate a target node PriceInEuro to a source node PriceInDollar; if 
the exchange rate is 1€ = 0,797$, such correspondence is denoted PriceInEuro ≅ 0. 
797*PriceInDollar. 



A 1-n correspondence relates a target node n to a set of source nodes combined by 
the mean of a transformation function. For example, a target node Name represents 
the same concept as the concatenation of two source nodes FirstName and LastName. 
This correspondence is denoted Name ≅ concat(FirstName, LastName). 

More generally, we consider the correspondences relating a target node n and a set 
of source nodes n1, …, nk combined using a function f. Such correspondences are 
denoted n ≅ f(n1, .., nk). For simplicity, in this paper we will restrict ourselves to 1-1 
correspondences. 

We use the same notation to represent correspondences between sets of nodes. 
There is a correspondence between two sets of nodes s1 and s2 if (i) both s1 and s2 
contain the same number of nodes (ii) and for each node n1 in s1 there is exactly one 
node n2 in s2 such that n1 ≅ n2, and vice versa. The correspondence between the two 
sets s1 and s2 is denoted s1 ≅ s2 (e.g. {ISBNs1, BookTitles1} ≅ {ISBNts, BookTitlets}). 

Correspondences between two source schemas are derived though their correspon-
dences with the target schema. Given two source nodes n and n’ in S and S’ respec-
tively, the correspondence n ≅ n’ holds if there is a node n” in the target schema such 
that n” ≅ n and n” ≅ n’. Some correspondences may also be provided between the 
source schemas; they will be used in our approach for mapping generation. 

3 Decomposing the Target Schema 

To handle the complexity of mapping definition, we decompose the target schema 
into a set of subtrees, called target subtrees; we will first find mappings for each tar-
get subtree then combine these mappings to generate the mappings for the whole 
schema, called target mappings. 

Given a target schema, each target subtree t is a subtree of the target schema satis-
fying the following conditions: 

− the root r of the subtree is either a multivalued node or the root of the target 
schema; 

− all the other nodes in t are descendents of r and are monovalued; 
− there is at least one text node in t (t may contain a single node). 

This decomposition of the target schema gives several subtrees in which every 
node is monovalued. The mapping generation problem for the target schema is de-
composed into two steps: finding mappings for every target subtree, then combining 
these mappings. Since a target subtree contains only monovalued nodes except the 
root, finding a mapping for this subtree consists in finding some equivalent nodes in 
the sources that satisfy the cardinalities constraints regardless their hierarchical or-
ganization. The hierarchical structure of the different target subtrees is checked dur-
ing the second step.  

Our target schema given in Figure 1 has three target subtrees shown on the right 
side of Figure 2: t1 is composed of the multivalued node Authorts and its three mono-
valued children Idts, Namets and Addressts; t2 is composed of Bookts and its two mono-
valued children ISBNts and BookTitlets; and t3 is composed of Chapterts, Numberts, 
ChapterTitlets and Abstractts. The root Libraryts doesn’t belong to any target subtree.  
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Figure 2. Target subtrees and source parts 

Given two target subtrees t and t’ such that the root of t’ is a child of a node in t, 
we say that t is the parent of t’ and t’ is a child of t (e.g. in Figure 2, t2 is the child of 
t1 and the parent of t3).  

A target subtree can be either mandatory or optional in a target schema. Consider a 
target schema with the root R and a subtree t of this schema with the root r. If t has a 
parent subtree t’ with the root node r’, we say that t is mandatory if all the nodes on 
the path from r to r’ (except r’) are mandatory. If t has no parent subtree, it is manda-
tory if all the nodes on the path from r to R are mandatory. In all the other cases, t is 
optional. In our example, t1 and t3 are mandatory and t2 is optional. 

4 Determining Partial Mappings 

Each partial mapping represents a way to derive instances of a target subtree from the 
instances of the source schemas. The partial mappings of a given target subtree are 
determined independently from the other subtrees in three steps: (i) identifying the 
parts of the sources (called source parts) that are relevant for the considered target 
subtree; (ii) searching the joins to combine these source parts; (iii) and determining 
the partial mappings from the source parts and the joins between them. Each target 
subtree may have several partial mappings with different semantics. In the rest of this 
section, we will describe these three steps.  



4.1 Identifying Source Parts 

A source part of a given target subtree is a set of text nodes in the source schemas that 
can contribute to derive instances for this target subtree. 

Before defining source parts, we first present an extended definition of node cardi-
nality. In XML Schema, the cardinality of a node is given with respect to the parent 
node: a node is multivalued or monovalued with respect to its parent. We generalize 
this definition to any pair of nodes. 

Def. 1. Extended definition of Cardinality. Given two nodes n and n’ in a 
schema and their first common antecessor m, n is monovalued with respect to n’ if 
every node on the path from m to n (except m) is monovalued. Otherwise, n is multi-
valued with respect to n’. 

According to the definition, ISBNs1 is monovalued with respect to BookTitles1: 
their common antecessor is Books1 and the only node on the path from Books1 to 
ISBNs1 (except Books1) is ISBNs1, which is monovalued. Similarly, BookTitles1 is 
monovalued with respect to ISBNs1. Numbers1 is multivalued with respect to ISBNs1 
because their common antecessor is Books1 and the path from Books1 to Numbers1 
contains Chapters1 which is multivalued. On the contrary, ISBNs1 is monovalued with 
respect to Numbers1.  
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Figure 3. An example of instances for the source S2 

Note that this extended definition of cardinality is different from the definition of 
functional dependency. Consider the nodes ChapterTitles2 and Numbers2 in S2. Chap-
terTitles2 is monovalued with respect to Numbers2. However, the functional depend-
ency Numbers2 → ChapterTitles2 doesn’t hold as we can see in Figure 3: two different 
instances of chapter number may have the same value, but associated with different 
titles; in fact, there are several titles for a given chapter number, one for each book. 

Given a target subtree t, a source part sp for t in the source schema S is a set of text 
nodes that satisfies the following conditions: 

− there is a set of text nodes c in t such that c ≅ sp; 
− there is at least one node n in sp such that the other nodes in sp are monoval-

ued with respect to n; 
− except c, there is no set of text nodes c’ in S such that sp ⊆ c’ and c’ satisfies 

the two above conditions. 



Given a target subtree t, every source node involved in a correspondence with the 
nodes of t is found in at least one source part for t. If no source part is found for a 
target subtree, this means that there is no correspondent node in the sources for any of 
the nodes of this target subtree.  

Consider the target subtree t1 having the text nodes Idts, Namets and Addressts. 
These nodes have the corresponding nodes Ids1, Names1, AuthorIds1 and AuthorAd-
dresss1 in S1. In the set {Ids1, Names1}, both Ids1 and Names1 are monovalued with 
respect to the other; this set is therefore a source part for t1. In {AuthorIds1, Au-
thorAddresss1}, both AuthorIds1 and AuthorAddresss1 are monovalued with respect to 
the other; this set is therefore a source part for t1. {Ids1} is not a source part because it 
is a subset of {Ids1, Names1}. {AuthorIds1, AuthorAddresss1, Ids1} is not a source part 
also because Ids1 is multivalued with respect to both AuthorIds1 and AuthorAddresss1 
and both AuthorIds1 and AuthorAddresss1 are multivalued with respect to Ids1. 

The source parts for the target subtrees of our running example are shown on the 
left side of Figure 2. The subtree t1 has two source parts sp1 and sp2 in S1 and one 
source part sp3 in S2; t2 has two source parts sp4 and sp5 in S1 and S2 respectively; 
and t3 has two source parts sp6 and sp7.  

4.2 Identifying Join Operations 

The joins between source parts are identified using keys and key references. There 
are two distinct cases: the two source parts either belong to the same source schema 
or to different ones.  

Given two source parts sp and sp’ in the same source schema, a join is possible if 
there are two sets of text nodes c and c’ in the schema such that: 

− c is a key and c’ references c;  
− there is a node n in c such that every node in sp is monovalued with respect to 

n; 
− there is a node n’ in c’ such that every node in sp’ is monovalued with respect 

to n’.  
In this case, a join is possible between sp and sp’ with the join predicate c = c’; it 

is denoted j[c = c’](sp, sp’). For example, the join j[Ids1 = AuthorIds1](sp1, sp2) is 
possible between sp1 and sp2 since AuthorIds1 is a reference on Ids1.  
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Figure 4. Relating two source parts through several references 

 



This definition can be generalized by considering a sequence of references from c’ 
to c instead of a single one. Consider the example shown in Figure 4. In the source S, 
two source parts sp1 and sp2 correspond to the single subtree of the target schema 
and no join is possible between them using the previous rule because no reference 
relates them directly. However, they are related through the two references: orderIDs 
referencing orIDs and itemIDs referencing prIDs. A join is therefore possible and it is 
denoted j[orderIDs1 = orIDs1, itemIDs1 = prIDs1](sp1, sp2). 

A join can also be possible between sources parts of different schemas. Consider 
two source parts sp and sp’ in the source schemas S and S’ respectively. Given a set 
of text nodes c in S and a set of text nodes c’ in S’, a join can be applied to sp and sp’ 
with the predicate c = c’ if the following conditions hold: 

− c ≅ c’;  
− either c or c’ is an absolute key in its schema;  
− there is a node n in c such that every node in sp is monovalued with respect to 

n; 
− there is a node n’ in c’ such that every node in sp’ is monovalued with respect 

to n’.  
In our example, the join j[Ids1 = Ids2](sp1, sp3) is possible between sp1 and sp2 be-

cause both Ids1 and Ids2 are defined as absolute keys. The join between sp6 and sp7 
with the predicate Numbers1 = Numbers2 is not possible because neither Numbers1 nor 
Numbers2 is defined as an absolute key. However, we know that the combination 
{Numbers2, ISBNs2} is unique in the whole schema because the scope of Numbers2 is 
Books2 which has the absolute key ISBNs2. We have therefore to consider the combi-
nation {Numbers2, ISBNs2} as an absolute key and use it instead of Numbers2. In fact, 
each time a relative key is found, it is combined with other key nodes to get an abso-
lute key if possible. Figure 5 shows all the possible joins in our example. 
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Figure 5. Join operations 

In our approach, we consider that a join is possible in a limited number of cases; 
we do not therefore generate all the possible joins but only a subset of them. For 
example, a join involving two different sources is considered as possible only if the 
join predicate involves an absolute key. We could also have considered that a join is 
possible each time a correspondence is found between two sets of nodes, regardless 
the key definitions. But in our opinion, the semantics of this operation is not clear and 



we therefore do not consider these joins. Consequently, only a subset of all the possi-
ble target mappings is generated in our approach. 

4.3 Defining Partial Mappings from the Source Parts and the Joins 

The partial mappings of a target subtree are determined using the corresponding 
source parts and the joins between them.  

The source parts and the joins corresponding to a given target subtree are repre-
sented by a graph called join graph where every node is a source part and every edge 
between two source parts is a join between them; the edges are numbered and labeled 
with the join predicate. 

Given the join graph G for a target subtree t, each partial mapping for t, denoted 
pm, is defined as a connected acyclic sub-graph of G such that for every mandatory 
text node n in t, there is at least a node n’ in one of its source parts such that n ≅ n’. 
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Figure 6. Join graph of t3 

Considering the subtree t3 of Figure 2, the corresponding join graph is shown in 
Figure 6. It contains two source parts sp6, sp7 and the join j5. In this graph, there are 
two partial mappings: pm1 containing a single source part sp7 and pm2 containing 
sp6 and sp7 related by j5. Both are connected acyclic sub-graphs of the join graph 
and both produce instances for the mandatory text nodes Numberts and ChapterTitlets 
in t3; pm1 does not produce instances for the optional node Abstractts; pm2 joins the 
two source parts; it may produce fewer chapters than pm1 but more information for 
every chapter (its abstract). 

For simplicity, in the rest of the paper, we refer to a partial mapping by the source 
part name if it contains a single source part, or by the names of the corresponding 
joins if it contains more than one source part. In our example, pm1 and pm2 are de-
noted {sp7} and {j5} respectively. 

The algorithm for partial mapping determination is given in Figure 7. It is a recur-
sive algorithm that takes as input one target subtree (st) and the corresponding join 
graph G(SP, J) where SP represents the set of nodes (the source parts) and J the set of 
edges (the possible joins). The algorithm produces the set of all the partial mappings 
(PM) for st; each partial mapping in PM is represented by the corresponding sub-
graph. 



Partial_Mapping_Determination(G(SP, J), st, PM)
Begin

PM := ∅;
for each source part sp in SP:

J’ := ∅;
SP’ := {sp};
Build_Partial_Mapping (G’(SP’, J’), G(SP, J), st, PM);

return (PM);
End

Build_Partial_Mapping (G’(SP’, J’), G(SP, J), st, PM)
Begin

if mandatory_text_nodes(SP’, st) //returns true if SP’ contains all the mandatory text nodes in st
then

PM := PM ∪ {G’(SP’, J’)};
//adds a new partial mapping represented by the graph G’ to set PM

for each join j between the source parts sp and sp’ such that sp’ ∈ SP’ and sp ∉ SP’
SP’’ := SP’ ∪ {sp};
J’’ := J’ ∪ {j}; 
if G’’(SP’’, J’’) ∉ PM 
// adding the edge representing the join j to the subgraph G’ does’nt give an element of PM
then
Build_Partial_Mapping (G’’(SP’’, J’’), G(SP, J), st, PM);

End  

Figure 7. The algorithm of partial mapping determination 

5 Generating Target Mappings 

The mappings for the whole target schema, called target mappings, are defined using 
the partial mappings. To perform this task, candidate mappings are first generated 
by combining the partial mappings of the different target subtrees. Then the parent-
child relations between the target subtrees are checked to produce target mappings. 

A candidate mapping cm for the target schema TS is a set of partial mappings such 
that: 

− there is at most one partial mapping for each target subtree in TS; 
− for each mandatory target subtree t having no parent subtree, there is one par-

tial mapping for t; 
− for each mandatory subtree t having the parent subtree t’, if there is a partial 

mapping for t’ then there is also a partial mapping for t, and vice versa. 
Consider the following partial mappings in our example: pm3 = {j2} and pm4 = 

{j1, j2} for t1; pm5 = {j4} for t2; and pm2 = {j5} for t3. Since t2 is optional and its 
child t3 is mandatory, each candidate mapping denoted cmi either contains no partial 
mapping for both t2 and t3 such as cm1 = {pm3} and cm2 = {pm4}, or contains a 
partial mapping for both t2 and t3 such as cm3 = {pm3, pm5, pm2}and cm4 = {pm4, 
pm5, pm2}. 

The algorithm for candidate mapping generation is given in Figure 8. This algo-
rithm takes as input the target schema TS and the sets of partial mappings PM1, ..., 
PMn corresponding respectively to the subtrees t1, ..., tn in TS. The algorithm per-
forms a top-down browsing of the subtrees in TS and generates the set of candidate 
mappings CM. 



Candidate_Mapping_Generation(TS, PM1, …, PMn, CM)
Begin

CM := ∅; // each element of CM is a set of partial mappings
for each target subtree ti in get-mandatory-top-subtrees(TS)

// get-mandatory-top-subtrees(TS) returns the subtrees in TS that are mandatory and has not parent subtrees
if PMi == ∅
then return (∅); 
//if a mandatory top subtree has no partial mapping, then the target schema has no target mapping
if CM == ∅
then

for each partial mappings pm in PMi
CM := CM ∪ {pm}; 

else
for each set S in CM

for each partial mapping pm in PMi
S’ := S ∪ {pm};
CM := CM ∪ {S’};

CM := CM - {S};

for each target subtree ti in TS not in get-mandatory-top-subtrees(TS) from top to down:
if (top(ti)) // returns true if ti has not parent subtree

for each set S in CM 
for each partial mapping pm in PMi

else
for each set S  in CM

if contains_parent_mapping(ti, S) 
//returns true if the set S contains a partial mapping for the parent subtree of ti
then

for every pm in PMi
S’ := S ∪ {pm};
CM := CM ∪ {S’};

if (mandatory(ti)) then CM := CM - {S};
return (CM);

End  

Figure 8. The algorithm of candidate mapping generation 

Target mappings are derived from the candidate mappings that satisfy the parent-
child relations between the target subtrees. Consider a target subtree t, its parent sub-
tree t’ and their respective partial mappings pm and pm’; pm and pm’ preserve the 
parent-child relation between t and t’ if the following conditions hold: 

−  there is a source part sp in pm and a source part sp’ in pm’ which are in the 
same source;  

− there is either a node in sp with respect to which all the nodes in sp’ are mono-
valued; or a node in sp’ with respect to which all the nodes in sp are monoval-
ued. 

If there is a node in sp with respect to which all the nodes in sp’ are monovalued, 
then for every instance of sp we can find the corresponding instance of sp’, and for 
every instance of sp’ we can find the corresponding instances of sp. The parent-child 
relation is therefore satisfied. 

For the target schema of our example, there are two parent-child relations to check: 
one between t1 and t2 and the other between t2 and t3.  

Consider the candidate mapping cm4 = {pm4, pm5, pm2}. The parent-child rela-
tion between t1 and t2 is satisfied in cm4 because every node in sp5 (involved in 
pm5) is monovalued with respect to both Ids2 and Names2 in sp3 (involved in pm4). 
The parent-child relation between t2 and t3 is also satisfied because every node in sp5 
is monovalued with respect to both Numbers2 and ChapterTitles2 in sp7 (in pm2). 
Therefore, cm4 is a target mapping for TS.  



<Library>{
for $au in distinct(S1/Library/Author/Id, S1/Library/Address/AuthorId, S2/Library/Book/Author/Id)
for $sp1 in S1/Library/Author
for $sp2 in S1/Library/Address
for $sp3 in S2/Library/Book/Author
where $sp1/Id=$sp2/AuthorId and $sp1/Id=$sp3/Id and $sp1/Id=$au
return <Author>{

<Id>{data($sp1/Id)}</Id>,
<name>{data($sp1/Name)}</name>,
<Address>{data($sp2/AuthorAddress)}</Address>
for $b in distinct(S2/Library/Book/ISBN, S1/Library/Author/Book/ISBN) 
for $sp4 in S1/Library/Author/Book
for $sp5 in S2/Library/Book[Author/Id = sp3/Id]
where $sp4/ISBN = $sp5/ISBN and $sp4/ISBN = $b
return <Book>{

<ISBN>{data($sp4/ISBN)}</ISBN>,
<BookTitle>{data($sp4/title)}</BookTitle>
for $c in distinct(S1/Library/Author/Book/Chapter/Number, S2/Library/Book/Chapter/Number)
for $sp6 in S1/Library/Author/Book/Chapter
for $sp7 in S2/Library/Book[ISBN=sp5/ISBN]/Chapter
where $sp6/Number = $sp7/Number and $sp7/Number = $c
return <Chapter>{

<Number>{data($sp6/ISBN)}</Number>,
<ChapterTitle>{data($sp7/ChapterTitle)}</ChapterTitle>,
<Abstract>{data($sp6/Abstract)}</Abstract>

}</Chapter>
}</Book>

}</Author>
}</Library>  

Figure 9. An XQuery target mapping 

The candidate mappings cm1 and cm2 are also target mappings because both con-
tain a single partial mapping. The candidate mapping cm3 does not lead to a target 
mapping because the parent-child relation between t1 and t2 is not satisfied. 

Other target mappings can be derived by applying set-based operations like Union, 
Intersection and Difference to two or more mappings. For example the union of cm1 
and cm4 is a new target mapping that takes the union of pm4 and pm3 for t1, pm5 for 
t2 and pm2 for t3. 

Each target mapping is an abstract query that can be translated into a specific 
query language such as XQuery or XSLT. To translate a target mapping into XQuery, 
each partial mapping is translated into a FWR (For-Where-Return) expression. For 
each target subtree t and its parent t’, the FWR expression of t is nested in the FWR 
expression of t’. A grouping operation is added for every key in the target schema. 
For example, Figure 9 gives the translation to XQuery of the target mapping cm4. 

6 Experimental Results 

We implemented a system [8] in Java and we have run five scenarios to evaluate its 
performance. Table 1 summarizes the main characteristics of these scenarios, such as 
the number of nodes in the target schema, the number of data sources and the number 
of nodes for each one, the number of correspondences between the sources and the 
target schema, and the number of the key definitions in the sources.  



Table 1. Characterizing the scenarios 

Target schema Source schemas 
Scenarios 

Depth Nodes Text 
nodes

Corresp-
ondences Schemas Nodes Text 

nodes Keys Refs 

Mediagrid 6 18 12 22 3 1674 825 412 413 

Library1 5 18 14 26 6 56 30 9 1 

Library2 5 18 14 30 6 62 35 10 1 

ABC1 7 47 36 1300 50 1650 1434 0 0 

ABC2 7 47 36 1300 50 1650 1434 58 0 
 
The first scenario is from the Mediagrid project1 which proposes a mediation 

framework for a transparent access to biological data sources; it considers three bio-
logical sources SGD, GOLD, SMD and a target schema built by domain experts. The 
Library1 scenario contains six source schemas. The Library2 scenario is similar to 
Library1 but the overlap between the sources is more important (more correspon-
dences are defined for the same number of text nodes in the target schema). The 
ABC1 and ABC2 scenarios contain 50 source schemas. They are similar, except that 
the ABC2 scenario contains 58 key definitions while ABC1 contain no key defini-
tions. 

We have run these different scenarios on a PC-compatible machine, with a 2.8G 
Hz P4 CPU and 516MB RAM, running Windows XP and JRE1.4.1. Each experiment 
is repeated five times and the average of the five is used as the measurement. 

Table 2. Measuring the scenarios 

Execution time (s) 
Scenarios 

Load Target Schema 
Decomposition 

Partial Mapping 
Determination  

Target Mapping 
Generation 

Mediagrid 1.44 0.001 0.02 0.002 

Library1 0.44 0.001 0.067 0.095 

Library2 0.046 0.001 0.105 0.25 

ABC1 0.98 0.001 0.06 1.997 

ABC2 1.03 0.001 316 27 
 
 
 

                                                           
1 Supported by the French Ministry of Research through the ACI Grid program, www-

lsr.imag.fr/mediagrid/ 



The time needed for the main steps of our approach using the different scenarios 
are shown in Table 2. The loading time indicates the time to read the schemas and the 
correspondences into our internal representation. As expected, it is correlated to the 
size of the schemas and the number of their correspondences. 

The target schema decomposition time indicates the time to decompose the target 
schema into target subtrees. We can see that the time needed to perform the task is 
negligible. 

The partial mapping determination (pmd) time is proportional to the number of 
correspondences between target nodes and source nodes and the key and key refer-
ences in the sources. The pmd time for Library1 which has 26 correspondences is 
smaller than the one of Library2 which has 30 correspondences; the two scenarios 
have the same number of sources and the same target schema. The pmd time for the 
ABC2 scenario which has 58 keys is largely greater than the one of the ABC1 sce-
nario. This is because the number of keys of the ABC2 scenario makes the join graph 
very complex. 

The target mapping generation (tmg) time indicates the time to find all the candi-
date mappings and to generate the target mappings. The tmg time is greater in ABC2 
than in the other scenarios because in ABC2, most of the target subtrees have a lot of 
partial mappings (about 150), which leads to much more combinations to consider. 

Some evaluations for the partial mapping determination and the target mapping 
generation are shown in Figure 10. The pmd time is decomposed into source part 
identification time, join identification time and partial mapping determination time. 
Figure 10 (a) shows the source part identification time with respect to the number of 
the semantic correspondences between the target schema and the source schemas. The 
measures are done using the ABC2 scenario and considering 52 to 1300 correspon-
dences. This task is proportional to the number of correspondences and its time is 
almost negligible (about only 0.022 second for 1300 correspondences).  

Figure 10 (b) shows the time of join identification with respect to both the number 
of key definitions and the number of correspondences on the keys. We have consid-
ered the ABC2 scenario and we have successively increased both the number of key 
definitions and the number of correspondences involving keys. The time needed to 
perform this task is influenced by the two parameters. With 300 key definitions and 
300 correspondences on the keys (which represents a complex case), the time for the 
join identification is about 15 seconds.  

The time required for the determination of partial mappings for a given target sub-
tree depends on the size of the corresponding join graph. Figure 10 (c) shows the time 
for partial mapping determination with respect to both the total number of correspon-
dences and the number of correspondences for the keys. We have successively in-
creased the values of these two parameters from 60 correspondences for the keys and 
240 total correspondences to 260 correspondences for the keys and 1300 total corre-
spondences. The other parameters of the scenarios used in this experiment are the 
same as the ABC2 scenario. We can see in the graph that a scenario having 880 cor-
respondences among which 180 correspondences involving source keys takes about 
100 seconds for the partial mapping determination. 
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Figure 10. Evaluating the time for the different steps of mapping generation 

The target mapping generation depends on the number of partial mappings and the 
structure of the target schema, that is, the number of parent-child relations between 
the target subtrees. Figure 10 (d) shows the time required for this task with respect to 
the number of the target subtrees and the average correspondences per subtree. We 
have increased both parameters using the same sources as for the ABC2 scenario. For 
example, in the case of 5 target subtrees and 230 correspondences per subtree, it takes 
about 12 seconds for generating the target mappings; note that this case is a complex 
one, since the scenario contains 50 sources, 1300 correspondences and 58 key defini-
tions. The complexity of this process is exponential with respect to the number of 
partial mappings. It is possible to reduce this complexity using some quality criteria 
(for example, selecting the partial mappings that use the sources having a high confi-
dence factor) or some heuristics (for example, selecting the partial mappings using a 
high number of sources). 

7 Related Works 

Several approaches [1][6][10] have been proposed to generate mappings when the 
target and the source schemas are expressed using the relational model. The approach 
presented in [1][6] generates a set of mappings from a set of source schemas using 



linguistic correspondences between target attributes and source attributes expressing 
that these elements represent the same concept. The work presented in this paper is 
inspired by this approach and also uses correspondences to define the mappings.  

The approach presented in [10] generates a set of mappings from one source 
schema using a set of pre-defined value correspondences which specify how a target 
attribute is generated from one or more source attributes. In our work we also assume 
that correspondences are provided but we consider several source schemas. 

Unlike the previously presented approaches ([1][6][10]), where the schemas are re-
lational ones, we consider that either the target schema or the data sources are de-
scribed in XML schema. In the case of XML sources, the complexity of mapping 
generation increases: we have to find instances for nodes of the tree representing the 
target schema, but also to preserve its structure. 

An approach is proposed in [11] for generating mappings from one source schema 
to a target schema when these schemas are in XML Schema. In [14], a query rewrit-
ing algorithm which uses these mappings is proposed for integrating data sources. In 
our approach, the mappings are defined for a set of data sources; the mappings gener-
ated in our approach express the way instances of different schemas are combined to 
form instances of the target schema.  

Other approaches have been proposed [2], [13], and [15] to generate mappings 
from several source schemas. These approaches comprise two steps: (i) the definition 
of rules to restructure each source schema according to the structure of the target 
schema; (ii) and the generation of mappings from these restructured schemas. In these 
approaches, source schemas must be restructurable with respect to the target schema 
in order to use them for mapping definition. In our approach, we do not impose such 
constraint, because some mapping may exist even is the restructuring of a source 
schema is not possible. 

8 Conclusion 

In this paper, we have presented algorithms for automatically generating mappings; 
we have implemented a system to support this task and presented some experimental 
results. This system produces a set of mappings for a target schema considering a set 
of source schemas and a set of correspondences; each target mapping has a different 
semantics. 

Since the result of our system is a set of target mappings, one interesting perspec-
tive is to take advantage of these multiple semantics; the system should be able to 
select the mapping that most fits the needs of a specific user, using some preferences 
or some quality criteria. To achieve this goal, our system is already integrated in a 
platform that also provides tools for evaluating the quality of mappings considering 
user preferences [9]. Another perspective of our work is the maintenance of the map-
pings: if some changes occur in the data sources or in the target schema, some of the 
mappings may become inconsistent; the problem is therefore to detect the inconsistent 
mappings and to propagate the changes into the mapping definitions. 
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