
Mapping discovery for XML data integration

Zoubida Kedad, Xiaohui Xue

Laboratoire PRiSM, Université de Versailles
45 avenue des Etats-Unis, 78035 Versailles, France

{Zoubida.kedad, Xiaohui.Xue}@prism.uvsq.fr

Abstract. The interoperability of heterogeneous data sources is an important is-
sue in many applications such as mediation systems or web-based systems. In
these systems, each data source exports a schema and each application defines
a target schema representing its needs. The way instances of the target schema
are derived from the sources is described through mappings. Generating such
mappings is a difficult task, especially when the schemas are semi structured.
In this paper, we propose an approach for mapping generation in an XML con-
text; the basic idea is to decompose the target schema into subtrees and to find
mappings, called partial mappings, for each of them; the mappings for the
whole target schema are then produced by combining the partial mappings and
checking that the structure of the target schema is preserved. We also present a
tool supporting our approach and some experimental results.

1 Introduction

A broad variety of data is available on the Web in distinct heterogeneous sources.
The exchange and integration of these data sources is an important issue in many
applications such as mediation systems or web-based systems.

In these systems, each data source has a schema (called source schema) that pre-
sents its data to the outside world. Applications needs are represented by target sche-
mas. The way instances of the target schema are derived from instances of the source
schemas is described through mappings. One example of systems using these map-
pings is mediation systems, where the target schema is called mediation schema and
the mappings are called mediation queries. The user queries are expressed over the
mediation schema and rewritten in terms of the source schemas using the mappings.

Defining mappings is a difficult task which requires a deep understanding not only
of the semantics of the source schemas, but also the semantic links between the
sources and the target schema. The complexity of this task increases when the number
of data sources is high. The amount of required knowledge makes the manual defini-
tion of the mappings extremely difficult for a human designer. When the target
schema and the source schemas are in XML, the definition of the mappings is more
complex because of the hierarchical nature of the data.

In [7], we have proposed a general framework for mapping generation. In this pa-
per, we present the algorithms for automatic mapping generation and a tool to support
this task. We consider that the target and source schemas are described in XML

Schema, and we assume that a set of correspondences is provided. These correspon-
dences relate elements of a source and elements of the target schema and express that
these elements represent the same concept. Our tool produces a set of mappings,
corresponding to different ways to derive instances of the target schema from in-
stances of the sources. The generated mappings can be expressed in a standard lan-
guage, such as XQuery or XSLT.

Due to the semi-structured nature of XML sources, it is extremely difficult to di-
rectly define mappings for the whole target schema. The basic idea of our approach is
(i) firstly to decompose the target schema into a set of subtrees, called target sub-
trees; (ii) then to find the different ways, called partial mappings, to define each
target subtree from the source schemas; (iii) and finally to combine the partial map-
pings to generate the mappings for the whole schema, called target mappings.

The paper is organized as follows. In Section 2, we give some basic assumptions
and preliminary definitions. Section 3 presents the decomposition of the target
schema. Section 4 and Section 5 detail the determination of the partial mappings and
the generation of the target mappings respectively. Section 6 gives some experimental
results obtained by our system. Some related works are presented in Section 7 and
Section 8 concludes the paper.

2 Preliminaries

In this section we present the underlying assumptions of our approach: the representa-
tion of the target and the source schemas, and the correspondences between the sche-
mas.

2.1 Representation of Target and Source Schemas

We consider source schemas and target schema expressed using XML Schema. Fig-
ure 1 shows two source schemas and a target schema representing information about
books in a library. To avoid confusions, in the rest of the paper, each node will be
suffixed by the name of its schema: AuthorIds1 will refer to the node AuthorId in S1
while ISBNs2 will refer to the node ISBN in S2. Every node in the tree may be either a
text node (e.g. AuthorIds1), that is, a node containing only text, or an internal node
(e.g. Chapters1). The leaf nodes of the tree are always text nodes.

The cardinality of every node is characterized by the attributes minOccur and
maxOccur, representing respectively the minimum and maximum number of in-
stances for this node in the tree with respect to its parent. Each node is monovalued
(maxOccurs = 1) or multivalued (maxOccurs > 1); it is also optional (minOccurs = 0)
or mandatory (minOccurs > 0). In Figure 1, the symbol ‘+’ represents a multivalued
and mandatory node (e.g. Books2); the symbol ‘*’ represents a multivalued and op-
tional node (e.g. Bookts); and the symbol ‘?’ represents a monovalued and optional
node (e.g. Abstractts). A node without symbol is monovalued and mandatory (e.g.
Ids1).

TS
Library

Author +
Id
Name
Address
Book *

ISBN
BookTitle
Chapter +

Number[scope:book]
ChapterTitle
Abstract ?

TS
Library

Author +
Id
Name
Address
Book *

ISBN
BookTitle
Chapter +

Number[scope:book]
ChapterTitle
Abstract ?

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
ChapterTitle

S1
Library

Author +
Id
Name

Book +
ISBN
BookTitle
Chapter +

Number
Abstract

Address +
AuthorId
AuthorAddress

Figure 1. Schemas and correspondences

Keys are defined either in the whole schema or only in a subtree of the schema. In
the first case, the key is absolute. In the second case, the key is relative and its scope
is an antecessor of the identified node, except the root. In Figure 1, the nodes written
in bold represent keys. If the name of the key node is followed by a bracket, then the
key is a relative key and its scope is the node between brackets (e.g. Numbers2 is a
relative key and its scope is Books2), otherwise it is an absolute key (e.g. ISBNs1). A
schema may also contain references; each one is a set of text nodes referencing an-
other set of text nodes defined as a key. In our example, AuthorIds1 references Ids1,
and this is represented by an arrow in Figure 1.

2.2 Semantic Correspondences

We suppose that a set of semantic correspondences is provided between each source
schema and the target schema. The definition of these correspondences is an impor-
tant issue and several approaches have been proposed to solve this problem
[4][5][12].

In our work, we consider two kinds of correspondences: 1-1 and 1-n. A 1-1 corre-
spondence relates a target node n with a source node n’, and states that the two nodes
represent the same concept. This correspondence is denoted n ≅ n’ (e.g. Ids1 ≅ Idts,
Numbers2 ≅ Numberts). In Figure 1, dotted lines represent correspondences. A trans-
formation function may be applied to the source node. For example, a correspondence
can be specified to relate a target node PriceInEuro to a source node PriceInDollar; if
the exchange rate is 1€ = 0,797$, such correspondence is denoted PriceInEuro ≅ 0.
797*PriceInDollar.

A 1-n correspondence relates a target node n to a set of source nodes combined by
the mean of a transformation function. For example, a target node Name represents
the same concept as the concatenation of two source nodes FirstName and LastName.
This correspondence is denoted Name ≅ concat(FirstName, LastName).

More generally, we consider the correspondences relating a target node n and a set
of source nodes n1, …, nk combined using a function f. Such correspondences are
denoted n ≅ f(n1, .., nk). For simplicity, in this paper we will restrict ourselves to 1-1
correspondences.

We use the same notation to represent correspondences between sets of nodes.
There is a correspondence between two sets of nodes s1 and s2 if (i) both s1 and s2
contain the same number of nodes (ii) and for each node n1 in s1 there is exactly one
node n2 in s2 such that n1 ≅ n2, and vice versa. The correspondence between the two
sets s1 and s2 is denoted s1 ≅ s2 (e.g. {ISBNs1, BookTitles1} ≅ {ISBNts, BookTitlets}).

Correspondences between two source schemas are derived though their correspon-
dences with the target schema. Given two source nodes n and n’ in S and S’ respec-
tively, the correspondence n ≅ n’ holds if there is a node n” in the target schema such
that n” ≅ n and n” ≅ n’. Some correspondences may also be provided between the
source schemas; they will be used in our approach for mapping generation.

3 Decomposing the Target Schema

To handle the complexity of mapping definition, we decompose the target schema
into a set of subtrees, called target subtrees; we will first find mappings for each tar-
get subtree then combine these mappings to generate the mappings for the whole
schema, called target mappings.

Given a target schema, each target subtree t is a subtree of the target schema satis-
fying the following conditions:

− the root r of the subtree is either a multivalued node or the root of the target
schema;

− all the other nodes in t are descendents of r and are monovalued;
− there is at least one text node in t (t may contain a single node).

This decomposition of the target schema gives several subtrees in which every
node is monovalued. The mapping generation problem for the target schema is de-
composed into two steps: finding mappings for every target subtree, then combining
these mappings. Since a target subtree contains only monovalued nodes except the
root, finding a mapping for this subtree consists in finding some equivalent nodes in
the sources that satisfy the cardinalities constraints regardless their hierarchical or-
ganization. The hierarchical structure of the different target subtrees is checked dur-
ing the second step.

Our target schema given in Figure 1 has three target subtrees shown on the right
side of Figure 2: t1 is composed of the multivalued node Authorts and its three mono-
valued children Idts, Namets and Addressts; t2 is composed of Bookts and its two mono-
valued children ISBNts and BookTitlets; and t3 is composed of Chapterts, Numberts,
ChapterTitlets and Abstractts. The root Libraryts doesn’t belong to any target subtree.

S1
Library

Author +
Id
Name

Book +
ISBN
BookTitle
Chapter +

Number
Abstract

Address +
AuthorId
AuthorAddress

sp1

sp2

sp4

sp6

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
ChapterTitle

sp3

sp5

sp7

TS
Library

Author +
Id
Name
Address
Book *

ISBN
BookTitle
Chapter +

Number[scope:book]
ChapterTitle
Abstract ?

t3t2

t1

Figure 2. Target subtrees and source parts

Given two target subtrees t and t’ such that the root of t’ is a child of a node in t,
we say that t is the parent of t’ and t’ is a child of t (e.g. in Figure 2, t2 is the child of
t1 and the parent of t3).

A target subtree can be either mandatory or optional in a target schema. Consider a
target schema with the root R and a subtree t of this schema with the root r. If t has a
parent subtree t’ with the root node r’, we say that t is mandatory if all the nodes on
the path from r to r’ (except r’) are mandatory. If t has no parent subtree, it is manda-
tory if all the nodes on the path from r to R are mandatory. In all the other cases, t is
optional. In our example, t1 and t3 are mandatory and t2 is optional.

4 Determining Partial Mappings

Each partial mapping represents a way to derive instances of a target subtree from the
instances of the source schemas. The partial mappings of a given target subtree are
determined independently from the other subtrees in three steps: (i) identifying the
parts of the sources (called source parts) that are relevant for the considered target
subtree; (ii) searching the joins to combine these source parts; (iii) and determining
the partial mappings from the source parts and the joins between them. Each target
subtree may have several partial mappings with different semantics. In the rest of this
section, we will describe these three steps.

4.1 Identifying Source Parts

A source part of a given target subtree is a set of text nodes in the source schemas that
can contribute to derive instances for this target subtree.

Before defining source parts, we first present an extended definition of node cardi-
nality. In XML Schema, the cardinality of a node is given with respect to the parent
node: a node is multivalued or monovalued with respect to its parent. We generalize
this definition to any pair of nodes.

Def. 1. Extended definition of Cardinality. Given two nodes n and n’ in a
schema and their first common antecessor m, n is monovalued with respect to n’ if
every node on the path from m to n (except m) is monovalued. Otherwise, n is multi-
valued with respect to n’.

According to the definition, ISBNs1 is monovalued with respect to BookTitles1:
their common antecessor is Books1 and the only node on the path from Books1 to
ISBNs1 (except Books1) is ISBNs1, which is monovalued. Similarly, BookTitles1 is
monovalued with respect to ISBNs1. Numbers1 is multivalued with respect to ISBNs1
because their common antecessor is Books1 and the path from Books1 to Numbers1
contains Chapters1 which is multivalued. On the contrary, ISBNs1 is monovalued with
respect to Numbers1.

1Library

3
Book

2
Book

8
Chapter

…

6
Chapter

5
Chapter

10
ChapterTitle

9
Number

"Introduction""1"
12
ChapterTitle

11
Number

"Nuts and Bolts""2"

4
ISBN

"0596001975"

…

14
ChapterTitle

13
Number

"Schemas: An Introduction"“1"

7
ISBN

"0130655678"

…

Figure 3. An example of instances for the source S2

Note that this extended definition of cardinality is different from the definition of
functional dependency. Consider the nodes ChapterTitles2 and Numbers2 in S2. Chap-
terTitles2 is monovalued with respect to Numbers2. However, the functional depend-
ency Numbers2 → ChapterTitles2 doesn’t hold as we can see in Figure 3: two different
instances of chapter number may have the same value, but associated with different
titles; in fact, there are several titles for a given chapter number, one for each book.

Given a target subtree t, a source part sp for t in the source schema S is a set of text
nodes that satisfies the following conditions:

− there is a set of text nodes c in t such that c ≅ sp;
− there is at least one node n in sp such that the other nodes in sp are monoval-

ued with respect to n;
− except c, there is no set of text nodes c’ in S such that sp ⊆ c’ and c’ satisfies

the two above conditions.

Given a target subtree t, every source node involved in a correspondence with the
nodes of t is found in at least one source part for t. If no source part is found for a
target subtree, this means that there is no correspondent node in the sources for any of
the nodes of this target subtree.

Consider the target subtree t1 having the text nodes Idts, Namets and Addressts.
These nodes have the corresponding nodes Ids1, Names1, AuthorIds1 and AuthorAd-
dresss1 in S1. In the set {Ids1, Names1}, both Ids1 and Names1 are monovalued with
respect to the other; this set is therefore a source part for t1. In {AuthorIds1, Au-
thorAddresss1}, both AuthorIds1 and AuthorAddresss1 are monovalued with respect to
the other; this set is therefore a source part for t1. {Ids1} is not a source part because it
is a subset of {Ids1, Names1}. {AuthorIds1, AuthorAddresss1, Ids1} is not a source part
also because Ids1 is multivalued with respect to both AuthorIds1 and AuthorAddresss1
and both AuthorIds1 and AuthorAddresss1 are multivalued with respect to Ids1.

The source parts for the target subtrees of our running example are shown on the
left side of Figure 2. The subtree t1 has two source parts sp1 and sp2 in S1 and one
source part sp3 in S2; t2 has two source parts sp4 and sp5 in S1 and S2 respectively;
and t3 has two source parts sp6 and sp7.

4.2 Identifying Join Operations

The joins between source parts are identified using keys and key references. There
are two distinct cases: the two source parts either belong to the same source schema
or to different ones.

Given two source parts sp and sp’ in the same source schema, a join is possible if
there are two sets of text nodes c and c’ in the schema such that:

− c is a key and c’ references c;
− there is a node n in c such that every node in sp is monovalued with respect to

n;
− there is a node n’ in c’ such that every node in sp’ is monovalued with respect

to n’.
In this case, a join is possible between sp and sp’ with the join predicate c = c’; it

is denoted j[c = c’](sp, sp’). For example, the join j[Ids1 = AuthorIds1](sp1, sp2) is
possible between sp1 and sp2 since AuthorIds1 is a reference on Ids1.

S
CustomerInfo

Customer +
cname
orderID

Order +
orID
itemID

Product +
prID
productName

sp2

sp1 T
Orders

Item +
cname
productName

S
CustomerInfo

Customer +
cname
orderID

Order +
orID
itemID

Product +
prID
productName

sp2

sp1 T
Orders

Item +
cname
productName

Figure 4. Relating two source parts through several references

This definition can be generalized by considering a sequence of references from c’
to c instead of a single one. Consider the example shown in Figure 4. In the source S,
two source parts sp1 and sp2 correspond to the single subtree of the target schema
and no join is possible between them using the previous rule because no reference
relates them directly. However, they are related through the two references: orderIDs
referencing orIDs and itemIDs referencing prIDs. A join is therefore possible and it is
denoted j[orderIDs1 = orIDs1, itemIDs1 = prIDs1](sp1, sp2).

A join can also be possible between sources parts of different schemas. Consider
two source parts sp and sp’ in the source schemas S and S’ respectively. Given a set
of text nodes c in S and a set of text nodes c’ in S’, a join can be applied to sp and sp’
with the predicate c = c’ if the following conditions hold:

− c ≅ c’;
− either c or c’ is an absolute key in its schema;
− there is a node n in c such that every node in sp is monovalued with respect to

n;
− there is a node n’ in c’ such that every node in sp’ is monovalued with respect

to n’.
In our example, the join j[Ids1 = Ids2](sp1, sp3) is possible between sp1 and sp2 be-

cause both Ids1 and Ids2 are defined as absolute keys. The join between sp6 and sp7
with the predicate Numbers1 = Numbers2 is not possible because neither Numbers1 nor
Numbers2 is defined as an absolute key. However, we know that the combination
{Numbers2, ISBNs2} is unique in the whole schema because the scope of Numbers2 is
Books2 which has the absolute key ISBNs2. We have therefore to consider the combi-
nation {Numbers2, ISBNs2} as an absolute key and use it instead of Numbers2. In fact,
each time a relative key is found, it is combined with other key nodes to get an abso-
lute key if possible. Figure 5 shows all the possible joins in our example.

S1
Library

Author +
Id
Name

Book +
ISBN
BookTitle
Chapter +

Number
Abstract

Address +
AuthorId
AuthorAddress

sp1

sp2

sp4

sp6j2
Ids1=Authors1

j1 Ids1 = Ids2

j3 Authors1 = Ids2

j4 ISBNs1 = ISBNs2

j5 ISBNs1 = ISBNs2 and
Numbers1 = Numbers2

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
ChapterTitle

sp3

sp5

sp7

S1
Library

Author +
Id
Name

Book +
ISBN
BookTitle
Chapter +

Number
Abstract

Address +
AuthorId
AuthorAddress

sp1

sp2

sp4

sp6j2
Ids1=Authors1

j1 Ids1 = Ids2

j3 Authors1 = Ids2

j4 ISBNs1 = ISBNs2

j5 ISBNs1 = ISBNs2 and
Numbers1 = Numbers2

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
ChapterTitle

sp3

sp5

sp7

S2
Library

Book +
ISBN
Author +

Id
Name

Chapter +
Number[scope:book]
ChapterTitle

sp3

sp5

sp7

Figure 5. Join operations

In our approach, we consider that a join is possible in a limited number of cases;
we do not therefore generate all the possible joins but only a subset of them. For
example, a join involving two different sources is considered as possible only if the
join predicate involves an absolute key. We could also have considered that a join is
possible each time a correspondence is found between two sets of nodes, regardless
the key definitions. But in our opinion, the semantics of this operation is not clear and

we therefore do not consider these joins. Consequently, only a subset of all the possi-
ble target mappings is generated in our approach.

4.3 Defining Partial Mappings from the Source Parts and the Joins

The partial mappings of a target subtree are determined using the corresponding
source parts and the joins between them.

The source parts and the joins corresponding to a given target subtree are repre-
sented by a graph called join graph where every node is a source part and every edge
between two source parts is a join between them; the edges are numbered and labeled
with the join predicate.

Given the join graph G for a target subtree t, each partial mapping for t, denoted
pm, is defined as a connected acyclic sub-graph of G such that for every mandatory
text node n in t, there is at least a node n’ in one of its source parts such that n ≅ n’.

Number[scope:book]
Title

sp7
Number
Abstract

sp6
j5 ISBNs1 = ISBNs2 and
Numbers1 = Numbers2

pm1

pm2

Number[scope:book]
Title

sp7
Number
Abstract

sp6
j5 ISBNs1 = ISBNs2 and
Numbers1 = Numbers2

pm1

pm2

Figure 6. Join graph of t3

Considering the subtree t3 of Figure 2, the corresponding join graph is shown in
Figure 6. It contains two source parts sp6, sp7 and the join j5. In this graph, there are
two partial mappings: pm1 containing a single source part sp7 and pm2 containing
sp6 and sp7 related by j5. Both are connected acyclic sub-graphs of the join graph
and both produce instances for the mandatory text nodes Numberts and ChapterTitlets
in t3; pm1 does not produce instances for the optional node Abstractts; pm2 joins the
two source parts; it may produce fewer chapters than pm1 but more information for
every chapter (its abstract).

For simplicity, in the rest of the paper, we refer to a partial mapping by the source
part name if it contains a single source part, or by the names of the corresponding
joins if it contains more than one source part. In our example, pm1 and pm2 are de-
noted {sp7} and {j5} respectively.

The algorithm for partial mapping determination is given in Figure 7. It is a recur-
sive algorithm that takes as input one target subtree (st) and the corresponding join
graph G(SP, J) where SP represents the set of nodes (the source parts) and J the set of
edges (the possible joins). The algorithm produces the set of all the partial mappings
(PM) for st; each partial mapping in PM is represented by the corresponding sub-
graph.

Partial_Mapping_Determination(G(SP, J), st, PM)
Begin

PM := ∅;
for each source part sp in SP:

J’ := ∅;
SP’ := {sp};
Build_Partial_Mapping (G’(SP’, J’), G(SP, J), st, PM);

return (PM);
End

Build_Partial_Mapping (G’(SP’, J’), G(SP, J), st, PM)
Begin

if mandatory_text_nodes(SP’, st) //returns true if SP’ contains all the mandatory text nodes in st
then

PM := PM ∪ {G’(SP’, J’)};
//adds a new partial mapping represented by the graph G’ to set PM

for each join j between the source parts sp and sp’ such that sp’ ∈ SP’ and sp ∉ SP’
SP’’ := SP’ ∪ {sp};
J’’ := J’ ∪ {j};
if G’’(SP’’, J’’) ∉ PM
// adding the edge representing the join j to the subgraph G’ does’nt give an element of PM
then
Build_Partial_Mapping (G’’(SP’’, J’’), G(SP, J), st, PM);

End

Figure 7. The algorithm of partial mapping determination

5 Generating Target Mappings

The mappings for the whole target schema, called target mappings, are defined using
the partial mappings. To perform this task, candidate mappings are first generated
by combining the partial mappings of the different target subtrees. Then the parent-
child relations between the target subtrees are checked to produce target mappings.

A candidate mapping cm for the target schema TS is a set of partial mappings such
that:

− there is at most one partial mapping for each target subtree in TS;
− for each mandatory target subtree t having no parent subtree, there is one par-

tial mapping for t;
− for each mandatory subtree t having the parent subtree t’, if there is a partial

mapping for t’ then there is also a partial mapping for t, and vice versa.
Consider the following partial mappings in our example: pm3 = {j2} and pm4 =

{j1, j2} for t1; pm5 = {j4} for t2; and pm2 = {j5} for t3. Since t2 is optional and its
child t3 is mandatory, each candidate mapping denoted cmi either contains no partial
mapping for both t2 and t3 such as cm1 = {pm3} and cm2 = {pm4}, or contains a
partial mapping for both t2 and t3 such as cm3 = {pm3, pm5, pm2}and cm4 = {pm4,
pm5, pm2}.

The algorithm for candidate mapping generation is given in Figure 8. This algo-
rithm takes as input the target schema TS and the sets of partial mappings PM1, ...,
PMn corresponding respectively to the subtrees t1, ..., tn in TS. The algorithm per-
forms a top-down browsing of the subtrees in TS and generates the set of candidate
mappings CM.

Candidate_Mapping_Generation(TS, PM1, …, PMn, CM)
Begin

CM := ∅; // each element of CM is a set of partial mappings
for each target subtree ti in get-mandatory-top-subtrees(TS)

// get-mandatory-top-subtrees(TS) returns the subtrees in TS that are mandatory and has not parent subtrees
if PMi == ∅
then return (∅);
//if a mandatory top subtree has no partial mapping, then the target schema has no target mapping
if CM == ∅
then

for each partial mappings pm in PMi
CM := CM ∪ {pm};

else
for each set S in CM

for each partial mapping pm in PMi
S’ := S ∪ {pm};
CM := CM ∪ {S’};

CM := CM - {S};

for each target subtree ti in TS not in get-mandatory-top-subtrees(TS) from top to down:
if (top(ti)) // returns true if ti has not parent subtree

for each set S in CM
for each partial mapping pm in PMi

else
for each set S in CM

if contains_parent_mapping(ti, S)
//returns true if the set S contains a partial mapping for the parent subtree of ti
then

for every pm in PMi
S’ := S ∪ {pm};
CM := CM ∪ {S’};

if (mandatory(ti)) then CM := CM - {S};
return (CM);

End

Figure 8. The algorithm of candidate mapping generation

Target mappings are derived from the candidate mappings that satisfy the parent-
child relations between the target subtrees. Consider a target subtree t, its parent sub-
tree t’ and their respective partial mappings pm and pm’; pm and pm’ preserve the
parent-child relation between t and t’ if the following conditions hold:

− there is a source part sp in pm and a source part sp’ in pm’ which are in the
same source;

− there is either a node in sp with respect to which all the nodes in sp’ are mono-
valued; or a node in sp’ with respect to which all the nodes in sp are monoval-
ued.

If there is a node in sp with respect to which all the nodes in sp’ are monovalued,
then for every instance of sp we can find the corresponding instance of sp’, and for
every instance of sp’ we can find the corresponding instances of sp. The parent-child
relation is therefore satisfied.

For the target schema of our example, there are two parent-child relations to check:
one between t1 and t2 and the other between t2 and t3.

Consider the candidate mapping cm4 = {pm4, pm5, pm2}. The parent-child rela-
tion between t1 and t2 is satisfied in cm4 because every node in sp5 (involved in
pm5) is monovalued with respect to both Ids2 and Names2 in sp3 (involved in pm4).
The parent-child relation between t2 and t3 is also satisfied because every node in sp5
is monovalued with respect to both Numbers2 and ChapterTitles2 in sp7 (in pm2).
Therefore, cm4 is a target mapping for TS.

<Library>{
for $au in distinct(S1/Library/Author/Id, S1/Library/Address/AuthorId, S2/Library/Book/Author/Id)
for $sp1 in S1/Library/Author
for $sp2 in S1/Library/Address
for $sp3 in S2/Library/Book/Author
where $sp1/Id=$sp2/AuthorId and $sp1/Id=$sp3/Id and $sp1/Id=$au
return <Author>{

<Id>{data($sp1/Id)}</Id>,
<name>{data($sp1/Name)}</name>,
<Address>{data($sp2/AuthorAddress)}</Address>
for $b in distinct(S2/Library/Book/ISBN, S1/Library/Author/Book/ISBN)
for $sp4 in S1/Library/Author/Book
for $sp5 in S2/Library/Book[Author/Id = sp3/Id]
where $sp4/ISBN = $sp5/ISBN and $sp4/ISBN = $b
return <Book>{

<ISBN>{data($sp4/ISBN)}</ISBN>,
<BookTitle>{data($sp4/title)}</BookTitle>
for $c in distinct(S1/Library/Author/Book/Chapter/Number, S2/Library/Book/Chapter/Number)
for $sp6 in S1/Library/Author/Book/Chapter
for $sp7 in S2/Library/Book[ISBN=sp5/ISBN]/Chapter
where $sp6/Number = $sp7/Number and $sp7/Number = $c
return <Chapter>{

<Number>{data($sp6/ISBN)}</Number>,
<ChapterTitle>{data($sp7/ChapterTitle)}</ChapterTitle>,
<Abstract>{data($sp6/Abstract)}</Abstract>

}</Chapter>
}</Book>

}</Author>
}</Library>

Figure 9. An XQuery target mapping

The candidate mappings cm1 and cm2 are also target mappings because both con-
tain a single partial mapping. The candidate mapping cm3 does not lead to a target
mapping because the parent-child relation between t1 and t2 is not satisfied.

Other target mappings can be derived by applying set-based operations like Union,
Intersection and Difference to two or more mappings. For example the union of cm1
and cm4 is a new target mapping that takes the union of pm4 and pm3 for t1, pm5 for
t2 and pm2 for t3.

Each target mapping is an abstract query that can be translated into a specific
query language such as XQuery or XSLT. To translate a target mapping into XQuery,
each partial mapping is translated into a FWR (For-Where-Return) expression. For
each target subtree t and its parent t’, the FWR expression of t is nested in the FWR
expression of t’. A grouping operation is added for every key in the target schema.
For example, Figure 9 gives the translation to XQuery of the target mapping cm4.

6 Experimental Results

We implemented a system [8] in Java and we have run five scenarios to evaluate its
performance. Table 1 summarizes the main characteristics of these scenarios, such as
the number of nodes in the target schema, the number of data sources and the number
of nodes for each one, the number of correspondences between the sources and the
target schema, and the number of the key definitions in the sources.

Table 1. Characterizing the scenarios

Target schema Source schemas
Scenarios

Depth Nodes Text
nodes

Corresp-
ondences Schemas Nodes Text

nodes Keys Refs

Mediagrid 6 18 12 22 3 1674 825 412 413

Library1 5 18 14 26 6 56 30 9 1

Library2 5 18 14 30 6 62 35 10 1

ABC1 7 47 36 1300 50 1650 1434 0 0

ABC2 7 47 36 1300 50 1650 1434 58 0

The first scenario is from the Mediagrid project1 which proposes a mediation

framework for a transparent access to biological data sources; it considers three bio-
logical sources SGD, GOLD, SMD and a target schema built by domain experts. The
Library1 scenario contains six source schemas. The Library2 scenario is similar to
Library1 but the overlap between the sources is more important (more correspon-
dences are defined for the same number of text nodes in the target schema). The
ABC1 and ABC2 scenarios contain 50 source schemas. They are similar, except that
the ABC2 scenario contains 58 key definitions while ABC1 contain no key defini-
tions.

We have run these different scenarios on a PC-compatible machine, with a 2.8G
Hz P4 CPU and 516MB RAM, running Windows XP and JRE1.4.1. Each experiment
is repeated five times and the average of the five is used as the measurement.

Table 2. Measuring the scenarios

Execution time (s)
Scenarios

Load Target Schema
Decomposition

Partial Mapping
Determination

Target Mapping
Generation

Mediagrid 1.44 0.001 0.02 0.002

Library1 0.44 0.001 0.067 0.095

Library2 0.046 0.001 0.105 0.25

ABC1 0.98 0.001 0.06 1.997

ABC2 1.03 0.001 316 27

1 Supported by the French Ministry of Research through the ACI Grid program, www-

lsr.imag.fr/mediagrid/

The time needed for the main steps of our approach using the different scenarios
are shown in Table 2. The loading time indicates the time to read the schemas and the
correspondences into our internal representation. As expected, it is correlated to the
size of the schemas and the number of their correspondences.

The target schema decomposition time indicates the time to decompose the target
schema into target subtrees. We can see that the time needed to perform the task is
negligible.

The partial mapping determination (pmd) time is proportional to the number of
correspondences between target nodes and source nodes and the key and key refer-
ences in the sources. The pmd time for Library1 which has 26 correspondences is
smaller than the one of Library2 which has 30 correspondences; the two scenarios
have the same number of sources and the same target schema. The pmd time for the
ABC2 scenario which has 58 keys is largely greater than the one of the ABC1 sce-
nario. This is because the number of keys of the ABC2 scenario makes the join graph
very complex.

The target mapping generation (tmg) time indicates the time to find all the candi-
date mappings and to generate the target mappings. The tmg time is greater in ABC2
than in the other scenarios because in ABC2, most of the target subtrees have a lot of
partial mappings (about 150), which leads to much more combinations to consider.

Some evaluations for the partial mapping determination and the target mapping
generation are shown in Figure 10. The pmd time is decomposed into source part
identification time, join identification time and partial mapping determination time.
Figure 10 (a) shows the source part identification time with respect to the number of
the semantic correspondences between the target schema and the source schemas. The
measures are done using the ABC2 scenario and considering 52 to 1300 correspon-
dences. This task is proportional to the number of correspondences and its time is
almost negligible (about only 0.022 second for 1300 correspondences).

Figure 10 (b) shows the time of join identification with respect to both the number
of key definitions and the number of correspondences on the keys. We have consid-
ered the ABC2 scenario and we have successively increased both the number of key
definitions and the number of correspondences involving keys. The time needed to
perform this task is influenced by the two parameters. With 300 key definitions and
300 correspondences on the keys (which represents a complex case), the time for the
join identification is about 15 seconds.

The time required for the determination of partial mappings for a given target sub-
tree depends on the size of the corresponding join graph. Figure 10 (c) shows the time
for partial mapping determination with respect to both the total number of correspon-
dences and the number of correspondences for the keys. We have successively in-
creased the values of these two parameters from 60 correspondences for the keys and
240 total correspondences to 260 correspondences for the keys and 1300 total corre-
spondences. The other parameters of the scenarios used in this experiment are the
same as the ABC2 scenario. We can see in the graph that a scenario having 880 cor-
respondences among which 180 correspondences involving source keys takes about
100 seconds for the partial mapping determination.

0

0.005

0.01

0.015

0.02

0.025

52 26
0

46
8

67
6

88
4

10
92

13
00

Total correspondences number

Ti
m

e
(s

) Source part
identification

(a) The time of source part identification with respect to the
number of correspondences

(b) The time of join identification with respect to the number of
key definitions in the sources and the number of
correspondences on the keys

(c) The time of partial mapping determination with respect to the
number of correspondences on the keys and the total number of
correspondences

(d) The time of target mapping generation with respect to the
average number of correspondences per target subtree and the
number of target subtrees in the target schema

0

5

10

15

20

25

30

69 115 230 230 253 46

1 3 3 5 5 10

the average correspondences per target
subtree (a) and the number of target

subtrees (b)

Ti
m

e
(s

)

Target mapping
generation

(a)

(b)

0
2
4
6
8

10
12
14
16

20 60 100 140 180 220 260 300

20 60 100 140 180 220 260 300

The number of key definitions (a) and
the number of correspondences on

the keys (b)

Ti
m

e
(s

)

Join identification

(a)

(b)

0
50

100
150
200
250
300
350

60 100 140 180 220 260

240 420 600 880 1060 1300

The number of correspondences on the
keys (a) and the total number of

correspondences (b)

Ti
m

e
(s

)

Partial mapping
determination

(a)

(b)

Figure 10. Evaluating the time for the different steps of mapping generation

The target mapping generation depends on the number of partial mappings and the
structure of the target schema, that is, the number of parent-child relations between
the target subtrees. Figure 10 (d) shows the time required for this task with respect to
the number of the target subtrees and the average correspondences per subtree. We
have increased both parameters using the same sources as for the ABC2 scenario. For
example, in the case of 5 target subtrees and 230 correspondences per subtree, it takes
about 12 seconds for generating the target mappings; note that this case is a complex
one, since the scenario contains 50 sources, 1300 correspondences and 58 key defini-
tions. The complexity of this process is exponential with respect to the number of
partial mappings. It is possible to reduce this complexity using some quality criteria
(for example, selecting the partial mappings that use the sources having a high confi-
dence factor) or some heuristics (for example, selecting the partial mappings using a
high number of sources).

7 Related Works

Several approaches [1][6][10] have been proposed to generate mappings when the
target and the source schemas are expressed using the relational model. The approach
presented in [1][6] generates a set of mappings from a set of source schemas using

linguistic correspondences between target attributes and source attributes expressing
that these elements represent the same concept. The work presented in this paper is
inspired by this approach and also uses correspondences to define the mappings.

The approach presented in [10] generates a set of mappings from one source
schema using a set of pre-defined value correspondences which specify how a target
attribute is generated from one or more source attributes. In our work we also assume
that correspondences are provided but we consider several source schemas.

Unlike the previously presented approaches ([1][6][10]), where the schemas are re-
lational ones, we consider that either the target schema or the data sources are de-
scribed in XML schema. In the case of XML sources, the complexity of mapping
generation increases: we have to find instances for nodes of the tree representing the
target schema, but also to preserve its structure.

An approach is proposed in [11] for generating mappings from one source schema
to a target schema when these schemas are in XML Schema. In [14], a query rewrit-
ing algorithm which uses these mappings is proposed for integrating data sources. In
our approach, the mappings are defined for a set of data sources; the mappings gener-
ated in our approach express the way instances of different schemas are combined to
form instances of the target schema.

Other approaches have been proposed [2], [13], and [15] to generate mappings
from several source schemas. These approaches comprise two steps: (i) the definition
of rules to restructure each source schema according to the structure of the target
schema; (ii) and the generation of mappings from these restructured schemas. In these
approaches, source schemas must be restructurable with respect to the target schema
in order to use them for mapping definition. In our approach, we do not impose such
constraint, because some mapping may exist even is the restructuring of a source
schema is not possible.

8 Conclusion

In this paper, we have presented algorithms for automatically generating mappings;
we have implemented a system to support this task and presented some experimental
results. This system produces a set of mappings for a target schema considering a set
of source schemas and a set of correspondences; each target mapping has a different
semantics.

Since the result of our system is a set of target mappings, one interesting perspec-
tive is to take advantage of these multiple semantics; the system should be able to
select the mapping that most fits the needs of a specific user, using some preferences
or some quality criteria. To achieve this goal, our system is already integrated in a
platform that also provides tools for evaluating the quality of mappings considering
user preferences [9]. Another perspective of our work is the maintenance of the map-
pings: if some changes occur in the data sources or in the target schema, some of the
mappings may become inconsistent; the problem is therefore to detect the inconsistent
mappings and to propagate the changes into the mapping definitions.

References

1. Bouzeghoub, M., Farias Lóscio, B., Kedad, Z., Salgado, A.-C.: Managing the evolution of
mappings. Proc. of the 11th. Int. Conf. on Cooperative Information Systems (CoopIS’03),
Catania, Italy (2003) 22-37

2. Claypool, K. T., Rundensteiner, E. A.: Gangam: A Transformation Modeling Framework.
Proc. of Eighth Int. Conf. on Database Systems for Advanced Applications (DASFAA’03),
Kyoto, Japan (2003) 47-54

3. Collet C., Belhajjame K., Bernot G., Bruno G., Bobineau C., Finance B., Jouanot F., Kedad
Z., Laurent D., Vargas-Solar G., Tahi F., Vu T.-T., Xue X.: Towards a target system frame-
work for transparent access to largely distributed sources. Proc of the Int. Conf. on Seman-
tics of a Networked World Semantics for Grid Databases (IC-SNW’04), Paris, France
(2004) 65-78

4. Dhamankar, R., Lee, Y., Doan, A., Halevy, A. Y., Domingos, P.: iMAP: Discovering Com-
plex Mappings between Database Schemas. Proc. of Int. Conf. ACM SIGMOD
(SIGMOD’04), Paris, France (2004) 383-394

5. Do, H.H., Rahm, E.: COMA - A System for Flexible Combination of Schema Matching
Approaches. Proc. of the 28th Int. Conf. on Very Large Data Bases (VLDB’02), Hong
Kong, China (2002) 610-621

6. Kedad, Z.; Bouzeghoub, M.: Discovering View Expressions from a Multi-Source Informa-
tion System. Proc. of the 4th. Int. Conf. on Cooperative Information Systems (CoopIS’99),
Edinburgh, Scotland (1999) 57-68

7. Kedad, Z., Xue, X.: Mapping Generation for XML Data Sources: a General Framework.
Proc. of the Int. Workshop on Challenges in Web Information Retrieval and Integration
(WIRI’05), in conjunction with the 21st Int. Conf. on Data Engineering (ICDE’05), Tokyo,
Japan (2005)

8. Kostadinov, D., Peralta, V., Soukane, A., Xue, X. (Demonstration) : Système adaptif à
l’aide de la génération de requêtes de médiation. Proc. of 20th Conf. of Bases de données
avancées (BDA’04) ,Montpellier, France (2004) 351-355

9. Kostadinov, D., Peralta, V., Soukane, A., Xue, X.: Intégration de données hétérogènes basée
sur la qualité. Proc. of INFORSID 2005 (Inforsid’05), Grenoble, France (2005) 471-486

10. Miller, R.J., Haas, L. M., Hernández, M. A.: Schema Mapping as Query Discovery. Proc. of
the 26th Int. Conf. on Very Large Data Bases (VLDB’00), Cairo, Egypt (2000) 77-88

11. Popa L., Velegrakis Y., Miller R.J., Hernandez M.A., Fagin R.: Translating web data. Proc.
of the 28th Int. Conf. on Very Large Data Bases (VLDB’02), Hong Kong, China (2002)
598-609

12. E. Rahm, P. A. Bernstein, A survey of approaches to automatic schema matching. Proc. of
the 27th Int. Conf. on Very Large Data Bases (VLDB’01), Roma, Italy (2001) 334-350

13. Yang, X., Lee, M. L., Ling, T. W.: Resolving structural conflicts in the integration of XML
schemas: a semantic approach. Proc. of 22nd Int. Conf. on Conceptual Modeling (ER’03),
Chicago (2003) 520-533

14. Yu, C., Popa, L.: Constraint-based XML query rewriting for data integration. Proc. of Int.
Conf. ACM SIGMOD (SIGMOD’04), Paris, France(2004) 371-382

15. Zamboulis, L., Poulovassilis, A.: XML data integration by Graph Restructuring. Proc. of the
21st Annual British National Conf. on Databases (BNCOD21), Edinburgh (2004) 57-71

