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Abstract. The development of new techniques and the emergence of new high- 

throughput tools have led to a new information revolution. The amount and the 

diversity of the information that need to be stored and processed have led to the 

adoption of data integration systems in order to deal with information extraction 

from disparate sources. The mediation between traditional databases and 

ontologies has been recognized as a cornerstone issue in bringing in legacy data 

with formal semantic meaning. However, our knowledge evolves due to the 

rapid scientific development, so ontologies and schemata need to change in 

order to capture and accommodate such an evolution. When ontologies change, 

these changes should somehow be rendered and used by the pre-existing data 

integration systems, a problem that most of the integration systems seem to 

ignore. In this paper, we review existing approaches for ontology/schema 

evolution and examine their applicability in a state-of-the-art, ontology-based 

data integration setting. Then, we show that changes in schemata differ 

significantly from changes in ontologies. This strengthens our position that 

current state of the art systems are not adequate for ontology-based data 

integration. So, we give the requirements for an ideal data integration system 

that will enable and exploit ontology evolution. 

Keywords: Ontology Evolution, Data Integration, Mappings, Evolution of 

Mappings 

1   Introduction  

The development of new techniques and the emergence of new high throughput tools 

have led to a new information revolution. The nature and the amount of information 

now available open directions of research that were once in the realm of science 

fiction. During this information revolution the data gathering capabilities have greatly 

surpassed the data analysis techniques, making the task to fully analyze the data at the 

speed at which it is collected a challenge. The amount, diversity, and heterogeneity of 

that information have led to the adoption of data integration systems in order to 

manage it and further process it. However, the integration of these data sources raises 

several semantic heterogeneity problems.  

By accepting an ontology as a point of common reference, naming conflicts are 

eliminated and semantic conflicts are reduced. Ontologies are used to identify and 



resolve heterogeneity problems, at schema and data level, as a means for establishing 

explicit formal vocabulary to share. The key in bringing legacy data with formal 

semantic meaning has been widely recognized to be the inclusion of mediation 

between traditional databases and ontologies [5, 15]. During the last years, ontologies 

have been used in database integration, obtaining promising results, for example in 

the fields of biomedicine and bioinformatics [19].  

When using ontologies to integrate data, one is required to produce mappings, to 

link similar concepts or relationships from the ontology/ies to the sources (or other 

ontologies) by way of an equivalence, according to some metric. This is the mapping 

definition process [13] and the output of this task is the mapping, i.e., a collection of 

mappings rules. Defining the mappings between schemata/ontologies is not a goal in 

itself. The resulting mappings are used for various integration tasks such as data 

transformation and query answering. 

Despite the great amount of work done in ontology-based data integration, an 

important problem that most of the systems tend to ignore is that ontologies are living 

artifacts and subject to change [5]. Due to the rapid development of research, 

ontologies are frequently changed to depict the new knowledge that is acquired. The 

problem that occurs is the following: when ontologies change, the mappings may 

become invalid and should somehow be updated or adapted. A typical solution would 

be to regenerate the mappings and then regenerate the dependent artifacts. We believe 

however that the approach to recreate mappings from scratch as the ontology evolves 

is problematic [32], and instead previously captured information should be reused. 

In this paper, we address the problem of data integration for highly dynamic 

ontologies. We argue that ontology change should be considered when designing 

ontology-based data integration systems.  

We identify solutions proposed in the state of the art which try to reuse previously 

captured information. Since most of the approaches today concern database schema 

evolution, we examine them first and check if they can be applied in an ontology-

based data integration scenario. We classify them into two general categories. Those 

that try to compose successive schema mappings (mapping composition) [1] [21] and 

those that try to evolve the mappings each time a primitive change operation occurs 

(mapping adaptation) [33]. Although, those approaches deal with closely related 

issues, their applicability in a dynamic ontology has not yet been examined. We 

demonstrate some drawbacks of both approaches by means of simple examples and 

prove that they are inefficient in a state of the art ontology-based data integration 

setting.  

This belief is further enhanced by showing that changes in database schemata 

differ greatly from changes in ontologies. Moreover, the only approach [34] we have 

seen concerning ontology evolution seems too simple and does not depict reality.  

The lack of an ideal approach to handle ontology evolution in data integration 

leads us to propose requirements for a new approach. We highlight what is missing 

from the current state of the art and outline the requirements for an ideal data 

integration system that will incorporate and handle ontology evolution efficiently and 

effectively. 

The overall goal of this paper is not only to give readers a comprehensive overview 

of the works in the area, but also to provide necessary insights for the practical 

understanding of the issues involved.  



This rest of the paper is organized as follows: in Section 2 we give some 

preliminaries and argue that ontology evolution should be considered when designing 

ontology-based data integration systems; then, in Section 3 we review the solutions 

proposed so far in the literature and show the related problems. This argument is 

further enhanced in Section 4, by showing that changes in schemata differ 

significantly from changes in ontologies. All those problems lead to the specification 

of requirements of an ideal data integration system that will incorporate and handle 

ontology evolution. Finally in Section 5 we conclude the paper and give directions for 

future work. 

2   Preliminaries 

Originally introduced by Aristotle, ontologies are formal models about how we 

perceive a domain of interest and provide a precise, logical account of the intended 

meaning of terms, data structures and other elements modeling the real world [5]. 

Ontologies are often large and complex structures, whose development and 

maintenance give rise to several sturdy and interesting research problems. One of the 

most important such problems is ontology evolution, which refers to the process of 

modifying an ontology in response to a certain change in the domain or its 

conceptualization [13].  

Several reasons for changing an ontology have been identified in the literature. An 

ontology, just like any structure holding information regarding a domain of interest, 

may need to change simply because the domain of interest has changed [28]; but even 

if we assume a static world (domain), which is a rather unrealistic assumption for 

most applications, we may need to change the perspective under which the domain is 

viewed [22], or we may discover a design flaw in the original conceptualization of the 

domain [25]; we may also wish to incorporate additional functionality, according to a 

change in users’ needs [9]. Furthermore, new information, which was previously 

unknown, classified or otherwise unavailable may become available or different 

features of the domain may become known and/or important [12]. The importance of 

this problem is also emphasized by recent studies, which suggest that change, rather 

than ontologies, should be the central concept of the Semantic Web [31].  

In [11] it is shown that most well-known life science ontologies are heavily 

updated and grow significantly from time to time. There have been several works in 

the literature addressing the problem of ontology evolution. An indicative list is: [6], 

[8], [10], [14], [18], [23], [27], [29]; for a more comprehensive and complete survey, 

see [5].  

An interesting classification of changes that is of interest for the problem of data 

integration appears in [4]. In this work, changes are classified under three broad 

categories. The first level (logic-level changes), which is difficult and not supported 

by current approaches, corresponds to changes in the logical formalism which is used 

to represent the ontology, rather than the ontology itself. The second (language-level 

changes) and third (KB-level changes) levels are more interesting and supported by 

ontology evolution approaches. Language-level changes correspond to changes in the 

objects of the ontology (e.g., classes, properties etc); examples of language-level 



changes are the addition of a new concept or the deletion of a property. KB-level 

changes correspond to changes in the information about the existing objects, i.e., 

structural changes in the ontology; for example, changes in the class or property 

hierarchies, or changes in some constraints related to a particular class are KB-level 

changes. 

This categorization is relevant to the data integration problem due to the different 

effects that a change in each of the levels would have in the underlying matching. For 

example, KB-level changes affect the structure of the ontology, and, consequently, the 

possible models of it, as well as the intended meaning of the used terms. Such effects 

should be reflected in the mapping in order to avoid inconsistent mappings. On the 

other hand, language-level changes correspond to additions and deletions of objects 

from the ontology, therefore their effects on the mapping, if any, can be trivially 

computed. Logic-level changes are irrelevant in our setting for two reasons: first, 

because such changes are not supported by ontology evolution approaches, and, 

second, because a critical assumption in our work is that the underlying logical 

formalism is the same in all mapped ontologies. 

3. A review of the State the Art 

A typical solution to the problem of data integration with evolving ontologies would 

be to regenerate the mappings and then the dependent artifacts. This method is called 

the “blank-sheet approach” [35]. However, even with the help of mapping generation 

tools, this process can be costly in terms of human effort and expertise since it still 

requires extensive input from human experts. As large, complicated schemata become 

more prevalent, and as data is reused in more applications, manually maintaining 

mappings is becoming impractical. Moreover, there is no guarantee that the 

regenerated mappings preserve the semantics of the original mappings since they are 

not considered during the regeneration. We believe that the effort required to recreate 

mappings from scratch as the ontology evolves is problematic and costly [32], and 

instead previously captured information should be reused. It is really important that 

domain experts specify the necessary mappings only once and then they can retrieve 

data disregarding the changes in the ontology. The rest of this section aims to provide 

a comprehensive overview of the approaches that try to reuse previously captured 

information in order to cope with schema/ontology evolution. 

3.1 Earlier Works 

Work in the area of database schema evolution started to emerge in the early 90’s 

where mappings were considered as view definitions. Gupta et al.[7] and Mohania 

and Dong [20] addressed the problem of maintaining a materialized view after user 

redefinition, while [26] explored how to use view technology to handle schema 

changes transparently.  

Lee et al. [16] were the first to address the problem of defining view definitions 

when the schemata of base relations change. They identified the view adaptation 

problem for view evolution in the context of information systems schema changes, 



which they called view synchronization. They proposed E-SQL. an extended version 

of SQL for defining views that incorporated user preferences in order to change the 

semantics of the view and with which the view definer could direct the view evolution 

process. They proposed a view rewriting process that finds a view redefinition that 

meets all view preservation constraints specified by the E-SQL view definition. Such 

a solution prevented manual human interaction. However, the supported changes were 

limited and evolution could only appear at the source side.  

3.2 Mapping Composition 

Despite the fact that mapping composition is not primarily focused on ontology 

evolution it could be employed in order to handle ontology evolution. The approach 

would be to describe ontology evolution itself as mappings and to employ mapping 

composition to derive the adapted mappings.  

Madhavan and Halevy [17] in 2003 were the first to address the problem of 

composing semantic mappings. Specifically, given mappings between data sources S 

and T and between T and T΄, is it possible to generate a direct mapping M΄ between S 

and T΄ that is equivalent to the original mappings (see Fig. 1). Equivalence means that 

for any query in a given class of queries Q, and for any instance of the data sources, 

using the direct mapping yields exactly the same answer that would be obtained by 

the two original mappings. 

 

 

Fig. 1. Composing Schema Mappings 

The semantics of the composition operator proposed by Madhavan and Halevy was 

a significant first step, but it suffered from certain drawbacks caused by the fact that 

this semantics was given relative to a class of queries. The set of formulas specifying 

a composition M΄ of M and E relative to a class Q of queries need not be unique up to 

logical equivalence, even when the class Q of queries is fixed. Moreover, this 

semantics is rather fragile because a schema mapping M΄ may be a composition of M 

and E when Q is the class of conjunctive queries (the class Q that Madhavan and 

Halevy focused on), but fail to be a composition of these two schema mappings when 

Q is the class of conjunctive queries with inequalities. In addition, they showed that 

the result of composition may be an infinite set of formulas even when the query 

language is that of conjunctive queries.  

Consider for example the three schemata S, T and T΄ shown in Fig. 2. We use a 

trivial example just to show our key points. Schema S consists of a single binary 

relation symbol Samples that associates patient names with their medical samples. 

Schema T consists of a similar relation PSamples that is intended to provide a copy of 
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Samples, and provides an additional relation Patients, that associates each patient 

name with a patient id. Schema T΄ consists of the relation MedicalData that associates 

patiend ids with their samples.  

 

 

Fig. 2. The example schemata  

Consider now the schema mappings Σ12 between S and T and Σ23 between T and T΄ 

where 

   Σ12= { n s ((Samples (n, s) PSamples (n, s)), 

         n s ((Samples (n, s) i Patients (n, i))} 

   Σ23= { n i s (Patients (n, i)  PSamples (n, s) MedicalData (i, s))} 

 

The three formulas in Σ12 and Σ23 are source-to-target tuple generating 

dependencies (s-t tgds) that have been extensively used to formalize data exchange 

[2]. A s-t tgd has the form xφ(x)  yψ(x, y), where φ(x) is a conjunction of 

atomic formulae over S and ψ(x, y) is a conjunction of atomic formulae over T. A 

tuple-generating dependency specifies an inclusion of two conjunctive queries, Q1 ⊆ 

Q2. It is called source-to-target when Q1 refers only to symbols from the source 

schema and Q2 refers only to symbols from the target schema. The first mapping 

requires that “copies” of the tuples in Samples must exist in PSamples relation and 

moreover, that each patient name n must be associated with some patient id i in 

Patients. The second mapping requires that pairs of patient id and sample must exist 

in the relation MedicalData, provided that they are associated with the same patient 

name. 

Moreover, let Samples={(Nikos, Sample1), (Nikos, Sample2)} be instances I1 of S, 

PSamples=Samples and  Patients={(Nikos, 1234)} the instances I2 of T, and 

MedicalData={(1234, Sample1), (1234, Sample2)} the instances I3 of T΄. It is easy to 

verify that the instances satisfy the mappings Σ12 and Σ23 that is {I1, I2} Inst(Μ) and 

{ I2, I3} Inst( Ε). Now we are looking for a composition of M and E such that an 

instance { I1, I3} is in Inst(M) Inst(E) if and only if it satisfies Σ13. A first guess for 

Σ13 could be  

    Σ13= { n s ( Samples (n, s)  i MedicalData (i, s))} 

[

Π

λ

η

κ

τ

ρ

ο

λ

ο

γ

ή

σ

τ

ε

 

μ

ι

α

 

υ

ρ

ά

σ

η

 

α

π

ό

 

τ

ο

 

έ

γ

γ

ρ

α

υ

ο

 

ή

 

τ

η

 

σ

ύ

ν

[

Π

λ

η

κ

τ

ρ

ο

λ

ο

γ

ή

σ

τ

ε

 

μ

ι

α

 

υ

ρ

ά

σ

η

 

α

π

ό

 

τ

ο

 

έ

γ

γ

ρ

α

υ

ο

 

ή

 

τ

η

 

σ

ύ

ν

ο

ψ

η

 

γ

S   T   T΄ 

  

Samples  Patients   MedicalData  
Name    Sample  Id           Name         Id         Sample 

Nikos   Sample1 1234       Nikos       1234    Sample1 

Nikos   Sample2         1234    Sample2 

         

   PSamples   
   Name   Sample   

   Nikos   Sample1    

   Nikos   Sample2 

   

    



 

However, here the patient id i depends on both the patient name n and the sample 

id s. So (i, s) must be a tuple in the MedicalData relation for every sample s where (n, 

s) is in the Samples relation. This is clearly incorrect. Consider, for each k≥1 the 

following source-to-target tgd: 

    φκ = { n s1… sk (Samples (n,s1) …  Samples (n, sk)  

i MedicalData (i, s1) …  MedicalData (i,  sk))} 

It is easy to verify that the composition Σ13 is the infinite set { φ1,…, φκ, ... } of source 

to target tgds. Fagin et al. [3] identified that problem and showed that the 

compositions of certain kinds of first-order mappings may not be expressible in any 

first-order language, even by an infinite set of constraints. That is, that language is not 

closed under composition. In order to face that problem they introduced second-order 

s-t tgds, a mapping language that is closed under composition. Using second-order 

tgds the composition of the previous example becomes: 

     Σ13= { n i s (Samples (n,s) MedicalData (i,s)), 

f ( n s (Samples (n,s) ) MedicalData (f(n),s)))} 

 

Where f is a function symbol that associates each patient name n with a patient id 

f(n). The second-order language they propose uses existentially quantified function 

symbols, which essentially can be thought of as Skolem functions. Fagin et al. [3] 

presented a composition algorithm for this language and showed that it can have 

practical value for some data management problems, such as data exchange. 

Yu and Popa [35] considered mapping composition for second order source-to-

target constraints over nested relational schemata in support of schema evolution. 

Despite the close relation, all the previous approaches did not specifically consider 

schema evolution. They presented a composition algorithm similar to the one in [3], 

with extensions to handle nesting and with significant attention to minimizing the size 

of the result. They reported on a set of experiments using mappings on both synthetic 

and real-life schemata, to demonstrate that their algorithm is fast and is effective at 

minimizing the size of the result.  

Nash et al. [21] tried to extend the work of Fagin et al. [3]. They studied 

constraints that need not be source-to-target and they concentrated on obtaining first-

order embedded dependencies. They considered dependencies that could express key 

constraints and inclusions of conjunctive queries Q1 ⊆ Q2 where Q1 and Q2 may 

reference symbols from both the source and target schema. They do not allow 

existential quantifiers over function symbols. The closure of composition of 

constraints in this language does not hold and determining whether a composition 

result exists is undecidable. One important contribution of this article is an algorithm 

for composing the mappings given by embedded dependencies. Upon a successful 

execution, the algorithm produces a mapping that is also given by embedded 

dependencies. The algorithm however, has some inherent limitations since it may fail 

to produce a result, even if a set of embedded dependencies that expresses the 

composition mapping exists. Moreover, it may generate a set of dependencies that is 

exponentially larger than the input. They show that these difficulties are intrinsic and 

not an artifact of the algorithm. They address them in part by providing sufficient 



conditions on the input mappings which guarantee that the algorithm will succeed. 

Furthermore, they devote significant attention to the novel and most challenging 

component of their algorithm, which performs “de-Skolemization” to obtain first-

order constraints from second-order constraints. Very roughly speaking, the main two 

challenges that they face are involved recursion and de-Skolemization. 

The latest work on mapping composition is that of Bernstein et al. [1] in 2008 that 

propose a new composition algorithm that targets practical applications. Like [21], 

they explore the mapping composition problem for constraints that are not restricted 

to being source-to-target. If the input is a set of source-to-target embedded 

dependencies their algorithm behaves similarly to that of [3], except that as in [21], 

they also attempt to express the results as embedded dependencies through a de-

Skolemization step. Their algorithm for composing these types of algebraic mappings 

gives a partial solution when it is unable to find a complete one. The heart of their 

algorithm is a procedure to eliminate relation symbols from the intermediate 

signature. Such elimination can be done one symbol at a time. It makes a best effort to 

eliminate as many relation symbols from the intermediate schema as possible, even if 

it cannot eliminate all of them. 

Despite the great work that has been done in mapping composition we are not 

aware of an attempt trying to implement it in the context of ontology evolution. All 

the approaches deal with relational or nested relational schemata and usually have to 

do with some particular classes of mappings under consideration each time. Hence, 

mapping composition does not always address the problem in a satisfactory manner. 

This belief is further enhanced by the fact that first-order mappings are not closed 

under composition and second-order ones are too difficult to handle using current 

DBMS. We doubt that second-order constraints will be supported by the DBMS in the 

near future as well. Moreover, given a source and a target database, deciding whether 

they satisfy a mapping given by second-order tgds may in general require exponential 

time in the size of input databases as proved in [3]. 

Furthermore, in mapping composition someone has to produce several sets of 

mappings (between S and T and between T and T΄). This would impose a large 

overhead whenever a new version of the ontology is produced -which can be quite 

often for dynamic ontologies. Schema evolution is rarely represented as mapping in 

practice [35]. Instead it is either represented as a list of changes or, more often, 

implicitly embedded in the new version of the schema. 

Moreover, each constraint should be created or at least confirmed by a domain 

expert. A database system may be implemented by an IT expert but only the 

appropriate domain expert can understand the specific semantics of the system and 

s/he is the only one who can ultimately verify the results of the whole mapping 

process. We argue that second-order constraints are too difficult for domain experts to 

grasp and understand. 

 Finally, mapping composition poses increased scalability challenges when 

compared to usual query rewriting approaches. This is due to the fact that mappings 

between schemata must often cover the entire schema, while queries usually access 

only parts of a schema and typically produce simple output.  



3.3 Mapping Adaptation 

In parallel with the previous approaches that considered mapping composition,  

Velegrakis et al. [33] focused on incrementally adapting mappings on schema change. 

 

 

Fig. 3. Adapting Schema Mappings 

Their approach is to use a mapping adaptation tool in which a designer can change 

and evolve schemata. The tool detects mappings that are made inconsistent by a 

schema change and incrementally modifies the mappings in response. The term 

incrementally means that only the mappings and, more specifically, the parts of the 

mappings that are affected by a schema change, are modified while the rest remain 

unchanged. This approach has the advantage that it can track the semantic decisions 

made by a designer either in creating the mapping or in earlier modification decisions. 

These semantic decisions are needed because schemata are often ambiguous (or 

semantically impoverished) and may not contain sufficient information to make all 

mapping choices. Those decisions can be reused when appropriate. 

Consider for example the schemata T and T΄ shown in Fig. 4. Schema T describes 

patients and the medicines they are administered, along with the suppliers of those 

medicines. Schema T΄ provides statistical data for the patients that use medicines of a 

specific company. The mapping between T and T΄ is:  

ΣTT΄= { p m c (Prescriptions (p, m)  Suppliers (m, c) 

                                                                MedData (p, c))} 

 

Assume now that raw data arrive from a new source in the form of tuples (n, p, m, 

c) relating a name and an id of a patient to a medicine and the supplier of that 

medicine. Rather than splitting and inserting the data into the two relations 

Prescriptions and Suppliers, a decision is made by the application to store the 

incoming tuples as they are in the PatientStore relation which becomes the new 

schema S. The mapping ΣTT΄ that depends on the schema T and T΄΄ must now be 

changed. 
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Fig. 4. Identifying mapping adaptation problems. 

So the following operations are issued in T in order to become the S and according 

to the mapping adaptation policy the mapping will be updated as well. 

 

1. Move Suppliers/Company to Prescriptions/ Company. After this operation the 

mapping will be updated as well to become:  

 

Σ΄= { p m c (Prescriptions (p, m, c)  Suppliers (m) 

                                                                MedData (p, c))} 

 

2. Delete Suppliers/Medicine and then Delete the relation Suppliers. The mapping 

now becomes: 

Σ΄΄=  { p m c (Prescriptions (p, m, c)  MedData (p, c))} 

 

3. Rename Prescriptions relation to PatientStore and Add the field Name. The new 

mapping now becomes 

Σ΄΄΄=  { n p m c (Prescriptions (n, p, m, c)  MedData (p, c))} 

 

Their approach considers not only local changes to schema, but also changes that 

may affect and transform many components of a schema. They consider a 

comprehensive class of mappings for relational and XML schemata with choice types 

and constraints that may or may not be nested. Their algorithm detects mappings 

affected by a structural or constraint change and generates all the rewritings that are 

consistent with the semantics of the mapped schemata. Their approach explicitly 

models mapping choices made by a user and maintains these choices, whenever 

possible, as the schemata and mappings evolve. 

The main idea here is that schemata often evolve in small, primitive steps; after 

each step the schema mapping can be incrementally adapted by applying local 

modifications. Despite the fact that the specific implementation is system dependent, 

the idea to incrementally change the mappings each time a primitive change occurs in 

the source or target schemata has more drawbacks.  

S    T   T΄ 

PatientStore   Prescriptions  MedData (1) 
Name   PId     Medicine   Company PId     Medicine  PId          Company 

Nikos   1234   Quinapril   Pfizer 1234        Quinapril  1234        Pfizer 

Tasos   5678   Quinapril   Bayer   5678 Quinapril  1234        Bayer 

       5678        Pfizer 

       5678        Bayer 

         

    Suppliers  MedData (2) 
    Medicine   Company PId          Company 

    Quinapril   Pfizer  1234        Pfizer  

    Quinapril   Bayer  5678        Bayer 

   

    



When drastic schema evolution occurs (significant restructuring in one of the 

original schemata) and the new schema version is directly given, it is unclear how 

feasible it is to extract the list of primitive changes that can describe the evolution. 

Such scenarios often occur in practice, especially in scientific fields (HL71, mzXML2 

standards etc.). The list of changes may not be given and may need to be discovered 

[36], but even then there may be multiple lists of changes with the same effect of 

evolving the old schema into a new one and we have to be sure that the resulting 

mapping is independent of which list of changes is considered. Moreover, the set of 

primitive changes is not expressive enough to capture complex evolution. 

Furthermore, even when such a list of changes can be obtained, applying the 

incremental algorithm for each change in this potentially very long list will be highly 

inefficient. There is also, no guarantee that after repeatedly applying the algorithm, 

the semantics of the resulting mappings will be the desired ones. 

In order to prove that, consider the example we just discussed. Surprisingly, the 

semantics of the above mapping may not be the expected one. The instance under S 

consists of one patient that is prescribed with one medicine which is consistent with 

T΄. The relation MedData(1) under T includes all pairs of Pid and Company that the 

original mapping requires to exist in MedData, based on T data. In contrast, the 

relation MedData(2) contains the pairs that the incrementally adapted mapping Σ΄΄΄ 

requires to exist in MedData, based on S data. Notably the Σ΄΄΄ loses the fact that the 

patient with id 1234 is also related with Bayer. 

Thus, Σ΄΄΄ does not quite capture the intention of the original mapping, given the 

new format of the incoming data. Part of the reason this happens is that the new 

source data does not necessarily satisfy a join dependency that is explicitly encoded in 

the original mapping ΣTT΄. There are other examples where the incremental approach 

falls short in terms of preserving the semantics. Furthermore, the same goes for the 

blank-sheet approach. Indeed, on the previous example, if we just match the common 

attributes of S and T΄, and regenerate the mapping based on this matching, we would 

obtain the same mapping M΄ as in the incremental approach. A systematic approach, 

with stronger semantic guarantees, is clearly needed. 

3.4 Floating Model 

Xuan et al. [34] propose an approach and a model to deal with the asynchronous 

versioning problem in the context of a materialized integration system.  

Their system is based on the following assumptions: a) each data source 

participating in the integration process has its own ontology; b) each local source 

references a shared ontology by subsumption relationships “as much as possible” 

(each local class must reference its smallest subsuming class in the shared ontology); 

and c) a local ontology may restrict and extend the shared ontology as much as 

needed. 

However, the authors of [34] are focused mostly on instances and they add 

semantics on them using implicit storage. So, they add semantic keys on instances, 

                                                           
1 http://www.hl7.org/ 
2 http://sashimi.sourceforge.net/software_glossolalia.html 



they use universal identifiers for properties and consider a validation period for each 

instance. 

To support ontology changes they propose the principle of ontology continuity 

which supposes that an evolution of an ontology should not falsify axioms that were 

previously true. This principle allows the management of each old instance using the 

new version of the ontology. With this assumption, they propose an approach which 

they call the floating version model in order to fully automate the whole integration 

process. This paper deals more with temporal databases than ontology evolution and 

they support only “ontology deeping” as they named it. That is, they only allow 

addition of information and not deletion, since they rely on the persistence of classes, 

properties and subsumption relationships (principle of ontology continuity). Despite 

the simplicity of the approach, in practice the deletion of a class/property is a common 

operation in ontology evolution [11]. Therefore, we argue that this approach is not 

useful in real-world scenarios and does not adequately reflect reality. Furthermore the 

paper only describes abstractly the ideas without formal definitions and algorithms. 

4 Discussion 

As shown in the previous sections the solutions proposed so far have several 

drawbacks and cannot constitute a generic solution. Almost all the approaches deal 

with relational or nested relational schemata and the single approach we have seen 

considering ontology change is too simple and is not useful in real-world scenarios. 

Schema composition is too difficult and mapping adaptation lacks a precise criterion 

under which the adapted mapping is indeed the “right” result. But even if we tried to 

neglect those problems we have to face the fact that data integration in ontologies is a 

problem that is inherently different from the data integration problem for databases 

[24]. We argue that this is true due to the different nature of the two formalisms, and 

essentially boils down to a number of differences, discussed below. 

The first, very important difference is related to the semantics of databases as 

opposed to the semantics of logical formalisms that are used in ontologies. Ontology 

representation formalisms involve the notion of validity, meaning that certain 

combinations of ontology axioms are not valid. This is not true for databases, in 

which any set of tuples that corresponds to the schema is valid (barring the use of 

integrity constraints, which are, in essence, logical formulas). The notion of validity 

also affects the change process, forcing us to introduce adequate side-effects in each 

change operation, in a way that would allow us to maintain validity in the face of such 

changes (see, e.g., [14], [18]). Therefore, maintaining the correct mappings is more 

difficult in ontologies (where side-effects must also be considered) than in databases. 

For similar reasons, the notion of inference, which exists in ontological formalisms 

but not in relational databases, affects the process of maintaining the mappings. This 

issue has two facets: one is related to the different semantics (foundational or 

coherence [5]) that could be employed during change and its effects on the update 

results, and, consequently, on the mappings; the second is related to the fact that 

inferred knowledge could also give rise to inferred mappings, which should similarly 

be maintained. 



One could claim that relational approaches to maintaining the mappings could be 

used because of the fact that many ontology manipulation systems use a relational 

database as a backend for storing the information [30]. This claim however is 

problematic because the transformation of ontological knowledge into a relational 

schema is often a complicated process. In [30], several different approaches are 

considered and compared. Under the simplest ones, a single change in an ontological 

axiom corresponds to a single change in one tuple in the underlying representation; 

this is not true in the more sophisticated methods (which are also the most efficient, 

according to [30]), where a single change may correspond to a complicated set of 

changes in various tuples of the database. Therefore, the corresponding mapping 

changes may be difficult to figure out, especially given the fact that it is difficult to 

understand the semantics of an ontology change by just looking at the changed tuples. 

As a result, we need to consider the changes directly on the ontology level, rather 

than the database level, which is the first requirement for an ideal ontology-based data 

integration system. Using such an approach we could also exploit the fact that 

schema/ontology evolution is rarely represented as mappings and is usually presented 

as a list of changes[35]. 

The second requirement is to be able to query information concerning not only 

source data but ontology evolution as well. Efficient version management and queries 

concerning evolution are useful in order to understand how our knowledge advances 

over time since ontologies depict how we perceive a domain of interest. Moreover, we 

would like to know the modeling choices we have made in the past. On the other 

hand, the mapping definition process remains a very difficult problem. In practice it is 

done manually with the help of graphical user interfaces and it is a labor-intensive and 

error prone activity for humans. So in an ideal system the domain expert should be 

able to provide, or at least verify, the mapping between the ontologies and the data 

sources. The domain experts need a simple mapping language, yet expressive enough 

to handle the heterogeneity between the ontology and the DBMS. Moreover, the 

whole mapping process should be performed only once, and the generated mappings 

should not be changed or translated in order to be verified and refined whenever 

requested in the future. 

Finally we need precise criteria under which the answer produced is the right one. 

It is obvious that an answer to a question may not be possible or meaningful, and we 

need to know under which conditions we can actually retrieve such an answer. 

In an ideal system, several databases would be mapped to the ontology as the 

ontology evolves. For example, as shown in Fig 5, DB1 is mapped using ontology 

version 0, then the ontology evolves through time, and a second database is mapped 

when the ontology has reached version 2. Having all those databases mapped using 

different ontology versions, we would like to answer queries formulated under any 

ontology version. We would like to support queries that have been formulated using 

even version 0 since in many systems queries are stored and we wouldn’t like to 

change them every time the ontology changes. 

 



 

Fig. 5. An ideal solution 

To conclude, an ideal solution should to try to exploit the initial mappings, the 

changes of the ontology and the query expressed using a specific version of the 

ontology to try to get answers from all databases mapped.  

5. Conclusion 

In this paper we showed that dynamic ontologies are very common, so data 

integration systems should be aware and ready to deal with that. We reviewed 

existing approaches for handling schema and ontology evolution and assessed their 

applicability in an ontology-based data integration system. We identified their 

drawbacks and concluded that they cannot be used “as-is” in a general solution. 

Moreover, we showed that data integration in ontologies is a problem that is 

inherently different from the data integration problem for databases. 

Then, we tried to highlight the requirements for an ideal system. In such a system:  

1. the changes should be considered directly on the ontology level 

2. queries should concern ontology evolution as well 

3.  the whole mapping process should be performed only once  

4. the domain experts should be able to provide, or at least verify, the 

mapping between the ontologies and the data sources 

5. precise criteria need to ensure that the produced answer is the right one   

A query, formulated using one ontology version, should be able to retrieve answers 

from all databases, even if they are mapped with a different ontology version.  

To the best of our knowledge, no system today is capable of fulfilling all the 

requirements specified and further research is required. Several challenges need to be 

resolved as it might not be possible to extract information mapped to a class, using a 
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later ontology version in which the specific class is deleted or moved. Even more, it 

might not be meaningful to do so. Moreover, whenever an answer from a specific 

mapped database is not possible we might want to check the most relevant answer to 

our question. Even worse, local schemata may evolve, and the structured DBMS data 

might be replaced with semi-structured or unstructured data. It is obvious that 

ontology evolution in data integration is an important topic and several challenging 

issues remain to be investigated in the near future. 
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