
Ontology & Schema Evolution

in Data Integration: Review and Assessment

Haridimos Kondylakis1,2, Giorgos Flouris
1
, Dimitris Plexousakis

1,2

1 Information Systems Laboratory, FORTH-ICS

2Computer Science Department, University of Crete

Vassilika Vouton P.O Box 1385, GR 71110 Heraklion, Crete

{kondylak, fgeo, dp}@ics.forth.gr

Abstract. The development of new techniques and the emergence of new high-

throughput tools have led to a new information revolution. The amount and the

diversity of the information that need to be stored and processed have led to the

adoption of data integration systems in order to deal with information extraction

from disparate sources. The mediation between traditional databases and

ontologies has been recognized as a cornerstone issue in bringing in legacy data

with formal semantic meaning. However, our knowledge evolves due to the

rapid scientific development, so ontologies and schemata need to change in

order to capture and accommodate such an evolution. When ontologies change,

these changes should somehow be rendered and used by the pre-existing data

integration systems, a problem that most of the integration systems seem to

ignore. In this paper, we review existing approaches for ontology/schema

evolution and examine their applicability in a state-of-the-art, ontology-based

data integration setting. Then, we show that changes in schemata differ

significantly from changes in ontologies. This strengthens our position that

current state of the art systems are not adequate for ontology-based data

integration. So, we give the requirements for an ideal data integration system

that will enable and exploit ontology evolution.

Keywords: Ontology Evolution, Data Integration, Mappings, Evolution of

Mappings

1 Introduction

The development of new techniques and the emergence of new high throughput tools

have led to a new information revolution. The nature and the amount of information

now available open directions of research that were once in the realm of science

fiction. During this information revolution the data gathering capabilities have greatly

surpassed the data analysis techniques, making the task to fully analyze the data at the

speed at which it is collected a challenge. The amount, diversity, and heterogeneity of

that information have led to the adoption of data integration systems in order to

manage it and further process it. However, the integration of these data sources raises

several semantic heterogeneity problems.

By accepting an ontology as a point of common reference, naming conflicts are

eliminated and semantic conflicts are reduced. Ontologies are used to identify and

resolve heterogeneity problems, at schema and data level, as a means for establishing

explicit formal vocabulary to share. The key in bringing legacy data with formal

semantic meaning has been widely recognized to be the inclusion of mediation

between traditional databases and ontologies [5, 15]. During the last years, ontologies

have been used in database integration, obtaining promising results, for example in

the fields of biomedicine and bioinformatics [19].

When using ontologies to integrate data, one is required to produce mappings, to

link similar concepts or relationships from the ontology/ies to the sources (or other

ontologies) by way of an equivalence, according to some metric. This is the mapping

definition process [13] and the output of this task is the mapping, i.e., a collection of

mappings rules. Defining the mappings between schemata/ontologies is not a goal in

itself. The resulting mappings are used for various integration tasks such as data

transformation and query answering.

Despite the great amount of work done in ontology-based data integration, an

important problem that most of the systems tend to ignore is that ontologies are living

artifacts and subject to change [5]. Due to the rapid development of research,

ontologies are frequently changed to depict the new knowledge that is acquired. The

problem that occurs is the following: when ontologies change, the mappings may

become invalid and should somehow be updated or adapted. A typical solution would

be to regenerate the mappings and then regenerate the dependent artifacts. We believe

however that the approach to recreate mappings from scratch as the ontology evolves

is problematic [32], and instead previously captured information should be reused.

In this paper, we address the problem of data integration for highly dynamic

ontologies. We argue that ontology change should be considered when designing

ontology-based data integration systems.

We identify solutions proposed in the state of the art which try to reuse previously

captured information. Since most of the approaches today concern database schema

evolution, we examine them first and check if they can be applied in an ontology-

based data integration scenario. We classify them into two general categories. Those

that try to compose successive schema mappings (mapping composition) [1] [21] and

those that try to evolve the mappings each time a primitive change operation occurs

(mapping adaptation) [33]. Although, those approaches deal with closely related

issues, their applicability in a dynamic ontology has not yet been examined. We

demonstrate some drawbacks of both approaches by means of simple examples and

prove that they are inefficient in a state of the art ontology-based data integration

setting.

This belief is further enhanced by showing that changes in database schemata

differ greatly from changes in ontologies. Moreover, the only approach [34] we have

seen concerning ontology evolution seems too simple and does not depict reality.

The lack of an ideal approach to handle ontology evolution in data integration

leads us to propose requirements for a new approach. We highlight what is missing

from the current state of the art and outline the requirements for an ideal data

integration system that will incorporate and handle ontology evolution efficiently and

effectively.

The overall goal of this paper is not only to give readers a comprehensive overview

of the works in the area, but also to provide necessary insights for the practical

understanding of the issues involved.

This rest of the paper is organized as follows: in Section 2 we give some

preliminaries and argue that ontology evolution should be considered when designing

ontology-based data integration systems; then, in Section 3 we review the solutions

proposed so far in the literature and show the related problems. This argument is

further enhanced in Section 4, by showing that changes in schemata differ

significantly from changes in ontologies. All those problems lead to the specification

of requirements of an ideal data integration system that will incorporate and handle

ontology evolution. Finally in Section 5 we conclude the paper and give directions for

future work.

2 Preliminaries

Originally introduced by Aristotle, ontologies are formal models about how we

perceive a domain of interest and provide a precise, logical account of the intended

meaning of terms, data structures and other elements modeling the real world [5].

Ontologies are often large and complex structures, whose development and

maintenance give rise to several sturdy and interesting research problems. One of the

most important such problems is ontology evolution, which refers to the process of

modifying an ontology in response to a certain change in the domain or its

conceptualization [13].

Several reasons for changing an ontology have been identified in the literature. An

ontology, just like any structure holding information regarding a domain of interest,

may need to change simply because the domain of interest has changed [28]; but even

if we assume a static world (domain), which is a rather unrealistic assumption for

most applications, we may need to change the perspective under which the domain is

viewed [22], or we may discover a design flaw in the original conceptualization of the

domain [25]; we may also wish to incorporate additional functionality, according to a

change in users’ needs [9]. Furthermore, new information, which was previously

unknown, classified or otherwise unavailable may become available or different

features of the domain may become known and/or important [12]. The importance of

this problem is also emphasized by recent studies, which suggest that change, rather

than ontologies, should be the central concept of the Semantic Web [31].

In [11] it is shown that most well-known life science ontologies are heavily

updated and grow significantly from time to time. There have been several works in

the literature addressing the problem of ontology evolution. An indicative list is: [6],

[8], [10], [14], [18], [23], [27], [29]; for a more comprehensive and complete survey,

see [5].

An interesting classification of changes that is of interest for the problem of data

integration appears in [4]. In this work, changes are classified under three broad

categories. The first level (logic-level changes), which is difficult and not supported

by current approaches, corresponds to changes in the logical formalism which is used

to represent the ontology, rather than the ontology itself. The second (language-level

changes) and third (KB-level changes) levels are more interesting and supported by

ontology evolution approaches. Language-level changes correspond to changes in the

objects of the ontology (e.g., classes, properties etc); examples of language-level

changes are the addition of a new concept or the deletion of a property. KB-level

changes correspond to changes in the information about the existing objects, i.e.,

structural changes in the ontology; for example, changes in the class or property

hierarchies, or changes in some constraints related to a particular class are KB-level

changes.

This categorization is relevant to the data integration problem due to the different

effects that a change in each of the levels would have in the underlying matching. For

example, KB-level changes affect the structure of the ontology, and, consequently, the

possible models of it, as well as the intended meaning of the used terms. Such effects

should be reflected in the mapping in order to avoid inconsistent mappings. On the

other hand, language-level changes correspond to additions and deletions of objects

from the ontology, therefore their effects on the mapping, if any, can be trivially

computed. Logic-level changes are irrelevant in our setting for two reasons: first,

because such changes are not supported by ontology evolution approaches, and,

second, because a critical assumption in our work is that the underlying logical

formalism is the same in all mapped ontologies.

3. A review of the State the Art

A typical solution to the problem of data integration with evolving ontologies would

be to regenerate the mappings and then the dependent artifacts. This method is called

the “blank-sheet approach” [35]. However, even with the help of mapping generation

tools, this process can be costly in terms of human effort and expertise since it still

requires extensive input from human experts. As large, complicated schemata become

more prevalent, and as data is reused in more applications, manually maintaining

mappings is becoming impractical. Moreover, there is no guarantee that the

regenerated mappings preserve the semantics of the original mappings since they are

not considered during the regeneration. We believe that the effort required to recreate

mappings from scratch as the ontology evolves is problematic and costly [32], and

instead previously captured information should be reused. It is really important that

domain experts specify the necessary mappings only once and then they can retrieve

data disregarding the changes in the ontology. The rest of this section aims to provide

a comprehensive overview of the approaches that try to reuse previously captured

information in order to cope with schema/ontology evolution.

3.1 Earlier Works

Work in the area of database schema evolution started to emerge in the early 90’s

where mappings were considered as view definitions. Gupta et al.[7] and Mohania

and Dong [20] addressed the problem of maintaining a materialized view after user

redefinition, while [26] explored how to use view technology to handle schema

changes transparently.

Lee et al. [16] were the first to address the problem of defining view definitions

when the schemata of base relations change. They identified the view adaptation

problem for view evolution in the context of information systems schema changes,

which they called view synchronization. They proposed E-SQL. an extended version

of SQL for defining views that incorporated user preferences in order to change the

semantics of the view and with which the view definer could direct the view evolution

process. They proposed a view rewriting process that finds a view redefinition that

meets all view preservation constraints specified by the E-SQL view definition. Such

a solution prevented manual human interaction. However, the supported changes were

limited and evolution could only appear at the source side.

3.2 Mapping Composition

Despite the fact that mapping composition is not primarily focused on ontology

evolution it could be employed in order to handle ontology evolution. The approach

would be to describe ontology evolution itself as mappings and to employ mapping

composition to derive the adapted mappings.

Madhavan and Halevy [17] in 2003 were the first to address the problem of

composing semantic mappings. Specifically, given mappings between data sources S

and T and between T and T΄, is it possible to generate a direct mapping M΄ between S

and T΄ that is equivalent to the original mappings (see Fig. 1). Equivalence means that

for any query in a given class of queries Q, and for any instance of the data sources,

using the direct mapping yields exactly the same answer that would be obtained by

the two original mappings.

Fig. 1. Composing Schema Mappings

The semantics of the composition operator proposed by Madhavan and Halevy was

a significant first step, but it suffered from certain drawbacks caused by the fact that

this semantics was given relative to a class of queries. The set of formulas specifying

a composition M΄ of M and E relative to a class Q of queries need not be unique up to

logical equivalence, even when the class Q of queries is fixed. Moreover, this

semantics is rather fragile because a schema mapping M΄ may be a composition of M

and E when Q is the class of conjunctive queries (the class Q that Madhavan and

Halevy focused on), but fail to be a composition of these two schema mappings when

Q is the class of conjunctive queries with inequalities. In addition, they showed that

the result of composition may be an infinite set of formulas even when the query

language is that of conjunctive queries.

Consider for example the three schemata S, T and T΄ shown in Fig. 2. We use a

trivial example just to show our key points. Schema S consists of a single binary

relation symbol Samples that associates patient names with their medical samples.

Schema T consists of a similar relation PSamples that is intended to provide a copy of

M΄=M E

E

M
S T

T’

Samples, and provides an additional relation Patients, that associates each patient

name with a patient id. Schema T΄ consists of the relation MedicalData that associates

patiend ids with their samples.

Fig. 2. The example schemata

Consider now the schema mappings Σ12 between S and T and Σ23 between T and T΄

where

 Σ12= { n s ((Samples (n, s) PSamples (n, s)),

 n s ((Samples (n, s) i Patients (n, i))}

 Σ23= { n i s (Patients (n, i) PSamples (n, s) MedicalData (i, s))}

The three formulas in Σ12 and Σ23 are source-to-target tuple generating

dependencies (s-t tgds) that have been extensively used to formalize data exchange

[2]. A s-t tgd has the form xφ(x) yψ(x, y), where φ(x) is a conjunction of

atomic formulae over S and ψ(x, y) is a conjunction of atomic formulae over T. A

tuple-generating dependency specifies an inclusion of two conjunctive queries, Q1 ⊆

Q2. It is called source-to-target when Q1 refers only to symbols from the source

schema and Q2 refers only to symbols from the target schema. The first mapping

requires that “copies” of the tuples in Samples must exist in PSamples relation and

moreover, that each patient name n must be associated with some patient id i in

Patients. The second mapping requires that pairs of patient id and sample must exist

in the relation MedicalData, provided that they are associated with the same patient

name.

Moreover, let Samples={(Nikos, Sample1), (Nikos, Sample2)} be instances I1 of S,

PSamples=Samples and Patients={(Nikos, 1234)} the instances I2 of T, and

MedicalData={(1234, Sample1), (1234, Sample2)} the instances I3 of T΄. It is easy to

verify that the instances satisfy the mappings Σ12 and Σ23 that is {I1, I2} Inst(Μ) and

{ I2, I3} Inst(Ε). Now we are looking for a composition of M and E such that an

instance { I1, I3} is in Inst(M) Inst(E) if and only if it satisfies Σ13. A first guess for

Σ13 could be

 Σ13= { n s (Samples (n, s) i MedicalData (i, s))}

[

Π

λ

η

κ

τ

ρ

ο

λ

ο

γ

ή

σ

τ

ε

μ

ι

α

υ

ρ

ά

σ

η

α

π

ό

τ

ο

έ

γ

γ

ρ

α

υ

ο

ή

τ

η

σ

ύ

ν

[

Π

λ

η

κ

τ

ρ

ο

λ

ο

γ

ή

σ

τ

ε

μ

ι

α

υ

ρ

ά

σ

η

α

π

ό

τ

ο

έ

γ

γ

ρ

α

υ

ο

ή

τ

η

σ

ύ

ν

ο

ψ

η

γ

S T T΄

Samples Patients MedicalData
Name Sample Id Name Id Sample

Nikos Sample1 1234 Nikos 1234 Sample1

Nikos Sample2 1234 Sample2

 PSamples
 Name Sample

 Nikos Sample1

 Nikos Sample2

However, here the patient id i depends on both the patient name n and the sample

id s. So (i, s) must be a tuple in the MedicalData relation for every sample s where (n,

s) is in the Samples relation. This is clearly incorrect. Consider, for each k≥1 the

following source-to-target tgd:

 φκ = { n s1… sk (Samples (n,s1) … Samples (n, sk)

i MedicalData (i, s1) … MedicalData (i, sk))}

It is easy to verify that the composition Σ13 is the infinite set { φ1,…, φκ, ... } of source

to target tgds. Fagin et al. [3] identified that problem and showed that the

compositions of certain kinds of first-order mappings may not be expressible in any

first-order language, even by an infinite set of constraints. That is, that language is not

closed under composition. In order to face that problem they introduced second-order

s-t tgds, a mapping language that is closed under composition. Using second-order

tgds the composition of the previous example becomes:

 Σ13= { n i s (Samples (n,s) MedicalData (i,s)),

f (n s (Samples (n,s)) MedicalData (f(n),s)))}

Where f is a function symbol that associates each patient name n with a patient id

f(n). The second-order language they propose uses existentially quantified function

symbols, which essentially can be thought of as Skolem functions. Fagin et al. [3]

presented a composition algorithm for this language and showed that it can have

practical value for some data management problems, such as data exchange.

Yu and Popa [35] considered mapping composition for second order source-to-

target constraints over nested relational schemata in support of schema evolution.

Despite the close relation, all the previous approaches did not specifically consider

schema evolution. They presented a composition algorithm similar to the one in [3],

with extensions to handle nesting and with significant attention to minimizing the size

of the result. They reported on a set of experiments using mappings on both synthetic

and real-life schemata, to demonstrate that their algorithm is fast and is effective at

minimizing the size of the result.

Nash et al. [21] tried to extend the work of Fagin et al. [3]. They studied

constraints that need not be source-to-target and they concentrated on obtaining first-

order embedded dependencies. They considered dependencies that could express key

constraints and inclusions of conjunctive queries Q1 ⊆ Q2 where Q1 and Q2 may

reference symbols from both the source and target schema. They do not allow

existential quantifiers over function symbols. The closure of composition of

constraints in this language does not hold and determining whether a composition

result exists is undecidable. One important contribution of this article is an algorithm

for composing the mappings given by embedded dependencies. Upon a successful

execution, the algorithm produces a mapping that is also given by embedded

dependencies. The algorithm however, has some inherent limitations since it may fail

to produce a result, even if a set of embedded dependencies that expresses the

composition mapping exists. Moreover, it may generate a set of dependencies that is

exponentially larger than the input. They show that these difficulties are intrinsic and

not an artifact of the algorithm. They address them in part by providing sufficient

conditions on the input mappings which guarantee that the algorithm will succeed.

Furthermore, they devote significant attention to the novel and most challenging

component of their algorithm, which performs “de-Skolemization” to obtain first-

order constraints from second-order constraints. Very roughly speaking, the main two

challenges that they face are involved recursion and de-Skolemization.

The latest work on mapping composition is that of Bernstein et al. [1] in 2008 that

propose a new composition algorithm that targets practical applications. Like [21],

they explore the mapping composition problem for constraints that are not restricted

to being source-to-target. If the input is a set of source-to-target embedded

dependencies their algorithm behaves similarly to that of [3], except that as in [21],

they also attempt to express the results as embedded dependencies through a de-

Skolemization step. Their algorithm for composing these types of algebraic mappings

gives a partial solution when it is unable to find a complete one. The heart of their

algorithm is a procedure to eliminate relation symbols from the intermediate

signature. Such elimination can be done one symbol at a time. It makes a best effort to

eliminate as many relation symbols from the intermediate schema as possible, even if

it cannot eliminate all of them.

Despite the great work that has been done in mapping composition we are not

aware of an attempt trying to implement it in the context of ontology evolution. All

the approaches deal with relational or nested relational schemata and usually have to

do with some particular classes of mappings under consideration each time. Hence,

mapping composition does not always address the problem in a satisfactory manner.

This belief is further enhanced by the fact that first-order mappings are not closed

under composition and second-order ones are too difficult to handle using current

DBMS. We doubt that second-order constraints will be supported by the DBMS in the

near future as well. Moreover, given a source and a target database, deciding whether

they satisfy a mapping given by second-order tgds may in general require exponential

time in the size of input databases as proved in [3].

Furthermore, in mapping composition someone has to produce several sets of

mappings (between S and T and between T and T΄). This would impose a large

overhead whenever a new version of the ontology is produced -which can be quite

often for dynamic ontologies. Schema evolution is rarely represented as mapping in

practice [35]. Instead it is either represented as a list of changes or, more often,

implicitly embedded in the new version of the schema.

Moreover, each constraint should be created or at least confirmed by a domain

expert. A database system may be implemented by an IT expert but only the

appropriate domain expert can understand the specific semantics of the system and

s/he is the only one who can ultimately verify the results of the whole mapping

process. We argue that second-order constraints are too difficult for domain experts to

grasp and understand.

 Finally, mapping composition poses increased scalability challenges when

compared to usual query rewriting approaches. This is due to the fact that mappings

between schemata must often cover the entire schema, while queries usually access

only parts of a schema and typically produce simple output.

3.3 Mapping Adaptation

In parallel with the previous approaches that considered mapping composition,

Velegrakis et al. [33] focused on incrementally adapting mappings on schema change.

Fig. 3. Adapting Schema Mappings

Their approach is to use a mapping adaptation tool in which a designer can change

and evolve schemata. The tool detects mappings that are made inconsistent by a

schema change and incrementally modifies the mappings in response. The term

incrementally means that only the mappings and, more specifically, the parts of the

mappings that are affected by a schema change, are modified while the rest remain

unchanged. This approach has the advantage that it can track the semantic decisions

made by a designer either in creating the mapping or in earlier modification decisions.

These semantic decisions are needed because schemata are often ambiguous (or

semantically impoverished) and may not contain sufficient information to make all

mapping choices. Those decisions can be reused when appropriate.

Consider for example the schemata T and T΄ shown in Fig. 4. Schema T describes

patients and the medicines they are administered, along with the suppliers of those

medicines. Schema T΄ provides statistical data for the patients that use medicines of a

specific company. The mapping between T and T΄ is:

ΣTT΄= { p m c (Prescriptions (p, m) Suppliers (m, c)

 MedData (p, c))}

Assume now that raw data arrive from a new source in the form of tuples (n, p, m,

c) relating a name and an id of a patient to a medicine and the supplier of that

medicine. Rather than splitting and inserting the data into the two relations

Prescriptions and Suppliers, a decision is made by the application to store the

incoming tuples as they are in the PatientStore relation which becomes the new

schema S. The mapping ΣTT΄ that depends on the schema T and T΄΄ must now be

changed.

Add element

Move element

Delete element

M2

M1

M

S

T1

T2

T3

Fig. 4. Identifying mapping adaptation problems.

So the following operations are issued in T in order to become the S and according

to the mapping adaptation policy the mapping will be updated as well.

1. Move Suppliers/Company to Prescriptions/ Company. After this operation the

mapping will be updated as well to become:

Σ΄= { p m c (Prescriptions (p, m, c) Suppliers (m)

 MedData (p, c))}

2. Delete Suppliers/Medicine and then Delete the relation Suppliers. The mapping

now becomes:

Σ΄΄= { p m c (Prescriptions (p, m, c) MedData (p, c))}

3. Rename Prescriptions relation to PatientStore and Add the field Name. The new

mapping now becomes

Σ΄΄΄= { n p m c (Prescriptions (n, p, m, c) MedData (p, c))}

Their approach considers not only local changes to schema, but also changes that

may affect and transform many components of a schema. They consider a

comprehensive class of mappings for relational and XML schemata with choice types

and constraints that may or may not be nested. Their algorithm detects mappings

affected by a structural or constraint change and generates all the rewritings that are

consistent with the semantics of the mapped schemata. Their approach explicitly

models mapping choices made by a user and maintains these choices, whenever

possible, as the schemata and mappings evolve.

The main idea here is that schemata often evolve in small, primitive steps; after

each step the schema mapping can be incrementally adapted by applying local

modifications. Despite the fact that the specific implementation is system dependent,

the idea to incrementally change the mappings each time a primitive change occurs in

the source or target schemata has more drawbacks.

S T T΄

PatientStore Prescriptions MedData (1)
Name PId Medicine Company PId Medicine PId Company

Nikos 1234 Quinapril Pfizer 1234 Quinapril 1234 Pfizer

Tasos 5678 Quinapril Bayer 5678 Quinapril 1234 Bayer

 5678 Pfizer

 5678 Bayer

 Suppliers MedData (2)
 Medicine Company PId Company

 Quinapril Pfizer 1234 Pfizer

 Quinapril Bayer 5678 Bayer

When drastic schema evolution occurs (significant restructuring in one of the

original schemata) and the new schema version is directly given, it is unclear how

feasible it is to extract the list of primitive changes that can describe the evolution.

Such scenarios often occur in practice, especially in scientific fields (HL71, mzXML2

standards etc.). The list of changes may not be given and may need to be discovered

[36], but even then there may be multiple lists of changes with the same effect of

evolving the old schema into a new one and we have to be sure that the resulting

mapping is independent of which list of changes is considered. Moreover, the set of

primitive changes is not expressive enough to capture complex evolution.

Furthermore, even when such a list of changes can be obtained, applying the

incremental algorithm for each change in this potentially very long list will be highly

inefficient. There is also, no guarantee that after repeatedly applying the algorithm,

the semantics of the resulting mappings will be the desired ones.

In order to prove that, consider the example we just discussed. Surprisingly, the

semantics of the above mapping may not be the expected one. The instance under S

consists of one patient that is prescribed with one medicine which is consistent with

T΄. The relation MedData(1) under T includes all pairs of Pid and Company that the

original mapping requires to exist in MedData, based on T data. In contrast, the

relation MedData(2) contains the pairs that the incrementally adapted mapping Σ΄΄΄

requires to exist in MedData, based on S data. Notably the Σ΄΄΄ loses the fact that the

patient with id 1234 is also related with Bayer.

Thus, Σ΄΄΄ does not quite capture the intention of the original mapping, given the

new format of the incoming data. Part of the reason this happens is that the new

source data does not necessarily satisfy a join dependency that is explicitly encoded in

the original mapping ΣTT΄. There are other examples where the incremental approach

falls short in terms of preserving the semantics. Furthermore, the same goes for the

blank-sheet approach. Indeed, on the previous example, if we just match the common

attributes of S and T΄, and regenerate the mapping based on this matching, we would

obtain the same mapping M΄ as in the incremental approach. A systematic approach,

with stronger semantic guarantees, is clearly needed.

3.4 Floating Model

Xuan et al. [34] propose an approach and a model to deal with the asynchronous

versioning problem in the context of a materialized integration system.

Their system is based on the following assumptions: a) each data source

participating in the integration process has its own ontology; b) each local source

references a shared ontology by subsumption relationships “as much as possible”

(each local class must reference its smallest subsuming class in the shared ontology);

and c) a local ontology may restrict and extend the shared ontology as much as

needed.

However, the authors of [34] are focused mostly on instances and they add

semantics on them using implicit storage. So, they add semantic keys on instances,

1 http://www.hl7.org/
2 http://sashimi.sourceforge.net/software_glossolalia.html

they use universal identifiers for properties and consider a validation period for each

instance.

To support ontology changes they propose the principle of ontology continuity

which supposes that an evolution of an ontology should not falsify axioms that were

previously true. This principle allows the management of each old instance using the

new version of the ontology. With this assumption, they propose an approach which

they call the floating version model in order to fully automate the whole integration

process. This paper deals more with temporal databases than ontology evolution and

they support only “ontology deeping” as they named it. That is, they only allow

addition of information and not deletion, since they rely on the persistence of classes,

properties and subsumption relationships (principle of ontology continuity). Despite

the simplicity of the approach, in practice the deletion of a class/property is a common

operation in ontology evolution [11]. Therefore, we argue that this approach is not

useful in real-world scenarios and does not adequately reflect reality. Furthermore the

paper only describes abstractly the ideas without formal definitions and algorithms.

4 Discussion

As shown in the previous sections the solutions proposed so far have several

drawbacks and cannot constitute a generic solution. Almost all the approaches deal

with relational or nested relational schemata and the single approach we have seen

considering ontology change is too simple and is not useful in real-world scenarios.

Schema composition is too difficult and mapping adaptation lacks a precise criterion

under which the adapted mapping is indeed the “right” result. But even if we tried to

neglect those problems we have to face the fact that data integration in ontologies is a

problem that is inherently different from the data integration problem for databases

[24]. We argue that this is true due to the different nature of the two formalisms, and

essentially boils down to a number of differences, discussed below.

The first, very important difference is related to the semantics of databases as

opposed to the semantics of logical formalisms that are used in ontologies. Ontology

representation formalisms involve the notion of validity, meaning that certain

combinations of ontology axioms are not valid. This is not true for databases, in

which any set of tuples that corresponds to the schema is valid (barring the use of

integrity constraints, which are, in essence, logical formulas). The notion of validity

also affects the change process, forcing us to introduce adequate side-effects in each

change operation, in a way that would allow us to maintain validity in the face of such

changes (see, e.g., [14], [18]). Therefore, maintaining the correct mappings is more

difficult in ontologies (where side-effects must also be considered) than in databases.

For similar reasons, the notion of inference, which exists in ontological formalisms

but not in relational databases, affects the process of maintaining the mappings. This

issue has two facets: one is related to the different semantics (foundational or

coherence [5]) that could be employed during change and its effects on the update

results, and, consequently, on the mappings; the second is related to the fact that

inferred knowledge could also give rise to inferred mappings, which should similarly

be maintained.

One could claim that relational approaches to maintaining the mappings could be

used because of the fact that many ontology manipulation systems use a relational

database as a backend for storing the information [30]. This claim however is

problematic because the transformation of ontological knowledge into a relational

schema is often a complicated process. In [30], several different approaches are

considered and compared. Under the simplest ones, a single change in an ontological

axiom corresponds to a single change in one tuple in the underlying representation;

this is not true in the more sophisticated methods (which are also the most efficient,

according to [30]), where a single change may correspond to a complicated set of

changes in various tuples of the database. Therefore, the corresponding mapping

changes may be difficult to figure out, especially given the fact that it is difficult to

understand the semantics of an ontology change by just looking at the changed tuples.

As a result, we need to consider the changes directly on the ontology level, rather

than the database level, which is the first requirement for an ideal ontology-based data

integration system. Using such an approach we could also exploit the fact that

schema/ontology evolution is rarely represented as mappings and is usually presented

as a list of changes[35].

The second requirement is to be able to query information concerning not only

source data but ontology evolution as well. Efficient version management and queries

concerning evolution are useful in order to understand how our knowledge advances

over time since ontologies depict how we perceive a domain of interest. Moreover, we

would like to know the modeling choices we have made in the past. On the other

hand, the mapping definition process remains a very difficult problem. In practice it is

done manually with the help of graphical user interfaces and it is a labor-intensive and

error prone activity for humans. So in an ideal system the domain expert should be

able to provide, or at least verify, the mapping between the ontologies and the data

sources. The domain experts need a simple mapping language, yet expressive enough

to handle the heterogeneity between the ontology and the DBMS. Moreover, the

whole mapping process should be performed only once, and the generated mappings

should not be changed or translated in order to be verified and refined whenever

requested in the future.

Finally we need precise criteria under which the answer produced is the right one.

It is obvious that an answer to a question may not be possible or meaningful, and we

need to know under which conditions we can actually retrieve such an answer.

In an ideal system, several databases would be mapped to the ontology as the

ontology evolves. For example, as shown in Fig 5, DB1 is mapped using ontology

version 0, then the ontology evolves through time, and a second database is mapped

when the ontology has reached version 2. Having all those databases mapped using

different ontology versions, we would like to answer queries formulated under any

ontology version. We would like to support queries that have been formulated using

even version 0 since in many systems queries are stored and we wouldn’t like to

change them every time the ontology changes.

Fig. 5. An ideal solution

To conclude, an ideal solution should to try to exploit the initial mappings, the

changes of the ontology and the query expressed using a specific version of the

ontology to try to get answers from all databases mapped.

5. Conclusion

In this paper we showed that dynamic ontologies are very common, so data

integration systems should be aware and ready to deal with that. We reviewed

existing approaches for handling schema and ontology evolution and assessed their

applicability in an ontology-based data integration system. We identified their

drawbacks and concluded that they cannot be used “as-is” in a general solution.

Moreover, we showed that data integration in ontologies is a problem that is

inherently different from the data integration problem for databases.

Then, we tried to highlight the requirements for an ideal system. In such a system:

1. the changes should be considered directly on the ontology level

2. queries should concern ontology evolution as well

3. the whole mapping process should be performed only once

4. the domain experts should be able to provide, or at least verify, the

mapping between the ontologies and the data sources

5. precise criteria need to ensure that the produced answer is the right one

A query, formulated using one ontology version, should be able to retrieve answers

from all databases, even if they are mapped with a different ontology version.

To the best of our knowledge, no system today is capable of fulfilling all the

requirements specified and further research is required. Several challenges need to be

resolved as it might not be possible to extract information mapped to a class, using a

time

DB1

Ver 0

Ontology

Ver 1 Ver 2 Ver 3
Changes Changes

Ver 0

Ver 0

Ver 0
Ver 0

V
er 0

Ver 2

Ver 2
Ver 2

V

e

r
3

DB2

Queries about:

 Ontology

 Sources

 Evolution

 Mappings Mappings

later ontology version in which the specific class is deleted or moved. Even more, it

might not be meaningful to do so. Moreover, whenever an answer from a specific

mapped database is not possible we might want to check the most relevant answer to

our question. Even worse, local schemata may evolve, and the structured DBMS data

might be replaced with semi-structured or unstructured data. It is obvious that

ontology evolution in data integration is an important topic and several challenging

issues remain to be investigated in the near future.

Acknowledgments. This work was partially supported by the EU project PlugIT

(ICT-231430). The authors thank the reviewers for their useful comments.

References

1. Bernstein, P.A., Green, T.J., Melnik, S., Nash, A.: Implementing mapping composition. The

VLDB Journal 17 (2008) 333-353

2. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query

answering. Theoretical Computer Science 336 (2005) 89-124

3. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.-C.: Composing schema mappings: Second-order

dependencies to the rescue. ACM Trans. Database Syst. 30 (2005) 994-1055

4. Flouris, G.: On the Evolution of Ontological Signatures. In Proceedings of the Workshop on

Ontology Evolution (2007) 67-72

5. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology

change: Classification and survey. Knowl. Eng. Rev. 23 (2008) 117-152

6. Flouris, G., Plexousakis, D., Antoniou, G.: On Applying the AGM Theory to DLs and

OWL. In Proc. of Int. Semantic Web Conf (2005) 216-231

7. Gupta, A., Jagadish, H.V., Mumick, I.S.: Data Integration using Self-Maintainable Views.

Proceedings of the 5th International Conference on Extending Database Technology:

Advances in Database Technology. Springer-Verlag (1996)

8. Haase, P., Harmelen, F.v., Huang, Z., Stuckenschmidt, H., Sure, Y.: A Framework for

Handling Inconsistency in Changing Ontologies. International Semantic Web Conference

(2005) 353-367

9. Haase, P., Stojanovic, L.: Consistent Evolution of OWL Ontologies. ESWC, Vol. 3532.

Springer (2005) 182-197

10. Halaschek-Wiener, C., Katz, Y.: Belief Base Revision for Expressive Description Logics.

OWLED (2006)

11. Hartung, M., Kirsten, T., Rahm, E.: Analyzing the Evolution of Life Science Ontologies and

Mappings. Proceedings of the 5th international workshop on Data Integration in the Life

Sciences. Springer-Verlag, Evry, France (2008)

12. Heflin, J., Hendler, J., Luke, S.: Coping with Changing Ontologies in a Distributed

Environment. In Proceedings of AAAI-99 Workshop on Ontology Management. Press

(1999) 74-79

13. Klein, M.: Combining and relating ontologies:an analysis of problems and solutions. IJCAI

(2001)

14. Konstantinidis, G., Flouris, G., Antoniou, G., Christophides, V.: Ontology Evolution: A

Framework and its Application to RDF. Proceedings of the Joint ODBIS & SWDB

Workshop on Semantic Web, Ontologies, Databases (SWDB-ODBIS-07) (2007)

15. Konstantinou, N., Spanos, D.-E., Mitrou, N.: Ontology and database mapping: A survey of

current implementations and future directions. Journal of Web Engineering 7 (2008) 1-24

16. Lee, A.J., Nica, A., Rundensteiner, E.A.: The EVE Approach: View Synchronization in

Dynamic Distributed Environments. IEEE Trans. on Knowl. and Data Eng. 14 (2002) 931-

954

17. Madhavan, J., Halevy, A.Y.: Composing mappings among data sources. Proceedings of the

29th international conference on Very large data bases - Volume 29. VLDB Endowment,

Berlin, Germany (2003)

18. Magiridou, M., Sahtouris, S., Christophides, V., Koubarakis, M.: RUL: A Declarative

Update Language for RDF. Fourth International Semantic Web Conference (ISWC'05),

Galway, Ireland (2005) 506-521

19. Martin, L., Anguita, A., Maojo, V., Bonsma, E., Bucur, A.I.D., Vrijnsen, J., Brochhausen,

M., Cocos, C., Stenzhorn, H., Tsiknakis, M., Doerr, M., Kondylakis, H.: Ontology Based

Integration of Distributed and Heterogeneous Data Sources in ACGT. Proceedings of the

First International Conference on Health Informatics(HEALTHINF 2008), Funchal,

Madeira, Portugal (2008) 301-306

20. Mohania, M., Dong, G.: Algorithms for Adapting Materialised Views in Data Warehouses.

CODAS (1996) 309-316

21. Nash, A., Bernstein, P.A., Melnik, S.: Composition of mappings given by embedded

dependencies. ACM Trans. Database Syst. 32 (2007) 4

22. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD Rec. 33

(2004) 65-70

23. Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A Framework for Ontology Evolution in

Collaborative Environments ISWC 2006 (2006) 544-558

24. Noy, N.F., Klein, M.: Ontology evolution: Not the same as schema evolution. Knowledge

and Information Systems, Vol. 6 (2004) 428-440

25. Plessers, P., Troyer, O.D.: Ontology Change Detection Using a Version Log. ISWC-05

(2005) 578-592

26. Ra, Y.-G., Rundensteiner, E.A.: A Transparent Schema-Evolution System Based on Object-

Oriented View Technology. IEEE Trans. on Knowl. and Data Eng. 9 (1997) 600-624

27. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-Driven Ontology Evolution

Management Proceedings of the 13th International Conference on Knowledge Engineering

and Knowledge Management (EKAW-02),, Vol. 2473. Springer-Verlag (2002) 285-300

28. Stojanovic, L., Maedche, A., Stojanovic, N., Studer, R.: Ontology evolution as

reconfiguration-design problem solving. Proceedings of the 2nd international conference on

Knowledge capture. ACM, Sanibel Island, FL, USA (2003)

29. Stojanovic, L., Motik, B.: Ontology Evolution Within Ontology Editors. Proceedings of the

OntoWeb-SIG3 Workshop (2002) 53-62

30. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking Database

Representations of RDF/S Stores. nternational Semantic Web Conference (2005) 685-701

31. Tzitzikas, Y., Kotzinos, D.: (Semantic web) evolution through change logs: problems and

solutions. Proceedings of the 25th conference on Proceedings of the 25th IASTED

International Multi-Conference: artificial intelligence and applications. ACTA Press,

Innsbruck, Austria (2007)

32. Velegrakis, Y., Miller, J., Popa, L.: Preserving mapping consistency under schema changes.

The VLDB Journal 13 (2004) 274-293

33. Velegrakis, Y., Miller, R.J., Mylopoulos, J.: Representing and Querying Data

Transformations. Proceedings of the 21st International Conference on Data Engineering.

IEEE Computer Society (2005)

34. Xuan, D.N., Bellatreche, L., Pierra, G.: A Versioning Management Model for Ontology-

Based Data Warehouses. DaWaK, Poland (2006)

35. Yu, C., Popa, L.: Semantic adaptation of schema mappings when schemas evolve.

Proceedings of the 31st international conference on Very large data bases. VLDB

Endowment, Trondheim, Norway (2005)

36. Zeginis, D., Tzitzikas, Y., Christophides, V.: On the Foundations of Computing Deltas

Between RDF Models. ISWC/ASWC (2007) 637-651

