
Locality-Sensitive Hashing for Massive String-Based
Ontology Matching

Michael Cochez
Department of Mathematical Information Technology

University of Jyväskylä
P.O. Box 35 (Agora)

40014 Jyväskylä, Finland
Email: miselico@jyu.fi

Abstract—This paper reports initial research results related to
the use of locality-sensitive hashing (LSH) for string-based match-
ing of big ontologies. Two ways of transforming the matching
problem into a LSH problem are proposed and experimental
results are reported. The performed experiments show that
using LSH for ontology matching could lead to a very fast
matching process. The quality of the alignment achieved in these
experiments is comparable to state-of-the-art matchers, but much
faster. Further research is needed to find out whether the use of
different metrics or specific hardware would improve the results.

I. INTRODUCTION

When people and organizations create classifications they
will, most of the time, be incompatible with each other. One
way to make these classifications work together is by creating
a mapping between them. This article describes a possible way
to create a mapping between two large ontologies. The problem
when searching for such mapping for really large ontologies
is that their size renders looking at all possible combinations
of concepts cumbersome. The number of candidate pairs
for the ontologies used in the experiments in this paper is
8,171,287,936. If assessing the quality of each pair would
take 1 ms, then one would have to wait roughly three months
before all combinations have been tried. In this paper locality-
sensitive hashing (LSH) will be used to prune the number
of pairs which have to be compared. LSH has been used
earlier in the context of ontologies, for instance by de Paula et
al. [1] who used the LSH technique to group similar concepts
together, mainly aiming at a faster retrieval speed. A recent
article by Duan et al.[2] also uses LSH for the matching
of ontologies. In the article, the authors used LSH to align
ontologies with around 1000 and 300 concepts or types using
instance-based matching. In this article much larger ontologies
with between 66000 and 123000 concepts are considered and
only label information is used as an input for the LSH process.

The article is structured as follows: In the sections II and
III ontology alignment and locality-sensitive hashing are intro-
duced. Section IV contains a short discussion about possible
distance measures for ontologies. Next, section V describes
two strategies for transforming the ontology matching problem
into an LSH problem. The section also contains a description
of the implementation which is used for the evaluation in
section VI. The results are compared with state-of-the-art
systems and further research directions are suggested in section
VII, after which a short conclusion is drawn.

II. ONTOLOGY ALIGNMENT

According to Gruber [3], ontologies are ‘an explicit speci-
fication of a conceptualization”. If we now have two different
specifications, i.e., ontologies, we might need to find out
how the concepts described in the one ontology O1 relate
to the concepts described in second ontology O2. After these
relations have been found, we are able to translate instances
described in the one ontology to the other ontology. This
further enables us to answer queries asked using vocabulary
from either ontology using data from both ontologies. A set of
relations between the concepts of the two ontologies are called
an alignment, which is formalized as follows:

Given an ontology Oleft with matchable entities
QL (Oleft) and an ontology Oright with matchable entities
QL (Oright), an alignment A is a set of triples (l, r, rel) with
l ∈ QL (Oleft), r ∈ QL (Oright) and rel ∈ {=,v,w}. One
such triple is sometimes called a correspondence. The meaning
of a triple is that the concept l is related to the concept r by
relation rel, where = means that the concepts are equal, v that
l is less general as r, and w that l is more general as r. This
definition is an instantiation of the more abstract definition
given by Euzenat and Shvaiko in [4].

When assessing an alignment, one often uses a so called
gold standard. This is an alignment which is considered
correct and used for evaluation of other alignments. Typical
measures to assess the quality of an alignment with regard
to this standard are precision and recall [5]. Precision is a
measure which indicates how correct the resulting mapping is,
while recall measures how many mappings are missing. These
measures are often unified in the so called F-measure, which is
the harmonic mean of precision and recall. For the remaining
of this article we will, for clarity, distinguish between the left
and right ontologies with l and r concepts respectively. When
ontologies are matched, it is of no importance which one to
choose as left and right.1

1As will be shown in section V, one can optimize the storage space
needed if the ontology with less concepts is taken as the left ontology. The
amount of signatures is linear with the size of the ontologies and only the
ones for the left ontology have to be stored in memory all at once. However,
the signatures are much smaller as the actual ontologies and hence the gain
of switching the ontologies is not significant on modern hardware. In order to
show the robustness of the system, the biggest ontology is chosen as the left
one for the experiments.

III. LOCALITY SENSITIVE HASHING

Locality-sensitive hashing (LSH) was first introduces by
Indyk et al.[6] as a method for finding approximate nearest
neighbors, given a distance measure, d, and a threshold for the
error, ε. The method first selects a number of hash functions
for which the probability of a collision is high if the hashed
objects are similar. If objects are dissimilar, the hash functions
are very likely to hash them to separate buckets. Now, to find
near-neighbors of a query point, one hashes that point with
each of the hash functions and returns the elements stored in
the buckets the point gets hashed to.[7]

Concrete, to apply LSH we need a family H of hash
functions which map from a space D to a universe U .

Let d1 < d2 be distances according to a distance measure
d on a space D. The family H is (d1, d2, p1, p2)-sensitive if
for any two points p, q ∈ D and h ∈ H:

• if d (p, q) ≤ d1 then Pr [h (p) = h (q)] ≥ p1
• if d (p, q) ≥ d2 then Pr [h (p) = h (q)] ≤ p2

where p1 > p2.

Using one function from H to decide whether points are
likely similar is not enough since the probabilities p1 and p2
might be close to each other. In LSH this problem is solved
using amplification. This amplification is done by creating
b functions gj , each consisting of r hash functions chosen
uniformly at random from H. The names b and r stand for
bands and rows. If one puts all outcomes of the hash functions
of all gj in a two-dimensional table, it can be split in b bands
each consisting of r rows. A function gj only maps points p
and q to the same bucket if all hash functions it is build from
hash the points to the same buckets. If for any j, the function gj
maps p and q to the same bucket, p and q are considered close.
Notice that the amplification also creates itself a locality sensi-
tive family which is

(
d1, d2, 1− (1− p1r)b , 1− (1− p2r)b

)
sensitive.

A very accessible introduction to LSH can be found
from [8]. Some notations used in this section are borrowed
from that book.

IV. DISTANCE MEASURES FOR SIMILAR CONCEPTS

Several metrics introduced for concept distance work only
when both concepts reside in the same ontology. Examples
of these include metrics which measure the minimal path
between concepts, shortest path in a is-a hierarchy, and depth
with respect to a common subsumer. [9] For measuring dis-
tance between concepts from different ontologies, we can
use information which is related to the concepts in their
respective ontologies. The ways of comparing concepts found
in the literature can be classified in three groups [4], namely
matching using information available in labels and names of
the concepts, using structural information or using information
from instances defined using the ontology. These different
ways can be used either in isolation or combined. In the scope
of this article, only information available in labels will be used
(see section V-A).

V. LSH FOR ONTOLOGY ALIGNMENT

When we regard ontology alignment as a nearest-neighbor
problem, we can consider all concepts of the left ontology as
being the collection of points from which we query. Subse-
quently, each point of the right ontology can then be seen as a
query point for which we try to find a close match. When we
query for nearest neighbors for each concept cr from the right
ontology, we will get a set of concepts from the left ontology
which are likely similar to cr. This likelihood is depending on
the distance metric associate with the locality-sensitive family
H and the values of r and b.

A. Distance Metric

For our experiment, the Jaccard similarity for sets was used.
Using this metric, the similarity between two sets A,B ⊆ S is
measured as sim (A,B) = |A∩B|

|A∪B| . The corresponding Jaccard
distance measure is d (A,B) = 1− sim (A,B).

There are two aspects to be considered before this metric
can be used for LSH. Firstly, we need to find a family
of locality-sensitive functions with respect to this distance.
Secondly, we start from concepts in an ontology and hence
we need to transform the concepts into sets between which
the Jaccard similarity can be measured.

The first task has been solved by Broder [10] using
the LSH family called min-hash. First, a random permu-
tation π of the universe S is chosen. Then, the hash
function is defined as hπ (A) = min {π (a) |a ∈ A}. Us-
ing this definition, the probability of a collision becomes
Prπ [hπ (A) = hπ (B)] = sim (A,B). Therefore, we end
up with a (d1, d2, 1− d1, 1− d2) sensitive family of hash
functions.

For the second task a strategy inspired by Duan et al.[2]
is used. The authors propose to use a document consisting of
the concatenation of all the values of the rdfs:label property of
all instances of the concept. This document is then processed
and all terms are extracted. The distance is then defined as the
Jaccard distance between the term sets of concepts.

In this article, however, no instance information is used.
Hence, there is a need to develop novel strategies for measur-
ing the distance between concepts only based on their label
information. Two strategies were developed and used in the
experiments below.

The first strategy involves the computation of the so-called
n-grams of each label of each class. The set representing
a concept is then taken as the union of all n-grams of the
lowercased labels of the class. Now, the distance between
two classes is defined as the Jaccard distance between these
shingle-sets and hence min-hashing and LSH can be used.

The second strategy does not unite the labels of the class.
Instead, for each class multiple sets are created, one for each
label of the class. The labels are converted into sets as follows.
First, the label is lowercased and split on whitespace or other
punctuation marks. Next, if this operation created substrings of
length 1, they will be merged back to the substring which come
before it. All substrings of length 1 which could not be merged
back, are removed. Finally, the concept is represented in the
system as many times as it has labels. Each representation uses
a set of the generated substrings to represent the class.

B. Implementation

The implementation used for our evaluation is programmed
in Java and heavily uses parallelism to speed up the compu-
tation. From the description of the LSH algorithm, it can be
noticed that the hashing of the concepts happens independent
of each other. Therefore, they can be computed in parallel
using a multi-processor system. Also multiple queries for
nearest neighbors for the concepts of the right ontology can
happen at the same time.

Inspired by [8], normal uniform hashing was used several
times to speed up computations or save on storage space.
Firstly, shingles are not stored as sequences of characters, but
hashed down to a lower dimensional space so that they would
occupy less space and compare faster. Secondly, the creating of
permutations of S is avoided (which would be computationally
unacceptably expensive). So, instead of creating a real permu-
tation random (non locality-sensitive) hash functions are used
which map each original index to a target index. The last place
were normal random hashing is used to speed up computations
is during the query phase. The elements of the signature of a
concept in the same band are hashed to a single value. This
hashing is performed using Rabin fingerprints as described by
Broder [11].

VI. EVALUATION

The proposed strategies are evaluated by conducting var-
ious experiments. The conducted experiments have several
parameters. There are the datasets which are described in
section VI-A and then there are the parameters used for the
LSH algorithm. These parameters are the number of rows r
and the number of bands b. For the first strategy, there is also
the shingle size.

There are several things which are interesting to measure.
First, it is possible to see how many distinct shingles the
concepts of the ontologies contain and the time needed to do
the pre-processing. Then there is the time needed to calculate
the min-hash signatures from the shingle sets. And finally the
time needed to query the left signatures for concepts similar
to the right signatures. After the experiment, the proposed
mapping can be obtained and its quality evaluated. This quality
can be evaluated by comparing its performance to (i) a random
algorithm and (ii) a hypothetical perfect one, i.e., a gold
standard.

For the random algorithm, the same number of pairs which
the proposed algorithm produces are randomly selected and all
of them are considered positives. Then the precision and the
recall of this algorithm are calculated. The performance of
the random algorithm can be predicted from the number of
positives n, the size of the left ontology l, the size of the right
ontology r, and the number of alignments in the reference
alignment a. The expected values for the performance of
the random algorithm can be found in table I. It is clear
from the formulas that if l ∗ r is large compared to a, the
random algorithm will have a very bad performance. Since
our ontologies are large and our alignment relatively small, the
random approach will produce results for which the precision
and recall are very close to zero. Therefore there will be no
literal comparison to this algorithm, but it should be noted that

if a correct correspondence is obtained, it is very unlikely that
it was created by coincidence.

The perfect algorithm is hypothetical and produces only
true positives and hence has a precision of 1 and a recall of 1.
In practice, this algorithm just uses the reference alignment to
generate pairs. Comparing with the reference alignment gives
an evaluation for the whole procedure.

A. Datasets

The datasets used in the evaluation are taken from the
Large Biomed Track of the Ontology Alignment Evaluation
initiative2. The first dataset is the FMA ontology3, which
contains 78,989 classes, the second is the NCI ontology4 con-
taining 66,724 classes, and finally a fragment of the SNOMED
ontology5 which contains 122,464 classes. This choice of
datasets is mainly to make comparison of matching systems
possible. The FMA ontology only contains classes and non-
hierarchical datatype properties, i.e., no object or datatype
properties nor instances. The NCI ontology contains classes,
non-hierarchical datatype and hierarchical object properties.
The classes of all ontologies are structured in a tree using
owl:SubClassOf relations. As a gold standard, the UMLS-
based reference alignments as prepared for OAEI 20136 are
used. Only the equal correspondences are retained and all
confidence levels are considered one.

B. Experiments

The first two experiments are concerned with the first
proposed strategy. Since the strategy has a n-gram size, an
attempt is made to find out how the n-gram size affects the
quality and speed of the algorithm. Therefore, a fixed number
of bands (20) and rows (24) is chosen and the algorithm is
run for n between 1 and 20. Then graphs are created which
relate the n-gram size with the different timings and the result
quality indicators.

In the second experiment, a fixed shingle size (6) is used
and different values for the number of bands b and rows r are
tried. To keep these comparable, it is ensured that b∗ r = 480.
The number 480 is chosen because it has many divisors and it
complies with the ‘several hundred permutations’ as proposed
in [8]. Also these experiments are graphed and discussed.

The third experiment evaluates the second proposed strat-
egy. This strategy does only have the bands and rows param-
eters and hence only one series of experiments is conducted.
The experiment is essentially the same as the second one.

To keep these experiments comparable, the NCI ontology
and SNOMED fragment are used in all experiments. The
experiments are executed on a OpenJDK 64-Bit Server VM.
The Java VM runs on hardware with two Intel Xeon E5-2670
processors (totaling 16 multi-threaded cores).

2http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2013/
3http://sig.biostr.washington.edu/projects/fm/
4http://www.obofoundry.org/cgi-bin/detail.cgi?id=ncithesaurus
5http://www.ihtsdo.org/index.php?id=545
6http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2013/oaei2013 umls

reference.html

TABLE I. EXPECTED VALUES FOR THE RANDOM ALGORITHM. CONCRETE VALUES ARE CALCULATED USING VALUES FROM SECTION VI-A FOR THE
NCI AND FMA ONTOLOGIES, USING n = 10000.

TRUE FALSE

Positive n
l∗r ∗ a= 0.00548 n ∗ (1− (a

l∗r))= 9999.99451

Negative (l ∗ r − a) ∗
(
1− n

l∗r
)
= 5270449146 a ∗

(
1− n

l∗r
)
= 2889.99451

Precision u 5.48 ∗ 10−7 Recall u 1.90 ∗ 10−6

C. Results

The results of the first experiments are shown in the charts
in figs. 1 to 3. The first chart shows, in function of the n-gram
size, the number of distinct shingles created from the labels, the
number of unique shingle concept pairs and the time needed
to calculate the shingles. From the graph it can be noted that
the longer the n-grams are, the faster they are found. This is
as expected since, given a fixed string, the number of n-grams
is lower for a larger n. Further, the longer the shingles are, the
more distinct shingles are found. This is again not surprising
since there are more possible shingles when they can be longer.
Finally, the Shingle to concept mapping indicates that there are
less shingles found overall.

Fig. 1. Number of distinct shingles, shingle to concept mappings and
shingling time in function of the n-gram size

The second chart shows the time needed for the different
parts of the algorithm where the calculation of the signature
of the query points is included in the signature calculation
time. The signature calculation is very fast, and very similar
for the different n-gram sizes. There were a couple of calcu-
lations which took slightly longer, but a clear pattern was not
found. The pre-processing is slower for smaller n-gram sizes
since there are more shingles to be calculated. The first two
measurements for nearest-neighbor querying are clearly not
correct. They will be discussed further in the next paragraph.
Besides these two, the calculation of the nearest neighbors is
faster when there are larger shingles. This can be explained by
the fact that there are less shingle to concept mappings.

From the third and last chart it can be seen that, all in
all, the size of the shingles does not affect the quality much.
Both precision and recall are more or less constant. When
looking carefully, it is seen that recall and hence the F-measure
decrease slightly. This is explained by the fact that when the
shingles are short, there will be a larger fraction of the true
positive pairs which gets tested by coincidence. In both the
second and third figure, it was clear that n-grams of size

Fig. 2. The time for the various parts of the LSH process in function of the
n-gram size.

one and two did not perform normal. The reason for this are
the Rabin fingerprints, which do not work well for too small
inputs.

Fig. 3. The precision, recall and F-measure in function of the n-gram size.

For the second experiment, with fixed shingle size, the
results are shown in figs. 4 to 6. The pre-processing is not
included in the graph since it happens before the number of
rows and bands are chosen and is hence not affected by this
choice. The signature calculation seems independent of the
number of bands. This is as expected since the amount of
signatures to be calculated is dependent on the product of r
and b and hence constant. There does not seem to be a clear
patter in the behavior of the nearest neighbor calculation time.
In future research the behavior of this curve could be further
investigated.

The next figure (fig. 5) shows the fraction of true positive
and false positive results. As can be seen from the chart, the
more bands in use, and hence the fewer rows per band, the
more false positives are generated. The reason for this behavior
is that reducing the amount of rows per band causes more pairs
to be generated. From a theoretical point of view, one can see

Fig. 4. The time for signature calculation and nearest neighbor querying in
function of the number of rows per band. Note the logarithmic scale.

that if there is a chance p to find a match within 1 row, then
there will be a pr chance to find a match in r rows. Hence, if
there are x rows, the chance will be px, while with x/2 rows
this will be px/2 =

√
px.

The last graph of this experiment (fig. 6) indicates the
precision, recall and F-measure for each band size. This
graph shows that the precision goes down when less rows are
required to agree, i.e., the band size is smaller. It, however, also
indicates that overall more correct pairs are found, which is
seen from the bigger recall for smaller bands. These observa-
tions correspond to the expectation described in the paragraph
above.

Fig. 5. The fractions of true and false positives in function of the number
of rows per band.

Fig. 6. The precision, recall and F-measure quality indicators in function of
the number of rows per band.

The third experiment uses the second strategy where each
concept is represented in the system as many times as it
has labels. In this experiment the ontologies, with 66,724
and 122,464 classes, are expanded to 122,508 and 179,238
representations respectively. The results of this approach seem
promising and are illustrated in figs. 7 to 9. As in the previous
experiment, the signature calculation (fig. 7) is fairly constant.

When comparing the signature calculation time between this
and the previous experiment, it can be noted that calculating
the signatures is only very slightly slower. The average speed
for the previous experiment was 929ms as compared to an
average of 1135 ms in this experiment. As discussed in the
previous experiment, there is no clear pattern in the behavior
of the nearest neighbor query time. The clearly outlying
measurement for the one big band of 480 rows is caused by the
fact that the current implementation is not able to parallelize
the neighbor querying.

Fig. 7. The time for signature calculation and nearest neighbor querying in
function of the number of rows per band. Note the logarithmic scale.

fig. 8 shows the fraction of true and false positives. When
comparing to fig. 5 from the previous experiment, there are
relatively more false positives. From fig. 9 it can be seen that
the false positives are the price which one has to pay to get
a much higher recall as in the previous experiment. Because
of the larger recall and the only marginally worse precision a
much higher value for the F-measure is obtained.

Fig. 8. The fractions of true and false positives in function of the number
of rows per band.

Fig. 9. The precision, recall and F-measure quality indicators in function of
the number of rows per band.

VII. DISCUSSION AND FUTURE WORK

The information from the ontology used by this system
is fairly limited. Only the label information is retained and

all relational information about the classes is ignored. Further,
information about object or datatype properties is not incorpo-
rated, nor are instances used to enrich the matching. Hence,
one can not expect that the system could perform comparably
to other, more advanced, matching systems. However, when
comparing our findings to the systems used in the 2013 Large
BioMed Track of the OAEI7, it seems that the second strategy
performs fairly well. The best result was obtained when using
1 band with 480 rows. The concrete result was a precision of
0.842 and a recall of 0.535 leading to an F-measure of 0.654.
When comparing with ServOMap, the best system which
performed this experiment in the evaluation, we find an F-
measure 10% higher as our result. This is significant, moreover
because also the confidence levels are taken into account for
the ServOMap system. The price for this improvement is a
runtime of 6320 seconds, roughly 300 times longer than our
system, which gave a result after 21.5 seconds. When looking
at the fastest matching system, the LogMapLt system is the
fastest in the evaluation with a runtime of that system is 132
second or about 6 times slower the proposed system. Also, the
LogMapLt system scores somewhat worse when comparing
to the second strategy proposed in this paper, but again the
LogMapLt figures include the confidence levels.

Obviously, it is not fair to pick the best result for our
system and compare it with one of the results of the other
systems. Therefore, the same strategy was applied to the two
other combinations which were used in the evaluation, namely
a matching of the SNOMED with the FMA ontology and the
NCI with the FMA ontology. Further, also smaller subsets of
these ontologies were tested to obtain results which can be
compared with the top systems in the evaluation8. The results
of these experiments are summarized in table II.

When comparing the summary of the results for precision,
recall and F-measure with those of the top systems in the eval-
uation, the proposed system ranks at the lower end. Concretely,
in terms of precision, recall and F-measure the system ranks
right after LogMapLt [12] whose results are also included in
table II. When the speed of matching is observed, however, the
proposed system is much faster than the other systems. The
LogMapLt system was the fastest and completed within 371
seconds. The proposed system needs 54.3 seconds to complete
the six tasks and is hence 6.8 times faster. The table also
includes the results for the best system in the competition, the
YAM++ system [13], which scores much better with regard
to precision, recall and hence F-measure. However, to obtain
these results the YAM++ system needs 2066 seconds, which
is roughly 40 times more than the proposed system.

When a matcher produces a mapping between two on-
tologies, the mapping might be incoherent, i.e., the mapping
combined with the original ontologies entails axioms that
do not follow from the ontologies or the mapping. Several
systems, including the YAM++ system, perform a mapping
repair operation which attempts to remove a small set of
mappings in order to make the resulting mapping coherent.
The proposed system does not perform any checking on the
results and therefore the coherence of a proposed mapping

7http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2013/results2013
snomed2nci.html

8http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2013/results2013 top.
html

TABLE II. RESULTS OF APPLYING THE SECOND STRATEGY USING
480 ROWS IN 1 BAND ON PAIRS OF DATASETS USED IN THE 2013

LARGE BIOMED TRACK OF THE OAEI.

Time (s) Precision Recall F-measure

Task 1: FMA-NCI small frag-
ments

1.6 0.937 0.802 0.864

Task 2: FMA-NCI whole on-
tologies

12.6 0.641 0.800 0.712

Task 3: FMA-SNOMED
small fragments

2.0 0.954 0.187 0.313

Task 4: FMA whole ontology
with SNOMED large frag-
ment

11.4 0.893 0.187 0.310

Task 5: SNOMED-NCI small
fragments

5.2 0.935 0.535 0.680

Task 6: NCI whole ontology
with SNOMED large frag-
ment

21.5 0.842 0.535 0.654

Summary 54.3 0.867 0.508 0.589

Summary for the LogMapLt
system

371. 0.874 0.517 0.598

Summary for the YAM++ sys-
tem

2066. 0.942 0.728 0.817

notes: The times measured do not include the class loading of the Java virtual
machine which occurs once only. When an experiment is repeated, its run-time is
roughly 0.8 seconds shorter. The shorter time is reported.
The summary of the time is the sum of the run-times of the experiments, other
reported figures are averages. This summarization enables a comparison with the
top systems at the OAEI 2013 Large BioMed Track which is also the source for
the results of the other systems8. Note that the results for LogMapLt and YAM++
account for confidence levels while the proposed system does not.

will be dependent only on the similarity of the labels of the
ontologies and the number of violating mappings this causes.

The results of the proposed system are promising, espe-
cially using the second strategy the proposed system is able
to find a mapping of reasonable quality very fast. Further
experimenting should point out whether the strategy is useful
for a broader set of ontology matching problems. The continu-
ing fight between efficiency versus effectiveness been broadly
discussed by Ermolayev et al. [14]. What this means in practice
is that if one wants to find solutions faster, one will have to
give up quality, and if one wants better results, one will have
to wait for them. Obviously, it would be possible to build a
hybrid system which would first provide a very fast result and
then present corrections after some time.

There are still many aspect of using locality-sensitive hash-
ing for ontology matching which should be researched. Firstly,
one could try to fit different metrics and their accompanying
locality-sensitive families to the ontology matching problem.
This could be the cosine distance and the random hyperplane
hash as was tried in [2] for instance-based matching, but also
other distance metrics and ways of fitting them to the problem
could be tried.

Secondly, there is the issue of finding good parameters
for the signature calculation and its banding. We refrain from
making any conclusions about good parameters since our
sample is too small. More alignment problems should be tried
and perhaps a set of good parameters can be found. Another
approach could be the use of LSH forests as proposed in [15].
The use of LSH forests removes the need of specifying the
parameters, but seems to be more difficult to parallelize.

Thirdly, it would be interesting to see how the system
which was used in this paper would work on different hard-
ware. Since the computation can be performed in parallel, it
might be possible to create a version which can be executed
on GPUs which would enable a tremendous parallelization for
a reasonable price.

Lastly, it seems reasonable and possible to use multiple
LSH processes at the same time and only retain those pairs
which are selected by a certain number of processes. These
processes can each use a different LSH strategy and work
completely in parallel. It is also possible to create a weighted
sum of the processes and if the sum reaches a certain threshold,
the pair will be proposed as a solution. This weighted sum
would be subject to an on-line optimization process which
could perhaps be solved using some form of evolutionary
computing.

VIII. CONCLUSIONS

In this paper an effort was made to solve the problem of
matching two ontologies by applying locality-sensitive hash-
ing. Overall, a string-based alignment was performed where
label information of the classes was used to create the align-
ment. In a first strategy, this label information was shingled
and each of the shingle sets was merged to form one big set
representing the class. A second strategy represented each class
multiple times in the system, each time with a set containing
tokens from a label of the class. These representations were
then used as an input to min-wise hashing. This hashing
results in signatures which were in turn combined to form an
amplified locality-sensitive family of functions. Finally, the one
ontology was used as pool of potentially close concepts, and
each concept of the other ontology was queried from it. The
collection of close matches were reported as correspondences
of the matching task.

Three experiments were conducted. In the first one the
first strategy was used and different shingle sizes were tried,
while keeping the parameters for the amplification constant.
The second experiment, also using the first strategy, varies the
amplification parameters and keeps the shingle size constant
instead. In the final experiment, the second strategy was used
in what was further a copy of the second experiment. The
results of these experiments were promising. We can draw the
conclusion that it is feasible to perform a matching using LSH
with a relatively high speed. The second strategy seemed to
work better than the first one and its quality was reasonable,
often on par with state-of-the-art matching systems. Systems
which produce better results are always slower, sometimes
even very much so.

This is still initial research and there are still many aspects
of this approach which should be investigated, like the use of
other metrics, the selection of parameters, using other hardware
solutions, or using multiple instances of an LSH matching
process at the same time. Further, the second strategy should be
tried on more ontology matching problems to prove its general
applicability.

ACKNOWLEDGMENTS

The author would like to thank the department of Mathe-
matical Information Technology of the University of Jyväskylä

for financially supporting this research. This research is also
in part financed by the Need4Speed SHOK organized by the
Strategic Centre for Science, Technology and Innovation in
the Field of ICT (Digile Oy) and financially supported by
the Finnish Funding Agency for Technology and Innovation
(TEKES). The author would further like to thank the Steeri Oy
for supporting the Fast Stakeholder Issue Finder business case
and the members of the Industrial Ontologies Group (IOG) of
the university of Jyväskylä for their support in the research.
Further, it has to be mentioned that the implementation of the
software was greatly simplified by the Guava library by Google
and the Rabin hash library by Ian Brandt.

REFERENCES

[1] L. B. de Paula, R. S. Villaça, and M. F. Magalhaes, “A locality sensitive
hashing approach for conceptual classification,” in Semantic Computing
(ICSC), 2010 IEEE Fourth International Conference on. IEEE, 2010,
pp. 408–413.

[2] S. Duan, A. Fokoue, O. Hassanzadeh, A. Kementsietsidis, K. Srinivas,
and M. J. Ward, “Instance-based matching of large ontologies using
locality-sensitive hashing,” in The Semantic Web–ISWC 2012. Springer,
2012, pp. 49–64.

[3] T. R. Gruber, “Toward principles for the design of ontologies used
for knowledge sharing?” International Journal of Human-Computer
Studies, vol. 43, no. 5–6, pp. 907 – 928, 1995. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1071581985710816

[4] J. Euzenat, P. Shvaiko et al., Ontology matching. Springer, 2007,
vol. 18.

[5] H.-H. Do, S. Melnik, and E. Rahm, “Comparison of schema matching
evaluations,” in Web, Web-Services, and Database Systems, ser. Lecture
Notes in Computer Science, A. Chaudhri, M. Jeckle, E. Rahm, and
R. Unland, Eds. Springer Berlin Heidelberg, 2003, vol. 2593, pp. 221–
237. [Online]. Available: http://dx.doi.org/10.1007/3-540-36560-5 17

[6] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing. ACM, 1998, pp.
604–613.

[7] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” Commun. ACM,
vol. 51, no. 1, pp. 117–122, Jan. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1327452.1327494

[8] A. Rajaraman and J. D. Ullman, Mining of massive datasets.
Cambridge University Press, 2012, ch. 3. Finding Similar Items,
pp. 71–128. [Online]. Available: http://infolab.stanford.edu/∼ullman/
mmds.html

[9] V. Cordı, P. Lombardi, M. Martelli, and V. Mascardi, “An ontology-
based similarity between sets of concepts,” Proceedings of WOA, Italy,
pp. 16–21, 2005.

[10] A. Z. Broder, “On the resemblance and containment of documents,” in
Compression and Complexity of Sequences 1997. Proceedings. IEEE,
1997, pp. 21–29.

[11] A. Broder, “Some applications of rabin’s fingerprinting method,”
in Sequences II, R. Capocelli, A. Santis, and U. Vaccaro, Eds.
Springer New York, 1993, pp. 143–152. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4613-9323-8 11

[12] E. Jiménez-Ruiz, B. C. Grau, and I. Horrocks, “Logmap and logmaplt
results for oaei 2013,” in Proceedings of the 8th International Workshop
on Ontology Matching, 2013, pp. 131–138.

[13] D. Ngo and Z. Bellahsene, “Yam++ results for oaei 2013,” in Proceed-
ings of the 8th International Workshop on Ontology Matching, 2013,
pp. 211–218.

[14] V. Ermolayev, R. Akerkar, V. Terziyan, and M. Cochez, Big Data
Computing. Taylor & Francis group - Chapman and Hall/CRC,
2014, ch. Towards Evolving Knowledge Ecosystems for Big Data
Understanding.

[15] M. Bawa, T. Condie, and P. Ganesan, “Lsh forest: self-tuning indexes for
similarity search,” in Proceedings of the 14th international conference
on World Wide Web. ACM, 2005, pp. 651–660.

