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Abstract

Current schema matching approaches still have to improve for large and complex Schemas. The large search space

increases the likelihood for false matches as well as execution times. Further difficulties for Schema matching are posed by

the high expressive power and versatility of modern schema languages, in particular user-defined types and classes,

component reuse capabilities, and support for distributed schemas and namespaces. To better assist the user in matching

complex schemas, we have developed a new generic schema matching tool, COMA++, providing a library of individual

matchers and a flexible infrastructure to combine the matchers and refine their results. Different match strategies can be

applied including a new scalable approach to identify context-dependent correspondences between schemas with shared

elements and a fragment-based match approach which decomposes a large match task into smaller tasks. We conducted a

comprehensive evaluation of the match strategies using large e-Business standard schemas. Besides providing helpful

insights for future match implementations, the evaluation demonstrated the practicability of our system for matching large

schemas.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Schema matching aims at identifying semantic
correspondences between two schemas, such as
database schemas, XML message formats, and
ontologies. Solving such match problems is of key
importance to service interoperability and data
integration in numerous application domains. To
reduce the manual effort required, many techniques
e front matter r 2006 Elsevier B.V. All rights reserved
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and prototypes have been developed to semi-
automatically solve the match problem [1–5]. They
exploit a wide range of information, such as schema
characteristics (i.e. metadata, like element names,
data types, and structural properties), characteris-
tics of data instances, as well as background
knowledge from dictionaries and thesauri.

Proposed match approaches were typically ap-
plied to some test schemas for which they could
automatically determine most correspondences. As
surveyed in [1], most test schemas were structurally
rather simple and of small size of 50–100 elements.
Unfortunately, the effectiveness of automatic match
techniques typically decreases for larger schemas [6].
In particular, matching the complete input schemas
.
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may lead not only to long execution times, but also
poor quality due to the large search space. More-
over, it is difficult to present the match result to a
human engineer in a way that she can easily validate
and correct it.

Modern schema languages, e.g. W3C XML
Schema and the new object-relational SQL versions
(SQL:1999, SQL:2003), support advanced modeling
capabilities, such as user-defined types and classes,
aggregation and generalization, and component
reuse, leading to additional complication for schema
matching. In particular, the same complex types or
substructures (e.g., for address, contact informa-
tion, etc.) may occur many times in a schema with a
context-dependent semantics. Such shared elements
require special treatment to avoid an explosion of
the search space and to effectively deal with n:m
match cardinalities. Distributed schemas and name-
spaces, as supported by W3C XML Schema, also
have not been considered in current match systems
but schemas are assumed to be monolithic.

To better assist the user in matching large
schemas, we have developed a new customizable
generic matching system, COMA++, which is
described in this paper. It is built upon our previous
COMA prototype [6] and takes over its composite
match approach to combine different match algo-
rithms. COMA++ is fully operational [7]1 and
provides major improvements over previous work:
�

1

fro
We have developed a new approach to import
complex schemas written in W3C XML Schema
definition language and other languages with
similar modeling capabilities. Structural conflicts
due to alternative modeling methods in input
schemas are detected and unified in our internal
directed graph representation. Our approach is
able to deal with large schemas distributed over
many documents and namespaces.

�
 COMA++ extends COMA with a flexible

infrastructure to construct more powerful match-

ers by combining existing ones and to refine
previously determined match results. We are
able to construct match strategies as workflows
to divide and solve complex match tasks in
multiple stages of successive refinement. The
implementation of matchers has been optimized
to achieve fast execution times for large match
problems.
The latest implementation of COMA++ can be downloaded

m http://dbs.uni-leipzig.de.
�
 We address the problem of context-dependent

matching, which is important for schemas with
shared elements. Our new context-dependent
match approach can also scale to very large
schemas.

�
 To better support user interaction and to

improve performance in matching large schemas,
we have implemented the fragment-based match

approach proposed in [8]. Following the divide-
and-conquer idea, it decomposes a large match
problem into smaller sub-problems by matching
at the level of schema fragments. As a first step,
we support three static fragment types.

�
 Due to the flexibility to customize matchers and

match strategies, our system can also be used as a
platform for comparative evaluation of different
match approaches. We performed a comprehensive

evaluation based on large real-world schemas to
demonstrate the practicability of our system. We
analyze the quality and execution time of different
match strategies and the impact of many factors,
such as schema size, the choice of matchers, and of
combination strategies. The resulting insights
should be helpful for the development and
evaluation of future match systems.

The rest of the paper is organized as follows: The
next section gives an overview of our system.
Section 3 presents the approach to import external
Schemas and unify conflicts due to alternative
modeling methods. Section 4 describes how indivi-
dual match algorithms can be combined and which
matchers are currently supported. Section 5 presents
our approach to refine previously determined
match results and to construct match strategies,
especially for context-dependent and fragment-
based matching. The evaluation is described in
Section 6. Section 7 reviews recent related work.
Finally, we conclude and discuss future work in
Section 8.

2. System overview

Fig. 1a shows the architecture of COMA++. It
consists of five components, the Repository to
persistently store match-related data, the Schema

and Mapping Pools to manage schemas and map-
pings in memory, the Match Customizer to config-
ure matchers and match strategies, and the
Execution Engine to execute match operations. All
components are managed and used through an
integrated graphical user interface (GUI). Given

http://dbs.uni-leipzig.de
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Fig. 1. System architecture and sample input/output (Schemas/mappings) of a match operation. (a) System architecture and (b) sample

schemas and mapping.
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that no fully automatic solution is possible, we
allow the match process to be interactively influ-
enced in many ways, i.e. before match to configure a
match strategy, during match for iterative refine-
ment, as well as after match to manipulate the
obtained match results.

The repository centrally stores various types of
data related with match processing, in particular: (a)
imported schemas; (b) produced mappings; (c)
auxiliary information such as domain-specific taxo-
nomies and synonym tables; and (d) the definition
and configuration of matchers and match strategies.
As illustrated in Fig. 1b, schemas are uniformly
represented by directed acyclic graphs as the
internal format for matching. The Schema Pool
provides different functions to import external
schemas and to load and save them from/to the
repository. Currently, we support XML Schema
definition (XSD), XML data reduced (XDR),
relational schemas via open database connectivity
(ODBC), and Web ontology language (OWL).
From the Schema Pool, two arbitrary schemas can
be selected to start a match operation.

The match operation is performed in the Execu-
tion Engine according to a match strategy config-
ured in the Match Customizer. As indicated in
Fig. 1a, it is based on iterating three steps, element

identification to determine the relevant schema
elements for matching, matcher execution applying
multiple matchers to compute the element simila-
rities, and similarity combination to combine
matcher-specific similarities and derive a mapping
with the best correspondences between the elements.
The obtained mapping can in turn be used as input
in the next iteration for further refinement. Each
iteration can be individually configured by the
Match Customizer, in particular, w.r.t. the types
of elements to be considered, the choice of matchers,
and the strategies for similarity combination (see
Section 4).

Using this infrastructure, match processing is
supported as a workflow of several steps of matcher
combination and mapping refinement. For large
schemas, we implemented specific workflows (i.e.
strategies) for context-dependent and fragment-
based matching. We shortly introduce these match
strategies, which will be discussed in detail in
Section 5:
�
 Context-dependent matching: Shared schema ele-
ments exhibit multiple contexts which should be
differentiated for a correct matching. In Fig. 1b,
Address of S2 is a shared element with two
contexts, DeliverTo.Address and BillTo.Address.
In addition to a simple NoContext strategy, i.e.
no consideration of element contexts, we support
two context-sensitive strategies, AllContext and
FilteredContext. AllContext identifies and
matches all contexts by considering for a shared
element all paths (sequences of nodes) from the
root to the element. Unfortunately, this strategy
turns out to be expensive and impractical for
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large schemas with many shared elements due to
the explosion of the search space. Therefore, we
devised the FilteredContext strategy, which per-
forms matching in two steps and restricts context
evaluation to the most similar nodes.

�
 Fragment-based matching: In a match task with

large schemas, it is likely that large portions of
one or both input schemas have no matching
counterparts. Hence, we have implemented the
fragment-based matching idea proposed in [8]. It
decomposes schemas into several smaller frag-
ments and only matches the fragment pairs with
a high similarity. In addition to user-selected
fragments, we currently support three static
fragment types, Schema, Subschema, Shared,
considering the complete schema, single subsche-
mas (e.g. message formats in an XML schemas),
and shared subgraphs (e.g. Address of S2 in
Fig. 1b), respectively.
The obtained match result, or mapping, is a set of
correspondences, each of which captures a single
pair of matching elements and a similarity
score indicating the plausibility of the match
relationship. Fig. 1b shows in the lower part a
simple mapping example with two correspondences
where elements are described by their paths.
The Mapping Pool maintains all generated map-
pings and supports various functions to further
manipulate them. Such mapping operations can be
utilized in match strategies and include MatchCom-

pose [6] to transitively combine mappings sharing a
same schema, diff (determines the difference be-
tween the correspondence sets), intersect, and merge

(union). Furthermore, mappings can be compared
with each other according to different quality
measures (compare), e.g. to determine the quality
Fig. 2. Monolithic vs. distributed representation of a Schem
of a test mapping w.r.t. a user-confirmed real
mapping. Using the GUI, one can also edit each
mapping to remove false correspondences and
to add missing ones (edit). The Mapping Pool
offers further functions to load and save mappings
from/to the repository, as well as to import and
export them via an XML/RDF [9] and a CSV
format.

3. Schema import and representation

Advanced modeling capabilities, such as user-
defined types/classes, reuse of components, distrib-
uted schemas and namespaces, as typically sup-
ported by modern schema languages, lead to a
significant complication for schema matching [8]. In
this section we discuss the problems and our
solution to import external schemas into our
internal graph representation. While we choose
W3C XSD for illustration purposes, our approach
is also applicable to other schema languages with
similar modeling capabilities.

3.1. Conflicts between alternative designs

For flexibility reasons, current schema languages
often support alternative approaches to model the
same real-world concepts. This leads to different,
yet semantically similar structures to be dealt with
in schema matching. In particular, we can observe
the following common design conflicts:

3.1.1. Schema designs—monolithic vs. distributed

schemas

The traditional way to construct a schema is to
put all components in a single monolithic schema,
which is quite handy for simple applications (see
a. (a) Monolithic schema and (b) distributed schema.
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Fig. 3. Structurally different, yet semantically similar type designs. (a) Composition, (b) derivation by extension and (c) derivation by

restriction.

2OpenTrans: www.opentrans.org, Xcbl: www.xcbl.org.
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Fig. 2a). To better deal with large schemas, XSD,
Web OWL, and other XML schema languages [10]
allow a schema to be distributed over multiple
documents and namespaces, as illustrated in
Fig. 2b. In particular, each XSD document can be
assigned to a so-called target namespace and XSD
provides different directives (include, redefine and
import) to incorporate component definitions from
one document into another. Orthogonally to the
schema designs, a schema may contain multiple
subschemas, e.g. different message formats, which
can be individually instantiated. In both Fig. 2a and
b, the Supplier and Buyer elements are the instanti-
able roots of purchaseorder.xsd and thus represent
two different subschemas.

3.1.2. Type designs—composition vs. derivation

Several languages, including XSD and the object-
relational SQL extensions SQL:1999 and SQL:2003,
support a versatile system of user-defined types for
element and attribute declarations. New types can
be constructed using either the composition or
derivation approach. Fig. 3 illustrates the type
designs supported by XSD. In the composition
approach (Fig. 3a), a new type (Supplier) is
composed of elements/attributes of existing types
(int and PartyType). Using derivation, a new type is
derived from a base type and automatically inherits
all its components. XSD supports two derivation
mechanisms, namely extension and restriction. In
Fig. 3b, type Supplier extends type PartyType and
inherits the elements Name and Phone of PartyType.
In Fig. 3c, type Supplier restricts type PartyType

and needs to keep all elements Name, Phone, and
Type of PartyType. Usually, composition and
derivation can be recursively applied so that
arbitrarily nested type hierarchies are possible.
3.1.3. Reuse designs—inlined vs. shared components

The basic approach of element and attribute
declaration is to anonymously specify types inline.
It results in tree-like schemas and may be sufficient
for smaller schemas with few elements. To avoid
redundant or unnecessarily diverse specifications,
previously defined components can be reused at
different places, resulting in a graph structure. A
simple approach is element reuse supported by DTD
and XSD. In particular, XSD allows global compo-
nents, i.e. direct children of the /schemaS element of
an XSD document, to be referenced in other type
definitions. The more versatile approach is type reuse,
supported by XSD, SQL:1999, and SQL:2003. Here,
the types can be referenced within element or
attribute declarations as well as (recursively) within
other type definitions. The high flexibility of type
reuse makes it a well-suited approach for large
business applications. The three alternatives are
illustrated in Fig. 4 by means of XSD examples.

The importance of these issues can be illustrated
by examining large real-life XSD schemas. Table 1
shows some statistics for two standardized
e-Business message schemas, namely OpenTrans
and Xcbl OrderManagement (XcblOrder for
short),2 which are also considered later in our
evaluation (see Section 6). These schemas are
distributed across many XSD files and have a size
of several hundreds to almost 1500 components
(XML types, elements and attributes). Xcbl follows
the type reuse approach and only has few global
elements as possible roots for instance documents
(Order, ChangeOrder, OrderRequest, OrderRe-

sponse, etc.). In contrast, OpenTrans employs the
element reuse approach, resulting in a large number

http://www.xcbl.org
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Fig. 4. Examples for different reuse designs. (a) Inlined (no reuse), (b) element reuse and (c) type reuse.

Table 1

Statistics of some e-business XSD standard schemas

Schema #Files Size/#components #Elements (all/global) #Types (all/global) #Shared components

OpenTrans 15 614 589/194 25/11 61

XcblOrder 63 1451 1088/8 358/358 91
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of global elements, although only few are supposed
to represent roots of relevant instance documents.
There are a substantial number of shared XML
types and elements in both schemas.

3.2. Design unification

The success of the match operation essentially
depends on the detection and unification of the
alternative designs discussed above during schema
import. Our approach is to decide for a particular
design and transform the other designs into it. For
this purpose, we first parse all documents of a
schema and capture different kinds of component
metadata, among others name, namespace, type,
typespace (the namespace of the type), which help to
determine the (type and reuse) designs employed.
While each component is uniquely identified by its
name and namespace, we assume here that the
attributes name and type are already namespace-
qualified for better readability. As illustrated in
Table 2, our schema transformation process en-
compasses four following steps:
1.
 Unifying schema designs: For ease of handling, a
distributed schema is transformed to a mono-
lithic one by parsing all schema documents and
capturing relevant components and their cross-
references. In the example shown in Table 2,
Row 1, two XSD documents are parsed and their
components are stored together in a single graph.
Using name and namespace information, we are
able to identify the type PartyType from Party-
Type.xsd and associate it with the elements
Supplier and Buyer as declared in po.xsd.
2.
 Unifying type designs. As composition is the
common way for type construction, derivation is
transformed to composition by propagating the
components of the base type to the derived type.
As shown in Table 2, Row 2, this is done in the
graph representation by linking the base type,
PartyType, with the derived type, Supplier. The
components of PartyType, e.g. Name, thus also
become descendants of Supplier.
3.
 Unifying reuse designs. We aim at a schema graph
of instantiable components, i.e. elements and
attributes, as only these components appear in
instance documents. Therefore we transform
type reuse to element reuse. As shown in
Table 2, Row 3, we proceed with the result of
Step 2 and eliminate the nodes representing types,
such as PartyType. The element Name in the type
PartyType now becomes a direct descendant of
Supplier. At the leaf level we have components of
atomic types, such as string and int.
4.
 Reducing inline declarations. To further compact
the schema, we identify and collapse the same
components defined inline at multiple places to a
single shared one. This is done by a fast search
operation for components with the identical
metadata, e.g. name and data type. As illustrated
in Table 2, Row 4, two different Name elements
as children of Supplier and Buyer are trans-
formed to a single shared one.



ARTICLE IN PRESS

Table 2

Unification of alternative designs
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The result of the import process is a connected
graph of instantiable components. By storing shared

components only once we are able to keep the
complexity of imported schemas at a minimum. For
example, for the largest schema of our evaluation,
the e-Business standard XcblOrder, the number of
nodes and paths is reduced from about 1500 and
40,000 to 800 and 26,000, respectively. (Section 6.1
presents more detailed statistics of the imported
schemas, including XcblOrder and OpenTrans.) In
general, the import process performs very fast. For
XcblOrder, parsing and transforming more than
100 schema documents only takes about 40 s on our
test machine. This delay only occurs once when the
schema is saved in the repository for later match
operations.

4. Matcher combination and matcher library

Starting with a set of simple and hybrid matchers
such as string matching, type matching, dictionary
lookups etc., we support constructing more power-
ful combined matchers from existing matchers,
including previously constructed combined match-
ers. While hybrid matchers combine multiple
criteria in a fixed way within a single algorithm,
combined matchers are based on a generic combi-
nation scheme. COMA++ provides a customiz-
able implementation for such combined matchers,
called CombineMatcher. In the following, we first
present CombineMatcher (Section 4.1) and its
possible configuration strategies (Section 4.2 and
4.3). In Section 4.4, we describe the simple, hybrid
and combined matchers currently available in our
system and which were used for the evaluation.

4.1. CombineMatcher

The main idea of CombineMatcher is to combine
similarity values predicted by multiple matchers to
determine correspondences between schema ele-
ments. Fig. 5a shows the pseudo-code of Combine-
Matcher, providing two methods, match and sim

(Line 3 and 19, respectively). Given two elements as
input, match determines the correspondences be-
tween their related elements (e.g., ascendants or
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Fig. 5. CombineMatcher and processing example. (a) Pseudo-code for CombineMatcher and (b) example for match.
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descendants) or constituents (e.g., name tokens),
while sim derives a single value to indicate the
similarity between the input elements. As shown in
Line 2 of Fig. 5a, a combined matcher needs to be
configured with (1) the type of the objects to match
(oType), (2) a set of default matchers to compute
similarity between the identified objects (defMatch-

ers), and (3) a combination scheme, (agg, dir, sel,
and combSim), consisting of strategies for aggrega-
tion, direction, selection and combined similarity, to
combine matcher-specific similarities.

The match method performs five steps, which are
illustrated in Fig. 5b matching the sample schemas
from Fig. 1b. In the first step, element/constituent

identification, the objects related with the input
elements s1 and s2, respectively, are identified
according to the oType parameter (Lines 5 and 6
in Fig. 5a). With the object type DescPaths as in the
example of Fig. 5b, we obtain all paths in S1 and S2
as the elements to match. In the second step,
matcher execution, the default matchers, e.g. Name,
NamePath, are applied, by calling their sim methods
(Line 12 in Fig. 5a), to compute the similarity for
each element pair, resulting in a similarity cube.

The next three steps, aggregation, direction, and
selection, determine the most plausible correspon-
dences from the similarity cube using the given
combination strategies agg, dir, and sel (Line 14-16
in Fig. 5a). In particular, for each element pair, the
matcher-specific similarities are first aggregated to a
single value, e.g. by taking their average (Average).
The direction then determines one schema, elements
of which are ranked w.r.t. the elements of the other
schema according to the aggregated similarities. For
example, the SmallLarge strategy ranks all elements
of the smaller schema S1 for each element of the
larger schema S2. Finally, the best elements, e.g., the
single best one (Max1), are selected from
the ranking as match candidates and returned as
the match result.

The sim method proceeds with the match result
returned by match and derives a single value to
indicate the similarity between the input elements s1

and s2. In particular, it applies the specified strategy
combSim to the identified correspondences (Line 22
in Fig. 5a). One possible approach is to compute the
average of the similarities exhibited by all corre-
spondences. Note that Fig. 5a shows the sim method
of combined matchers and that simple and hybrid
matchers also provide a sim method whose result is
directly computed and not from the result of
another match operation.

When a high number of elements are to be
considered, we observe long execution time due to
the mutual calls of the match and sim methods
between the combined matchers and their default
matchers. Therefore, we have optimized the im-
plementation of CombineMatcher in different ways.
First, we extend both methods to be able to
compare sets of elements at a time (i.e. set-valued
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s1 and s2). By determining the related elements/
constituents for all relevant elements, we can use the
(much smaller) set of unique elements/constituents
for similarity computation. Second, we introduced a
central cache of similarity values to avoid repeated
computation. Note that these are technical optimi-
zations for the implementation of CombineMatch-
er. The extension of CombineMatcher with the
mapping refinement capability represents the major
algorithmic improvement, which eventually enable
scalable strategies for context-dependent and frag-
ment-based matching (see Section 5).

4.2. Element/constituent identification

This initial step determines the objects to be
compared in the match method. CombineMatcher
can be configured to perform matching at different
granularities, in particular for entire schemas (by
considering all descendants of the root elements),
restricted neighborhoods of elements, and constitu-
ents of individual elements to compute element
similarity. Fig. 6 illustrates the most common types
of related elements and constituents, which are
briefly described in the following:
�

(a)

F

Constituents. Constituents are derived directly
from the properties of the input elements, such as
name tokens, data type, comment, previously
determined structural statistics or instance char-
acteristics, etc.

�
 Elements. We use schema structure to identify

related elements of the input elements. Common
types of neighbor elements include the children,
leaves, parents, siblings, ascendants, and descen-
1

2 3

4

5 6 7

Constituent/Elem

Constituents

Elements

(b)

ig. 6. Examples for related elements and constituents. (a) Sample s
dants of the input elements. Self simply passes
the input elements to the default matchers in a
combined matcher. Finally, AscPaths and Desc-

Paths determine the paths from the schema roots
to the input elements and the paths from
the input elements to all their descendants,
respectively.

4.3. Similarity combination

Similarity combination aims at deriving the
correspondences or a combined similarity from a
similarity cube previously computed by multiple
matchers for two sets of elements. For this purpose,
we use the same combination scheme with four
steps, aggregation, direction, selection, and comput-
ing combined similarity, as our previous prototype
COMA [6]. While the match method involves the
first three steps, the sim method takes over the result
of match and performs the last step. Fig. 7 illustrates
the steps with their alternative strategies, which are
described in the following:
�

en

che
Aggregation: This step aggregates the similarity
cube along the matcher dimension to obtain a
similarity matrix between the two element sets.
Possible strategies are Max, Min, Average, and
Weighted. Max optimistically returns the highest
similarity predicted by any matcher, while Min
pessimistically takes the lowest one. Average aims at
compensating between the matchers and returns the
average of their predicted similarities. It is a special
case of Weighted, which computes a weighted sum
of the similarities given a weighting scheme indicat-
ing different importance of the matchers.
t Object Type Result Set

NameTokens {tokenize(3.name)}

Type { 3.type }

Self { 3 }

Children { 4 }

Leaves { 5, 6,7 }

Parents { 1 }

Siblings { 2 }

Ascendants { 1, 3 }

Descendants { 3, 4,5, 6, 7 }

AscPaths { 1.3 }

DescPaths { 3,3.4, 3.4.5, 3.4.6, 3.4.7}

ma graph and (b) related elements/constituents for node 3.
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�
 Direction: This step ranks the schema elements
according to their similarity to each other. Two
directional strategies are possible, LargeSmall

and SmallLarge, differentiating the size of the
input schemas. In LargeSmall, the elements of
the larger schema are ranked and selected for
each element of the smaller schema, while
SmallLarge proceeds in the converse way.
Furthermore, we support the undirectional strat-
egy Both, combining both directions to achieve
independence from schema size. In particular,
two elements are only accepted as a matching
pair if it is identified as such in both directions.

�
 Selection: This step selects the best match

candidates from a ranked list. The basic strate-
gies are (a) Threshold returning all candidates
showing a similarity above a particular thresh-
old, (b) MaxN constantly returning the top N
candidates, and (c) MaxDelta taking the candi-
dates with the highest similarity Max as well as
those with similarity within a relative tolerance
range specified by a Delta value: [Max–Max*Delta,
Max]. For more restrictive selection, multiple
criteria can also be considered at the same
time, such as Threshold+MaxN and Thresh-
old+MaxDelta.

�
 Combined similarity: From the correspondences

returned by selection, this step derives a com-
bined similarity indicating the similarity between
the sets of the related elements/constituents used
to compute the similarity cube. We support two
strategies, Average and Dice. The former returns
the average of the similarities between the
matching elements, while the latter returns the
ratio of the matching elements over all elements.
Average is pessimistic and typically returns a
smaller value than Dice. Only with all element
similarities set to 1.0, as in manual match results,
both predict the same combined similarity.

4.4. Matcher library

The Matcher Library of COMA++ currently
contains more than 15 matchers exploiting different
kinds of schema and auxiliary information. We first
describe the simple and hybrid matchers, and then
the combined matchers.

4.4.1. Simple and hybrid matchers

Table 3 gives an overview of the simple and
hybrid matchers and characterizes the exploited
schema and auxiliary information. In particular,
they include four simple string matchers, Affix,
Trigram, EditDistance, and SoundEx, three reuse-
oriented matchers, Synonym, Type, and Reuse, and
a structure matcher, Statistics, which are briefly
introduced in the following:
�
 String matchers: These matchers are based on
common approximate string matching techni-
ques [11,12]. Affix looks for common affixes, i.e.
both prefixes and suffixes, between two strings.
Trigram, a special version of n-gram, compares
strings according to their set of 3-grams, i.e.
sequences of three characters. EditDistance
computes the similarity from the number of edit
operations necessary to transform one string to
another one (the Levenshtein metric). Soundex
estimates the phonetic similarity of two given
names.
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Table 4

Combined matchers and their default configuration

Matcher Object type Default matchers Combination scheme (Agg, Dir, Sel, CombSim)

Name Name tokens Synonym, Trigram Max, Both, Max1, Avg

NameType Self Name, Type Wgt(0.7,0.3), -, -, -

NameStat Self Name, Statistics Wgt(0.7,0.3), -, -, -

NamePath Ascendants Name -, Both, Max1, Avg

Children Children NameType -, Both, Max1, Avg

Leaves Leaves NameType -, Both, Max1, Avg

Parents Parents Leaves -, Both, Max1, Avg

Siblings Siblings Leaves -, Both, Max1, Avg

Table 3

Simple and hybrid matchers and their characteristics

Technique Matcher Schema info Auxiliary info

String matching Affix Element names —

Trigram Element names —

EditDistance Element names —

Soundex Element names —

Reuse-oriented matching Synonym Element names Name synonym tables

Type Data types Type compatibility table

Reuse — Previous match results

Structural matching Statistics Structural statistics —
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ma
Reuse-oriented matchers: These matchers utilize
auxiliary sources in addition to schema informa-
tion. Synonym estimates the similarity between
element names by looking up the terminological
relationships in a name synonym table.3 Cur-
rently, it simply uses relationship-specific
similarity values, e.g., 1.0 for a synonymy
and 0.8 for a hypernymy relationship. Following
the same lookup approach as Synonym,
Type uses a type synonym table specifying the
degree of compatibility between data types.
Reuse exploits previously determined match
results [6,13] and performs a join-like operation
on a mapping path consisting of two or more
mappings, such as S12S2, S22S3
successively sharing a common schema, to
derive a new mapping between schemas S1
and S3.

�
 Statistics uses the Euclidean distance function to

compute the similarity between structural statis-
tics, which have previously been determined for
The graphical user interface of COMA++ allows the user to

nually specify or modify name synonyms, which are auto-

tically stored in the repository and exploited by the Synonym

tcher.
single nodes using a feature vector (capturing the
number of children, parents, leaves, etc.).

4.4.2. Combined matchers

Based on the simple and hybrid matchers, eight
combined matchers are currently defined, aiming at a
more accurate computation of element similarity.
They are mainly used as default matchers for match
strategies, which compare and match sets of elements
between schemas (see Section 5.2). Table 4 gives an
overview of the default configuration of the com-
bined matchers. In particular, they exploit different
kinds of neighborhoods or constituents of individual
elements to compute element similarity. We use the
insights from the COMA evaluation [6] to set their
default matchers and combination strategies. Max,
Both, Max1, and Average are typically used for
aggregation, direction, selection, und combined
similarity, respectively. The following combined
matchers are supported:
�
 Name estimates the similarity between element
names. The names are tokenized, e.g. ShipAd-

dress-{Ship, Address}, and possibly expanded
PO-{Purchase, Order} according to the avail-
able abbreviations. The obtained tokens are
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Fig

(b)

H.-H. Do, E. Rahm / Information Systems 32 (2007) 857–885868
compared using multiple string matchers, such as
Trigram and Synonym, and their similarities are
combined to a single value indicating the
similarity between the names.

�
 NameType and NameStat apply two matchers,

Name and Type or Name and Statistics, to the
input elements (Self). The two similarity values
are then aggregated using the Weighted strategy.
In both NameType and NameStat, the name
similarity is assigned a larger weight, 0.7, to
emphasize its importance over the type and
statistics similarity. Further combination steps
are not necessary as they do not affect the
aggregated similarity.

�
 NamePath aims at distinguishing between differ-

ent contexts of a shared element, e.g., ShipTo.S-

treet and BillTo.Street. Given two paths, it uses
Name to compute name similarities between the
nodes on the paths and derives a combined value
to indicate the path similarity. As only one
default matcher is involved, aggregation is not
necessary. The obtained similarity matrix is
combined using the remaining steps of the
combination scheme to derive a combined
similarity.

�
 Children and Leaves follow a bottom-up match

approach and derive the similarity between
elements from the similarities between their
children, i.e. direct descendants, and the leaves
subsumed by them, respectively. Compared to
Children, Leaves can better deal with structural
conflicts, when the similar elements are modeled
. 8. The extended CombineMatcher and example of a simple mac

SimpleStrategy.
at different level of detail, e.g. PO.Contact and
PO.Header.Contact. Both matchers employ
NameType to compute the similarity between
the leaves.

�
 Parents and Siblings derive the similarity between

elements from the similarities between their
parents and siblings, respectively. Unlike Chil-
dren and Leaves, they allow the similarity to be
propagated from the ascendants (top-down
matching) and from the neighbors of the same
level. Both matchers employ Leaves to compute
the similarity between the corresponding related
elements.

5. Mapping refinement and match strategies

Besides the combination of individual matcher
results, the ability to refine a previously identi-
fied match result is a further prerequisite for
building workflows of match processing. We thus
extend CombineMatcher in such a way that it can
utilize a combination of matchers to derive a new
mapping from a preliminary one. Based on this
infrastructure, we are able to define scalable match
strategies comprising multiple steps of successive
mapping combination and refinement. In the
following, we first describe our approach to map-
ping refinement. We then discuss the strategies for
context-dependent and fragment-based matching,
both aiming at an improved support of large
schemas.
h strategy. (a) CombineMatcher extended with refine and



ARTICLE IN PRESS
H.-H. Do, E. Rahm / Information Systems 32 (2007) 857–885 869
5.1. Refinement of match result

Refinement focuses on matching between ele-
ments, which were previously identified as potential
match candidates. Such elements may be selected by
the user or determined automatically by a previous
match step. Fig. 8a shows the pseudo-code of the
extended CombineMatcher, i.e. it uses the same
parameters and supports the same match and sim

methods. It offers a new method, refine (Line 4),
which takes as input an existing mapping, prevMap-

ping, and produces a new mapping, newMapping,
using the given configuration, i.e. the type of related
elements, the default matchers, etc.

The refine operation does not match two com-
plete input schemas but only considers the elements
represented in the input mapping. To further
improve performance we preprocess the 1:1 corre-
spondences in the input mapping. In particular, to
avoid repeatedly processing elements involved in
multiple correspondences, we first group the origi-
nal correspondences in prevMapping into a set of
distinct grouped correspondences gc1, y, gck

(Line 8). Each grouped correspondence starts from
an 1:1 correspondence s12s2 and includes all
further correspondences for either s1 or s2 from
prevMapping, so that n:m relationships are repre-
sented. For instance, Address2ShipAddr and
Address2BillAddr would be grouped together.

Each such grouped correspondence is individually
refined. refine first determines the unique source and
target elements of the grouped correspondence, s

and t, using the domain and range operation,
respectively (Lines 11 and 12). For the example
above, s only contains Address, while t is the set
{ShipAddr, BillAddr}. The match method is then
applied to match s and t (Line 13). The result, map,
contains the correspondences between the related
elements of s and t as specified by the configuration
parameter oType. They are merged to newMapping

using the merge operation (Line 14). Both s and t

are unique over all grouped correspondences, so
that map usually adds new correspondences to
newMapping. However, merge is also able to detect
and ignore duplicate correspondences, i.e., between
the same source and target elements. After all
grouped correspondences are processed, newMap-

ping is returned as the final result. Note that the
NoContext ¼ new CombineMa
matchResult ¼ NoContext.
employed functions domain, range, merge, as well as
groupCorrespondences, are general mapping opera-
tors implemented in the Mapping Pool.

Fig. 8b illustrates the use of refinement in a simple
match strategy, SimpleStrategy. Like Combine-
Matcher, a match strategy supports the same
interface with three methods, match, sim, and refine.
While sim and refine are the same as in Combine-
Matcher, the match method executes the intended
workflow with each step supported by a previously
defined CombineMatcher instance or match strat-
egy. In SimpleStrategy, two steps are performed, the
first one to generate a preliminary mapping using a
given match strategy, PreMatching (Line 4), and the
second one to refine it, using another match
strategy, RefMatching (Line 6). With the same
interface methods, CombineMatcher instances and
match strategies can be used interchangeably,
making it easy to construct new match strategies
from existing ones.
5.2. Context-dependent match strategies

In addition to the NoContext strategy, which
yields context-independent correspondences, we
support two match strategies to obtain correspon-
dences between element contexts, namely AllCon-

text and the new FilteredContext strategy. In the
following, we describe the single strategies and then
briefly compare their complexity.

5.2.1. NoContext

Previous match approaches typically assume tree-
like schemas without shared elements. In such cases,
node-level matching, which we denote as the
NoContext strategy, is sufficient due to the unique
context of all elements. However, in schemas with
shared elements, this approach typically returns
many false matches. For example, a match between
the nodes shipToStreet of S1 and Street of S2 in Fig.
1b would indicate that the single context of
shipToStreet, ShipTo.shipToStreet, matches both
contexts of Street, DeliverTo.Address.Street and
BillTo.Address.Street. However, only the former
represents the correct match candidate.

In our system, NoContext can be implemented as
a CombineMatcher instance as follows:
tcher(Descendants, {Name, Leaves},y)
match(S1.roots, S2.roots)
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In particular, it is configured with the object type
Descendants, which determines all nodes subsumed
by the input nodes as elements for matching (see
Section 4.2). One or several combined matchers, e.g.
Name and Leaves, can be specified as the default
matchers for computing node similarity. To match
two schemas, NoContext is applied by calling its
match method with the schema roots as input. Note
that all roots are considered as a schema may
contain multiple Subschemas, each resulting in a
different root in the schema graph.

5.2.2. AllContext

Currently, only few systems, such as COMA [6],
Cupid [14], Protoplasm [15], and [16], address the
problem of context-dependent matching. Although
based on different implementations, they resolve all
shared elements and match between all their unique
contexts, which we denote as the AllContext strategy.
NodeMatching ¼ new CombineMatcher(Descendants, {Name, Leaves}, ...)
PathMatching ¼ new CombineMatcher(AscPaths, {NamePath}, ...)
FilteredContext ¼ new SimpleStrategy(NodeMatching, PathMatching)
matchResult ¼ FilteredContext.match(S1.roots, S2.roots)

¼ PathMatching.refine(
NodeMatching.match(S1.roots, S2.roots)

)

COMA captures all contexts by differentiating all
paths from the schema root to a shared element. On
the other hand, Cupid, Protoplasm, and [16] maintain
multiple copies of shared elements in a (voluminous)
tree-like schema representation and determine node
correspondences. Both implementations consider the
same number of components (paths or copied nodes),
which may be extremely high in large schemas with
many shared elements as encountered in our evalua-
tion (see Section 6.1).

To keep the input schemas unchanged, we
support the path-based implementation of AllCon-
text, which can be specified as a CombineMatcher
instance as follows:
AllContext ¼ new CombineMatcher(DescPaths, {NamePath, Leaves}, ...)
matchResult ¼ AllContext.match(S1.roots, S2.roots)
In particular, AllContext is configured with the
object type DescPaths, which returns the paths from
the input nodes to all their descendants (see Section
4.2). To accurately compute the similarity between
paths, we use a combination of NamePath with
other combined matchers as default matchers. Like
other match strategies, AllContext is utilized to
match two schemas by invoking its match method
with the schema roots as input.

5.2.3. FilteredContext

Intuitively, if two nodes do not match, they will
unlikely have corresponding contexts. Furthermore,
in schemas with many shared elements, the number
of paths is typically much higher than that of nodes
as each shared node results in multiple paths. Based
on these observations, we have developed the
FilteredContext strategy aiming at a more efficient
approach for context-dependent matching. It per-
forms two matching steps, node matching to filter
the similar nodes between two schemas and path
matching to match the paths, i.e. contexts, of those
similar nodes. The pseudo-code of FilteredContext
is as follows:
Both steps, NodeMatching and PathMatching,
can be configured individually. NodeMatching
utilizes the object type Descendants to identify the
nodes for matching, while PathMatching determines
all paths from the schema root to a given node using
AscPaths. Each step is also configured with different
default matchers. Currently, we use NamePath in
PathMatching due to its context-sensitiveness, while
NodeMatching involves other combined matchers.
Both steps are combined within a SimpleStrategy
instance, which applies the match method with the
schema roots as input to match two schemas.

In the example of Fig. 9 using the schemas from
Fig. 1b, NodeMatching predicts among others the
correspondence between nodes shipToStreet and
Street, which is unique and refined separately from
other correspondences. In PathMatching, the single
path of shipToStreet in S1 needs only to be
compared with the two paths of Street, but not
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StreetshipToStreet

......

DeliverToShipTo

S2 nodeS1 node
NodeMatching.

match(S1.roots, S2.roots)

nodeResult

s (S1 nodes)

t (S2 nodes)

{shipToStreet}

{Street}
......

Deliver.Addr
ess.Street

ShipTo.ship
ToStreeto

S2 pathS1 pathPathMatching.
match(s, t)

matchResult

S1

S2

PathMatching.
refine(nodeResult)

Fig. 9. Combining node and path matching in FilteredContext
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with all paths of S2 as performed by AllContext. We
obtain the correct correspondence between Ship-

To.shipToStreet and Deliver.Address.Street, which
is added to the final result. As we can also see in the
example, it is not meaningful to compare the paths
of dissimilar nodes, such as shipToStreet and City.

5.2.4. Complexity

The complexity of NoContext and AllContext is
determined by the number of nodes and paths,
respectively, in the input schemas. Although de-
pending on the obtained node result, the path-
matching step of FilteredContext typically causes
only minor additional effort due to the restricted
search space of single groups of similar nodes.
Hence, the complexity of FilteredContext is largely
comparable to that of NoContext. If the number of
paths is much higher than the number of nodes due
to shared elements, FilteredContext can achieve a
significant reduction of complexity compared to
AllContext (see Section 6.3). In schemas without
shared elements, all three strategies yield the same
complexity.

5.3. Fragment-based match strategies

To effectively deal with large schemas, we have
implemented the fragment-based matching idea
proposed in [8]. Following the divide-and-conquer
philosophy, we decompose a large match problem
into smaller sub-problems by matching at the level
of schema fragments. With the reduced problem
size, we aim not only at better execution time but
also at better match quality compared to schema-
level matching. Furthermore, it is easier to present
the match result to a human engineer in a way that
she can easily validate and correct it.
5.3.1. Fragment identification

By fragment we denote a rooted sub-graph down
to the leaf level in the schema graph. In general,
fragments should have little or no overlap to avoid
repeated similarity computations and overlapping
match results. Besides user-selected fragments for
interactive use, we currently support the three
strategies for automatic fragment identification,
Schema, Subschema, and Shared, which are shortly
motivated in the following (Note that new fragment
types can be added like the object types for element/
constituent identification discussed in Section 4.2.):
�
 Schema: The complete schema is considered as
one fragment. Matching complete schemas is
thus supported as a special case of fragment-
based matching.

�
 Subschema: Subschemas represent parts of a

schema which can be separately instantiated, such
as XML message formats or relational table
definitions. Match results for such fragments are
thus often needed, e.g. for transforming messages.
Each subschema is identified by a schema root.

�
 Shared: Each shared fragment is identified by a

node with multiple parents. Due to the similar
usage, such fragments exhibit high potential for
match candidates. Furthermore, their match
results may be reused many times thereby
improving performance.

5.3.2. The fragment-based match approach

Based on the same refinement idea as Filtered-
Context, our fragment-based match approach also
encompasses two steps as illustrated in Fig. 10:
1.
 Find similar fragments. The goal of this step is to
identify fragments of the two schemas that are
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Fig. 10. Fragment-based match approach. (a) Find similar fragments and (b) match similar fragments.

Fig. 11. Fragment-based match approach using Subschema and AllContext.
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sufficiently similar to be worth matching in
detail. This aims at reducing match overhead by
not trying to find correspondences for a fragment
in irrelevant fragments from the second schema.
According to the specified fragment type, the
corresponding fragments are identified from the
input schemas. In the example of Fig. 10, we
obtain the fragment sets {F11, F12, F13} and {F21,
F22}, for S1 and S2, respectively. As a fragment is
uniquely identified by its root, similarity between
fragments can be determined by comparing their
roots and/or contexts, i.e. the paths from the
Schema roots to the fragment roots.
2.
 Match similar fragments. This step performs
refinement of the result from the first step. In
particular, the similar fragments identified are
fully matched to obtain the correspondences
between their elements. Each group of the similar
fragments represents an individual match pro-
blem, which is solved independently. For exam-
ple, F11 and F12 need only to be matched against
their similar fragments F21 and F22, respectively,
thereby reducing match complexity. The match
results for single groups of similar fragments are
then merged to a single mapping, which is
returned as the final result.

Each step can be configured individually, e.g.
using an existing CombineMatcher instance or
match strategy. As illustrated in Fig. 8.5, FindSim-

Frags implements the first step and compares the
fragment roots as specified by the Subschema
fragment type. MatchSimFrags implements the
second step and simply applies AllContext to match
the paths of the similar fragments. Both steps are
combined within a SimpleStrategy instance, Frag-

mentMatch, which represents the fragment-based
match strategy. Like other match strategies, this
can be utilized to match two schemas by calling
the match method with the schema roots as input
(Fig. 11).

5.3.3. Complexity

The complexity of the fragment-based match
approach consists of the complexity required by
each phase. For Phase 1, it is defined by the number
of fragment roots or fragment contexts depending
on the employed match strategy, i.e., NoContext,
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Table 6

Statistics of the test series

Series Source/target schemas Tasks Avg source nodes/paths Avg target nodes/paths Avg corresp

Small PO-PO 10 36/49 60/95 48

Medium PO-OP 5 48/72 195/2,500 55

Large OP-XC 1 195/2,500 843/26,228 331

Table 5

Characteristics of the test Schemas

No. Schema Type Nodes/paths Root/inner/leaf/shared nodes Max/avg path Length

1 CIDX XDR 27/34 1/7/20/7 4/2.9

2 Excel XDR 32/48 1/9/23/11 4/3.5

3 Noris XDR 46/65 1/8/38/18 4/3.2

4 Paragon XDR 59/77 1/11/48/13 6/3.6

5 Apertum XDR 74/136 1/22/52/24 5/3.6

6 OpenTrans XSD 195/2,500 8/85/110/129 11/7.0

7 XcblOrder XSD 843/26,228 10/382/461/702 18/8.8

4The real match results for the Small series were taken from the

COMA evaluation [6].
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FilteredContext, or AllContext. Likewise, the com-
plexity of Phase 2 is defined by the number of the
elements, i.e., nodes or paths, in the corresponding
fragments. There is a trade-off between the two
phases. Large fragments, such as of type Schema
and Subschema, lead to long execution times of
Phase 2. However, Phase 1 can perform fast
comparing only few fragments. On the other side,
small fragments, such as Shared, lead to a fast
execution of Phase 2. However, the high number of
fragments may lead to a longer execution time in
Phase 1 than in Phase 2.

6. Real-world evaluation

We performed a comprehensive evaluation of the
match strategies on several real-world schemas,
including large e-business standard schemas. The
main goal was to compare their effectiveness and
time performance, and to investigate the impact of
different parameters, such as fragment types, match-
ers, combination strategies, and schema size. In the
following, we first describe the test schemas and
experiment design and then discuss our findings.

6.1. Test schemas and series

Table 5 shows the characteristics of the test
schemas. We use five XDR schemas for purchase
order (PO) taken from the COMA evaluation (1–5)
and two new e-business standards OpenTrans (6)
and XcblOrder (7) written in XSD. Unlike the PO
schemas, the e-business standards contain several
subschemas, indicated by the number of the schema
roots. They also exhibit a more deeply nested
structure, resulting in longer paths. Furthermore,
the high ratio of shared elements leads to a high
number of paths to be considered.

In order to examine the impact of schema size, we
organize the schemas in three series with different
complexity, Small, Medium, and Large, as shown in
Table 6. The average problem size for each series is
indicated by the average number of the source and
target nodes and paths. In the Small series we match
the PO schemas against each other, resulting in 10
tasks, which are the same tasks in the COMA
evaluation [6]. The Medium series matches the PO
schemas against OpenTrans, respectively, resulting
in 5 tasks. In the Large series, we match the two
large schemas OpenTrans and XcblOrder. For all
match tasks, we manually derived the real (context-
dependent) match results to use as the golden
standard.4 In the Large series, for example, only
331 1:1-correspondences are required from a huge
search space of 2500� 26,000 paths.

To illustrate the hardness of matching large
schemas with shared elements, we now take a closer
look at the largest match task OpenTrans-XcblOr-
der. Fig. 12a and b show the distribution of nodes
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Fig. 12. Distribution of shared elements and match cardinalities for OpenTrans and XcblOrder.

Table 7

Test configuration

Series Strategy Fragment Matcher combination Combination

Small NoC Schema 1 single NamePath Aggregation: Average

Medium AllC Subschema 127 combinations involving Direction: Both

Large FiltC Shared NamePath Selection: Thr(0.5)+ Delta(0.001-0.01)

Combined sim: Average

Sum: 3 3 3 128 6
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w.r.t. the number of their paths in the two schemas.
The number of unique nodes (i.e., having only one
path) is 66 in OpenTrans and 141 in XcblOrder.
Comparing with Table 5, we can see that most
nodes in both schemas yield multiple paths, i.e.,
contexts. Especially, there are several ‘‘generic’’
elements (like Type in OpenTrans and Ident in
XcblOrder), which are widely shared and thus yield
very high numbers of paths (around 160 in Open-
Trans and 700 in XcblOrder). Fig. 12c shows the
global cardinalities of the real match result between
the two schemas. Only about half of the correspon-
dences (159 from 331) also represent unique 1:1
matches. The remaining encode m:n matches,
especially 1:2. The approach to select a constant
number of match candidates (MaxN), as often
employed by previous work, would lead to missing
or false matches.
6.2. Experiment design

6.2.1. Test parameters

Due to the flexibility for constructing/configuring
match strategies and matchers, an exhaustive
evaluation to investigate the effectiveness of all
parameters is virtually impossible. Hence, we
refer to the insights from our evaluation of
COMA and focus on the following parameters
likely to yield the best quality, which are also
summarized in Table 7:
�
 We apply the match strategies AllContext and
FilteredContext, and NoContext, to the fragment
types Schema, Subschema and Shared, respectively.
For short, we denote them hereafter as AllC+Sche-
ma, FiltC+Schema, NoC+Schema, etc. Each is
tested with the same matcher combinations and
combination strategies as follows.

�
 As already pointed out in [6], considering

hierarchical names as implemented in NamePath
is a prerequisite to achieve high quality in
context-dependent matching. Therefore, we only
focus on matcher combinations involving Name-
Path in this evaluation. In particular, with 7
other combined matchers, we obtain 127 combi-
nations, such as NamePath+Leaves, Name-
Path+Children, etc., in addition to the single
NamePath matcher.

�
 We use the best combination strategies identified

in the COMA evaluation as presets for our tests,
in particular, Average for aggregation, Both for
direction, and Average for computing combined
similarity. For selection, we use the combination
of Threshold and MaxDelta for selection. In
particular, MaxDelta is able to vary the number
of match candidates for each element according
to their similarities, and thus, can best deal with
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different match cardinalities. While fixing the
Threshold value to 0.5, we vary the relative
tolerance range Delta between 6 data points
0.001, 0.002, 0.004, 0.006, 0.008, and 0.01.

Semantic name matching is supported by a
domain dictionary containing 40 synonyms, such
as {Ship, Deliver}, and 22 abbreviations, such as
{PO, Purchase Order}, which are simply taken from
the COMA evaluation [6]. All tests and time
measurements were uniformly done using Sun Java
1.4.2 libraries on a Linux machine equipped with a
2.4GHz Intel Xeon processor and 1GB RAM.

6.2.2. Quality quantification

To determine the quality of an automatic match
operation, we compare its result (test result) against
the manually derived result (real result).5 In addi-
tion to the set of true positives B, i.e. correct
correspondences automatically predicted, we also
identify the set of false negatives A and of false
positives C. False negatives are correspondences
needed but not identified, while false positives are
correspondences falsely proposed by the automatic
match operation. Based on the cardinality of these
sets, we determine three quality measure Precision,
Recall, F-Measures, which are commonly used in
Information Retrieval [61]. They are defined as
follows:
�

5

sin

ma
Precision ¼ jBj
jBjþjCj

reflects the share of real
correspondences among all found ones

�
 Recall ¼ Bj j

Aj jþ Bj j
specifies the share of real corre-

spondences that is found

�

6To evaluate the result of NoContext, node correspondences
F �Measure ¼ 2� Bj j
Aj jþ Bj jð Þþ Bj jþ Cj jð Þ

¼ 2 � Precision�Recall
PrecisionþRecall

is the harmonic mean of Precision and Recall.

All measures take the maximum 1.0 when the test
result is equal to the real result. The minimum of
Precision, Recall, and Fmeasure is 0.0, when the test
result is completely different than the real result.
Neither Precision nor Recall alone can accurately
assess the match quality. In particular, Recall can
easily be maximized at the expense of a poor Precision
by returning as many correspondences as possible,
e.g., the cross product of two input schemas. Similarly,
a high Precision can be achieved at the expense of a
poor Recall by returning only few (correct) corre-
Recall that the correspondences in our match results capture

gle pairs of matching elements, i.e. 1:1 cardinality. A 1:n/n:1

tch will be represented and counted as n correspondences.
spondences. Therefore, we use the combined F-
measure to rank and compare match quality. All
measures were first determined for single match tasks
and then averaged over all tasks in a series. Hereafter,
when talking about match quality for a series, we refer
to the average values of the measures over all match
tasks in the series, i.e., average Precision, average
Recall, and average F-measure.
6.3. Performance of context-dependent match

strategies

We first investigate the quality of the context-
dependent match strategies across the different test
series. Fig. 13a shows the best average quality of
NoContext,6 AllContext, and FilteredContext for
matching complete schemas, i.e., using fragment type
Schema. In general, match quality decreases with
growing schema size. Among the strategies, NoCon-
text shows the worst quality in all series. Although it
achieves high average Recall (0.7–0.8) in all test
series, many false matches are returned, leading to
very low average Precision (�0.0 in the Large series).
This effect largely depends on the degree of element
reuse in the input schemas. From the Small series
(with the lowest ratio of shared elements) to the
Medium and Large series (with the highest ratio of
shared elements), the average F-measure decreases
from 0.6 to 0.0. NoContext is thus only feasible for
schemas without shared elements.

On the other side, AllContext and FilteredCon-
text are very competitive with each other, both
showing high quality in all series. Although
performing slightly worse than AllContext in the
Small series, FilteredContext achieves the same
average quality as AllContext in the Medium and
Large series. Overall, the best average Fmeasure
achieved is 0.89, 0.68, and 0.66 for the Small,
Medium and Large series, respectively, which are
quite promising especially if considering the high
complexity of our match tasks. In the previous
evaluation with the match tasks of the Small series
[6], COMA yielded a best average F-measure of
0.85, which is now improved by 4% by COMA++.
This is possible due to the new matchers NameStat,
Parents, and Siblings in COMA++.
are transformed to path correspondences by specifying any path

pairs of two matching nodes as a correspondence. This also

truthfully represents the context-independent nature of NoCon-

text.
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Fig. 13. Quality and execution times of context-dependent match strategies.
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Besides the result quality, execution time is
another critical factor for the practicability of a
match strategy. We thus estimate the time range
required by each strategy by testing it with two
extreme matcher combinations, the least expensive
approach only using the single matcher NamePath,7

and the most expensive approach combining all
eight combined matchers, hereafter All. Fig. 13b
shows the average execution times of the match
strategies in the single series. In general, execution
time increases with schema size and the number of
the involved matchers. In the Small and Medium
series, all strategies perform similarly. However,
they show significantly different execution times for
the Large series. In particular, AllContext with
NamePath and All requires around 7 and 10min,
respectively, while NoContext and FilteredContext
require even with All only about 50 s. Furthermore,
we observe in general similar execution times
between NoContext and FilteredContext, confirm-
ing our observation on the complexity of Filter-
edContext (see Section 5.2). Considering AllContext
as the match approach of COMA, we can see that
COMA++ also outperforms COMA in terms of
execution times with the new FilteredContext
strategy.

6.4. Performance of fragment-based match strategies

We now examine the performance of the context-
dependent match strategies applied to different
7In NoContext, NamePath is applied to match single nodes

and returns the same result as Name.
fragment types. Due to the low quality of NoCon-
text, we do not consider it further but only report
the results for the remaining strategies, AllContext
and FilteredContext. Fig. 14a shows the best
average F-measure of the corresponding match
strategies as observed in the single series. In the
Small series, matching complete schemas using
AllC+Schema and FiltC+Schema yields the same
quality as matching subschemas using AllC+
Subschema and FiltC+Subschema, respectively, as
the PO schemas have only one subschema. How-
ever, in the Medium and Large series, using
Subschema in both AllContext and FilteredContext
yields slightly better quality than using Schema due
to the reduced search space. Using Shared frag-
ments, as in AllC+Shared and FiltC+Shared,
generally performs worse than other fragment
strategies due to incomplete schema coverage.
However, it is still promising for schemas with a
high ratio of shared elements, like OpenTrans and
XcblOrder.

Fig. 14b shows the execution times of the
different match strategies for the Large series.
AllC+Shared does not improve execution time
over AllC+Schema despite reduced fragment size.
This is because of the high number of shared
elements, i.e. fragments, which requires to match
almost the complete schemas in order to identify
similar fragments and their matching contexts. Only
combined with Subschema, AllContext is feasible
for large schemas. In particular, AllC+Subschema
using NamePath and All requires only around 40
and 100 s, respectively, for the OpenTrans-XcblOr-
der match task. On the other side, FilteredContext
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Fig. 14. Quality and execution times of fragment-based match strategies.
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generally shows very good time performance and,
thus, represents the better strategy for large
schemas. In particular, the three fragment types
yield similar execution times of less than 5 s using
NamePath and around 40 s using All for the same
match task in the Large series.

6.5. Impact of matcher combination and Delta

To investigate the impact of the employed
matcher combination and Delta value, we determine
the value range, i.e. the min, max and average, of
average F-measure achieved by all 128 matcher
combinations for each Delta value in the single
series. Due to the similar behavior across the tested
fragment types, we only show the result for
AllContext and FilteredContext matching complete
schemas, i.e. with fragment type Schema. In Fig. 15,
each diagram illustrates one match strategy in one
series with the x-axis representing the Delta values
and the y-axis the F-measure values. The vertical
line at a Delta value represents the value range of
average F-measure achieved by all matcher combi-
nations using the corresponding Delta value, while
the curve in a diagram connects the average values
across the different Delta values.

We first take a look at AllContext (top row in
Fig. 15). In the Small series, the quality variation at
each Delta value is relatively small, indicating the
robustness against the choice of matchers. The



ARTICLE IN PRESS
H.-H. Do, E. Rahm / Information Systems 32 (2007) 857–885878
average values are close to the maximum, indicating
the high quality of most matcher combinations. The
best quality is achieved with Delta between 0.006 or
0.008. With increasing schema size, the variation
range at each Delta value increases significantly and
the quality degrades with increasing Delta. For the
Medium and Large series, the best quality is only to
be achieved with the smallest Delta, 0.001. This is to
be explained with fact that we have to consider a
very high number of element pairs, i.e., candidate
correspondences, in the same similarity space [0, 1].
At the smallest Delta, the average value of
F-measure is also closest to the maximum, indicating
that most matcher combinations still perform well
for large schemas with this restrictive Delta value.

As for FilteredContext (bottom row in Fig. 15),
we notice a large variation range of average
F-measure in all series. However, the average values
are mostly close to the maximum, indicating that
most matcher combinations achieve good quality
and only few are outliers with bad quality.
Furthermore, FilteredContext is more robust
against the choice of Delta than AllContext,
thereby limiting tuning effort. In particular,
the average values of F-measure remain in
all series largely constant despite the increase of
Delta.

6.6. Choice of matcher combination

Given a library of individual matchers, one
important question is the choice of a matcher
combination for a given match task. We approach
this first by analyzing the statistics of the best
matcher combinations. We rank all matcher combi-
nations (128) in the ascending order according to
their best average F-measure. Focusing on the 10
best matcher combinations, we determine the
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0
1
2
3
4
5
6
7
8
9

10

PARENTS

NAM
E

LE
AVES

CHIL
DREN

NAM
ETYPE

NAM

Matchers

O
cc

u
rr

en
ce

Small Medium Large
Average Matcher Cnt

0

1

2

3

4

5

Small Medium Large

Series

M
at

ch
er

 C
n

t

AllContext
FilteredContext

(a) (b)

Fig. 16. Statistics of 10 best
average number of involved matchers and the
occurrence of single matchers, i.e. the number of
matcher combinations involving a particular matcher.
As NamePath is involved in all matcher combina-
tions, we leave it out from this analysis.

Fig. 16 shows the results for AllContext and
FilteredContext applied on complete schemas. The
observations are largely similar for other fragment
types, which are thus omitted here. We observe in
Fig. 16a that with increasing schema size, less
matchers should be combined. AllContext is more
sensitive than FilteredContext in this aspect. In
particular, the 10 best matcher combinations of
AllContext involve around 4–5 matchers in the
Small series, and around three matchers in the
Medium and Large series. On the other side, those
of FilteredContext generally involve around 4
matchers in all series.
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stantly high occurrence (45) in all series. Siblings
and Children are unstable with occurrences strongly
varying between the test series. Sorting the matchers
according to their average occurrence over all three
series yields the same ranking as we can observe on
the x-axis of Fig. 16b and c. Therefore, in addition
to NamePath, we take three best matchers, Parents,
Name and Leaves, to build our default matcher
combination (hereafter Default).
ESTAT

SIB
LI

NGS

Average

FilteredContext Matcher Occ

0
1
2
3
4
5
6
7
8
9

10

PARENTS

NAM
E

LE
AVES

CHIL
DREN

NAM
ETYPE

NAM
ESTAT

SIB
LI

NGS

Matchers

O
cc

u
re

n
ce

Small Medium Large Average

(c)

matcher combinations.



ARTICLE IN PRESS

 FilteredContext

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Small Medium Large

Test Series

F
M

ea
su

re

Best
Default
All
NamePath

AllContext

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Small Medium Large

Test Series

F
M

ea
su

re

Best
Default
All
NamePath

(a) (b)

Fig. 17. Quality variation of Best, Default, All, and NamePath.

FilteredContext

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Bes
t

Def
au

lt All

Nam
eP

at
h

Bes
t

Def
au

lt All

Nam
eP

at
h

Bes
t

Def
au

lt All

Nam
eP

at
h

Q
u

al
it

y
Precision Recall
Fmeasure

Small Medium Large

 AllContext

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Bes
t

Def
au

lt All

Nam
eP

at
h

Bes
t

Def
au

lt All

Nam
eP

at
h

Bes
t

Def
au

lt All

Nam
eP

at
h

Q
u

al
it

y

Precision Recall
Fmeasure

LargeMediumSmall(a) (b)

Fig. 18. Best average quality for Best, Default, All, NamePath.

H.-H. Do, E. Rahm / Information Systems 32 (2007) 857–885 879
In the next step, we analyze the behavior of the
four most important matcher combinations: (a)
Best, the best matcher combination showing the
highest average Fmeasure; (b) Default, our default
matcher combination; (c) All, the combination of all
eight combined matchers; and (d) the single Name-
Path matcher. We determine the value range, i.e.,
the min, max and average, of average F-measure
achieved by the corresponding matcher combina-
tions for the entire Delta range [0.001–0.01] in the
single series. Fig. 17a and b in turn show the results
for AllContext and FilteredContext, respectively,
applied on complete schemas.

We observe that AllContext shows a stable
behavior, i.e., low variation, in small schemas or
in large schemas if only few matchers are involved.
In particular, NamePath exhibits little variation
in all series, while All shows the strongest varia-
tion, especially the Medium and Large series. On
the other side, FilteredContext is more stable
against different Delta values, showing a negligible
variation of 70.03 of average Fmeasure for
all matcher combinations and all series. For
both AllContext and FilteredContext and in all
series, we observe that the quality behavior
of Default is very close to that of Best, indicating
the high quality and stability of our default
matchers.

Fig. 18 shows all quality measures for the best
average qualities from Fig. 17. In general, all
matcher combinations outperform NamePath, mo-
tivating the use of multiple matchers instead of
single matchers. The best quality of Default is close
to that of the Best combination. With All, we can
also achieve very good quality. However, its use
with AllContext is not recommended for large
schemas due to long execution times. In general,
we achieve high average Precision (40.9) and
average Recall (40.8) in the Small series. The
quality degrades in the Medium and Large series,
which yield average Precision and Recall of around
0.7 and 0.5, respectively.
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6.7. Evaluation summary

We have comprehensively investigated the quality
of the match strategies applied to different fragment
types, matcher combinations and combination
parameters, and to schemas of varying size. With
a small amount of manual effort to prepare only few
domain-specific synonyms and abbreviations, we
were able to achieve high quality in all test series.
The best average Fmeasure achieved was around 0.9
for small match tasks, and between 0.6 and 0.7 for
the large match tasks of the Medium and Large
series. Using the new strategy FilteredContext, we
were also able to solve very large match tasks
involving schemas with tens of thousands of
elements in acceptable time (less than one minute
on our test machine).

NoContext yields unacceptable quality for our
test schemas and is therefore only feasible for
schemas without shared components. For small
schemas, AllContext shows a slightly better quality
than FilteredContext. Both, however, achieve al-
most the same quality in large match tasks.
AllContext, when applied to complete schemas or
shared fragments, is extremely computation-inten-
sive. Furthermore, it is sensitive to Delta, especially
in large schemas, showing a fast degrading quality
with increasing Delta. On the other hand, Filter-
edContext performs in general very fast. It is robust
against the choice of Delta, thereby limiting tuning
effort. Hence, while AllContext is the strategy of
choice for small schemas, FilteredContext suits best
for large schemas.

For fragment-based matching, complete coverage
of input schemas is an important aspect for the
development of new methods for fragment identifi-
cation and strategies to deal with the remaining
schema part. The strategies matching complete
schemas and subschemas outperform the strategies
considering shared fragments, which typically do
not cover the complete schemas. However, in large
schemas with a high degree of component reuse,
matching shared fragments shows a quality close to
that of other fragment strategies. FilteredCon-
text+Shared is thus promising in such cases due
to its fast execution time.

The choice of the matchers represents an im-
portant impact factor on match quality. In our
evaluation, NamePath has proved to be a powerful
mean in context-dependent matching. Due to its
presence, all match strategies exhibit a relatively low
quality variation against the choice of other
matchers to be combined. For FilteredContext,
most of the tested matcher combinations yield high
quality, close to the maximum achievable. The same
holds for AllContext in small match tasks or in large
match tasks using a restrictive Delta, such as 0.001.
In general, combination of matchers yields better
quality than single matchers. We were able to
identify a default matcher combination with the
matchers NamePath, Parents, Name, and Leaves.
The default matcher combination exhibits high
quality and stability across the test series. All, the
combination of all combined matchers, achieves
good quality in both AllContext and FilteredCon-
text strategies and also represents a good candidate
for the default matcher combination. However,
because of the high complexity and long execution
times, it is not recommended to be used with
AllContext for large schemas.

We observe that the evaluation results generally
remain consistent with those obtained from the
evaluation of COMA [6]. In particular, we were able
to achieve high quality using the best combination
strategies previously identified, in particular, Aver-
age for aggregation, Both for direction, Thresh-
old+Delta for selection, and Average for combined
similarity. The composite match approach again
proved to be a powerful method to combine diverse
match algorithms. With the flexibility to construct
combined matchers and match strategies, we have
been able to quickly implement and compare
different match algorithms.
7. Related work

Schema matching has attracted much research
activity and several surveys have recently appeared
on the proposed approaches [1–5,13,17]. The first
extensive survey appeared in 2001 [5] and proposed
a solution taxonomy differentiating between sche-
ma- and instance-level, element- and structure-level,
and linguistic and constraint-based matching, as
well as non-reuse and reuse-based approaches.
Furthermore, it distinguishes hybrid and composite
approaches to combine multiple matchers and
reviews several match prototypes, including Cupid
[14], SemInt [18], LSD [19], DIKE [20], Similarity-
Flooding [21], TranScm [59], and MOMIS
[22,41,56]. [13] also surveys newer approaches and
prototypes. In the following, we first discuss
previous prototypes and approaches and how they
differ from COMA++. Afterwards, we review
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previous evaluations of Schema matching and how
they differ from our evaluation.

7.1. Previous solutions vs. COMA++

Most previous match prototypes are not generic
but focus on a specific application domain or only
consider a particular type of schemas, such as DTDs
[23], relational schemas with instance data
[24–26,58], web search interfaces [27,28,62], or
ontologies [29–33,60]. Previous generic tools include
Cupid, SimilarityFlooding, and Clio [34–36]. As
discussed, COMA++ is also generic and supports
several schema languages, including XSD, OWL,
and relational schemas, and it is able to deal with
complex distributed XML schemas. Only few
systems support a comprehensive graphical user
interface, in particular Clio, Prompt [33] and
COMA++.

In order to consider multiple match criteria and
properties, most prototypes use hybrid algorithms
which are difficult to extend and improve. By
contrast, COMA/COMA++, LSD, Glue [29],
iMap [37], and Protoplasm [15], and [57] follow a
composite approach to combine the results of
individually executed matchers. The presented
COMA++ approach for constructing new match-
ers and match strategies from existing ones is new
and especially flexible. Our concept of match
strategies is similar to that of scripts implemented
in Protoplasm [15]. However, we group the basic
steps (element identification, matcher execution,
and similarity combination) in a uniform configur-
able unit, allowing for easy definition and combina-
tion of match strategies. The multi-matcher
architecture originally introduced by COMA and
extended by COMA++ has influenced a number
of subsequent investigations, e.g., [15,16,38,39,40].

Previous prototypes typically assume tree-like or
flat schemas, in which all elements have unique
contexts so that matching at the node level is
sufficient. Only few systems, in particular, COMA/
COMA++, Cupid, Protoplasm, and [16], have
addressed context-dependent matching to deal with
shared elements. However, the simple approach to
identify and match all contexts is impractical for
large schemas with many shared elements. The new
strategy FilteredContext in COMA++ was shown
to perform much faster while offering the quality of
the expensive approach considering all contexts.
The idea of path-level matching, i.e. considering the
ascendants of schema elements, can also help
instance-based matchers to distinguish between
schema elements with similar instances, as done in
LSD [19].

We observe various forms of reuse of auxiliary

information, including domain-specific synonyms or
match/mismatch rules (e.g., in COMA/COMA++,
Cupid, DIKE, Glue, LSD, iMAP, XClust [23]).
Further variations include the use of lexical
dictionaries like WordNet for semantic relation-
ships (e.g., in MOMIS [22,41], S-Match [42]),
vocabularies for instance classification (e.g., county
name recognition in LSD), schema corpora for
additional match information (e.g., in [43]), and
manually specified correspondences for training
instance-based learners (e.g, in Autoplex [24],
Automatch [25], LSD, Glue, iMap). COMA++
supports a new reuse approach focusing on existing
mappings, which can be generalized for different
reuse granularities, e.g., single element correspon-
dences, or fragment- and schema-level match
results.

Like many other prototypes, COMA++ returns
a structural mapping consisting of correspondences
with a similarity value to indicate their plausibility.
This schema matching is the first step in creating
an executable (semantic) mapping between two
schemas which is executable on instance data, e.g.,
to perform data transformation. The second step,
sometimes called query discovery [34], is to enrich
the detected correspondences with mapping expres-
sions to exactly specify how the elements and their
instances are related to each other. To date, only a
few approaches address this task or at least try to
return correspondences with some higher semantics.
Among others, DIKE and S-Match aim at detecting
semantic relationships, such as synonymy and
hypernymy, between schema elements. iMap and
[44] suggest complex matches, such as string
concatenations and arithmetic operations. Starting
from a set of correspondences provided by either the
user or (semi-) automatic match, Clio and HepTox
[45] try to infer query mappings to query and
transform instances of one schema to another one.

Besides our work, the scalability problem in
matching large schemas is only addressed in [30,
15, 46] so far. In particular, [30] focuses on
matching large ontologies and employs simple
techniques, such as random picking and sorting
element names, to identify candidate upper-level
elements which are worth to descend and match in
detail. Ref. [15] discusses scalability issues in
matching two large schemas with several hundreds
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of elements. The authors propose to apply a hash-
join like match approach and to cache intermediate
match results to improve execution time. Ref. [46]
studies a large match problem to align two medical
taxonomies with tens of thousands of concepts. To
reduce match complexity, structural similarities
between elements are computed by considering only
their direct children and grandchildren. By compar-
ison, COMA++ supports iterative refinement to
filter relevant elements before matching them and
their neighborhood in detail. Our new FilteredCon-
text and fragment-based match strategies build on
this principle and were shown to achieve high
quality and fast execution time for large schemas.

7.2. Schema matching evaluations

Most evaluations have been conducted for
individual prototypes in many diverse ways, making
it difficult to assess the relative effectiveness of
systems. Refs. [1, 47] represent two efforts aiming at
a uniform framework for conducting schema
matching evaluations. Both works propose a similar
set of criteria concerning the input and output
information, and the required manual effort, the
measures to quantify the effectiveness and execution
performance of a match approach. While [47] used
the criteria to evaluate the ontology matching tool
Prompt, Ref. [1] uses the criteria to compare several
schema matching evaluations, including those of
Autoplex [24], Automatch [25], COMA [6], Cupid
[14], LSD [19], Glue [29], SemInt [18,48,49], and
SimilarityFlooding [21]. The COMA++ evalua-
tion was conducted and documented according the
criteria proposed in [1].

Several studies [14,16,38,40,42,43,50,51] per-
formed a comparative evaluation of different ap-
proaches on the same match problems. However,
the evaluation results are still influenced very much
by the way of selecting the match tasks, configuring
the single prototypes, and designing a test metho-
dology. Especially, the lack of tuning knowledge of
others’ prototypes may lead to their suboptimal
results. As shown by the EON Ontology Alignment
Context 2004 [52,53], these effects can be reduced to
a large extent by requiring the tool authors
themselves to uniformly perform the evaluation on
an independently developed set of match problems.
The cumbersome evaluation task, either for an
individual system or for the comparison of multiple
systems, may benefit from an automatic approach
as proposed by the recent e-Tuner system [39],
which systematically tests different configuration of
a match system to identify the best one on a
synthetic workload of schema and mappings
obtained by systematically perturbing an
initial schema. Automatic tuning of schema
matching tools is a new and promising research
direction.

As already pointed out in [1,8], most previous
approaches were only tested with small schemas,
with 50–100 elements. In such small evaluations, the
primary focus was on match accuracy, but not on
execution time, which is however an important
factor for the practicability of an approach. In the
evaluation of COMA++, we considered schemas
of varying size from hundreds to tens of thousands
of elements. With systematic tests, we were able to
analyze the correlation of quality and execution
time to various aspects, in particular match
strategies, matcher combinations, combination stra-
tegies, and schema size.

The evaluation results described in this paper are
a subset of those from [13]. The complete evaluation
of COMA++ described in [13] also includes the
ontology matching tests as defined by the EON
Ontology Alignment Contest 2004. In comparison
with other ontology matching tools, in particular,
QOM [54], OLA [31], SCM [32], Prompt [55],
COMA++ yields a comparable quality to the best
performing participants of the contest. Moreover,
Ref. [13] provides a detailed comparison of the
COMA++ evaluation and previous schema
matching studies, covering both individual and
comparative evaluations. As reported there, the
old COMA system of 2002 already achieved
comparable quality to other prototypes in several
independently performed comparative evaluations,
i.e., [16,38,40,42,50,51]. As shown in this paper,
COMA++ outperforms COMA in terms of both
quality and execution time and is thus considered a
highly effective schema matching system.

8. Conclusions

We described a new generic schema matching
tool, COMA++, which offers a comprehensive
infrastructure to solve large real-world match
problems. Following the flexible composite ap-
proach of our previous prototype COMA, it
provides an extensible library of simple and
combined matchers and supports various alterna-
tives to combine and refine their match results. For
large schemas, we have developed new scalable
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strategies for context-dependent and fragment-
based matching, respectively. We conducted a
comprehensive evaluation of the match strategies
using large e-Business standard schemas. The
evaluation has demonstrated the practicability of
our system for matching large schemas and pro-
vided insights for future match implementations
and evaluations.

There are several areas where we plan to extend
COMA++. In the short term, we will provide a
public web interface to COMA++ to make the
technology widely available. We want to add new
kinds of matchers, especially instance-based ap-
proaches and large-scale (re) use of external
dictionaries and thesauri. Fragment-based matching
represents a promising approach to deal with large
schemas. Hence, we want to develop and test with
more sophisticated strategies for schema decom-
position, i.e. beyond the static fragment types
currently supported. Furthermore, we will go
beyond schema matching and derive executable
mappings from the structural mappings, e.g. to
support data transformation.
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