
LiSTOMS: a Light-weighted Self-tuning Ontology Mapping System

Zhen Zhen Junyi Shen

Institute of Computer Software,

Xi’an Jiaotong University,

Xi’an, 710049, China

E-mail: zhenzh@stu.xjtu.edu.cn

Jinwei Zhao Jianjun Qian

China Defense Science and Technology

Information Center,

Beijing, 100142, China

Abstract

We argue that it is more practical to address the

ontology mapping self-tuning problem in a whole

system context instead of in a single matcher context.

In this paper we introduce RMOMS, a Reference

Model for Ontology Mapping Systems, consisting of six

parts, the Preprocessor, the Dispatcher, the

Matcher(s), the Aggregator, the Pruner, and the User

Interface, with which to disassemble the self-tuning

problem into more feasible units. We propose

Maximum Weight Bipartite Graph Matching method

for self-tuning matchers and Stable Match method for

self-tuning aggregator, and test them in LiSTOMS, a

light-weighted prototype sample of RMOMS. With

comparison with some notable systems, LiSTOMS

shows leading recall rate and competing precision rate.

1. Introduction

The final goal for ontology mapping is to find the

correspondences between semantically related entities

of different ontologies correctly, completely, and

efficiently. Since an algorithm might be effective only

for a few scenarios, and not for others, most ontology

mapping systems adopt multiple matching methods, or

matchers, to improve generality of mapping [1],

finding linguistic and/or structural similarities between

ontologies entities. However, these systems have to use

various parameters for better fitting in with the need of

diverse context, and the matching outcome of these

systems heavily rely on their parameters, even within

the same scenario, changing the parameters can lead to

significant different outcome. So the more we rely on

the trick of setting weights and thresholds manually,

the less usability such systems may retain, especially in

a dynamic application context, such as the Web.

Tuning ontology mapping system automatically has

become one of the challenges in ontology mapping

field [2].

To disassemble this problem into more feasible units,

we introduce RMOMS, a Reference Model for

Ontology Mapping Systems, which consists of six

parts, the Preprocessor, the Dispatcher, the Matcher(s),

the Aggregator, the Pruner, and the User interface.

Within this framework, the solution to the problem lies

largely in four parts: the Dispatcher, the Matcher(s),

the Aggregator and the Pruner. We concentrate on the

Matchers and the Aggregator in this paper.

The remainder of this paper organized as follows. In

Section 2, we brief the related works. In Section 3, we

present RMOMS and our sample implementation of

this model, LiSTOMS, a Light-weighted Self-Tuning

Ontology Mapping System. In Section 4 and 5, we

propose and test Maximum Weight Bipartite Graph

Matching (MWBGM) method for self-tuning matchers

and Stable Match method for self-tuning aggregator

used in LiSTOMS. Finally, in Section 6 we summarize

our findings of this paper.

2. Related Works

As stated in [3], tuning a multiple components

ontology mapping system is a must, but skill- and

time-intensive process, and efforts have been made to

reduce the cost.

eTuner project [3][4] proposes a staged tuning

method, where the matchers are organized in an

execution tree to avoid exhaustive tuning. Output of

the lower level matchers serves as input to the higher

level matchers, and tuning starts with the matchers at

the leaf level, then moves to the matchers at the upper

level, and so on.

Another approach to parameter tuning is machine

learning. For example, LSD algorithm [5] performs a

liner regression to determine the weights of learners,

and then uses weighted average to combine learners’

2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-4191-4/10 $26.00 © 2010 IEEE

DOI 10.1109/WI-IAT.2010.173

168

grades. Another example is APFEL [6], which uses

users’ feedback to generate new hypotheses for the

tuning process.

We also investigated some of the systems which

took part in the last few Ontology Alignment

Evaluation Initiative (OAEI) campaigns, with special

focus on their architecture, components and tuning

methods.

Falcon-AO [7] uses four matchers, and the

association between detected similarities and matchers

to be combined is predefined. For example, if the two

ontologies have a high linguistic factor, Falcon-AO

will reduce the thresholds of its linguistic matchers and

leak more output from these matchers.

RiMOM [8] implements more than eight matchers.

Similarly to Falcon-AO, it holds a predefined

association its strategy with three ontology feature

factors: label similarity, structure similarity, and label

meaning. For example, if the two ontologies have a

high structure similarity factor, the system will use

similarity-propagation based strategies on them.

Multiple matching results are combined with

predefined experimental weights.

AgreementMaker [9] features an extensible

architecture to incorporate new methods and to tune

their performance. It implements a variety of matchers,

and allows serial and parallel composition of them. It

employs Linear Weighted Combination (LWC) method

and bipartite graph based selection method to get the

final alignment, where the weights of LWC can be

assigned manually or automatically, using a matcher

confidence measure.

3. The Reference Model of Ontology

Mapping System (RMOMS)

3.1 Components of RMOMS

The direction of matcher self-tuning is still largely

unexplored[10], and the problem gets even more

complicated since most current mapping systems

employs more than one matcher to improve robustness.

We argue that it is more practical to consider the

tuning problem in a whole system context instead of in

a single matcher context.

We get a good and easy view of mainstream

ontology mapping systems by checking results of

OAEI ontology matching campaigns. Besides Falcon-

AO, RiMOM and AgreementMaker mentioned above,

we also studied some other notable systems, such as

ASMOV [11], COMA++ [12].

Each of these systems contains similar components

with those of others, more or less, and there appears to

be a generic mapping process, however, they use

different term “dialect” to name their components,

which makes it hard for further discussion. We present

here RMOMS, a Reference Model of Ontology

Mapping System, inspired by the systems we studied,

as well as AUTOMS-F [13], to help us to anatomize

the self-tuning problem within a system context.

RMOMS includes following six components:

The Preprocessor imports and parses the ontologies,

and probably provides formatted storage of them.

Some systems, for example Falcon-AO and COMA++,

partition the large ontologies into smaller blocks for

later matching operations,.

The Dispatcher selects and combines proper

matchers to work, in run-time or design-time fashion,

serialized or paralleled, or even iteratively, by user

interaction or automatic analyzing features of ontology.

The Dispatcher is actually the central controller of

matching process. Many systems do not have an

explicit dispatching module, while COMA++ has two

components named Execution Engine and Match

Customizer. Matching processing is performed in

Execution Engine in the form of match iterations, and

each iteration can be configured individually with

Match Customizer.

The Matcher is the key of the system and controlled

by the Dispatcher, implementing matching algorithms.

We call the one which computing with single

algorithm an atomic matcher, and that computing with

multiple algorithms a hybrid matcher. COMA++

extends its previous prototype COMA[14],

implementing atomic matchers such as Affix, N-Gram,

and EditDistance matcher, and hybrid matchers such as

Name matcher, integrating three atomic matchers

above, and TypeName matcher further integrating

Name and DataType matchers.

The Aggregator combines multiple similarity values

from matchers into one value. In AgreementMaker, the

Aggregator exists as its third layer matchers to obtain a

unique matching by combining the results of two or

more matchers.

The Pruner removes semantically invalid or

unsatisfiable correspondences. ASMOV performs

comprehensive validation and pruning process in each

mapping iteration, with five kinds of semantic

verification inferences, such as multiple-entity

correspondences, disjointness-equivalence

contradiction, subsumption incompleteness, and so on.

The User interface gets the user inputs, such as the

parameters, weights and thresholds, or assists uses to

get final alignment by suggesting plausible matching

candidates. All systems investigated by us have

graphic user interface.

We summarize in Table 1 the components of

RMOMS with those of ASMOV, COMA++, Falcon-

AO, and RiMOM.

169

Table 1. Components of RMOMS and
ontology mapping systems

RMOMS

A
S
M
O
V

C
O
M
A
+
+

F
alco

n
-

A
O

R
iM

O
M

Preprocessor Have Have Have Have

Dispatcher Have Have Have Have

Matcher(s) Have Have Have Have

Aggregator Have Have Have Have

Pruner Have No No Have

User Interface GUI GUI GUI GUI

With RMOMS, it is clarified now that a self-tuning

ontology mapping system mostly features its self-

tuning dispatcher, matchers, aggregator, and pruner.

However, only two of them are addressed in this paper,

the matchers and aggregator.

3.2 LiSTOMS: a prototype sample of RMOMS

3.2.1. Overview. We design LiSTOMS as our first

prototype and evaluation platform of RMOMS, with

only four components developed by now, the

preprocessor, six matchers, the aggregator, with a

graphic user interface. The system has an extensible

matcher architecture so new matchers can be included

and used in combination with others in future.

3.2.2. The matchers. We design and implement two

sets of matchers, and each set consists of three

matchers. The first set includes one atomic matcher

and two hybrid matchers. The first matcher, named the

EW matcher, which combines an edit distance matcher

[15] and a Word-Net matcher using Wu-Palmer

algorithm [16]. The second matcher, called the CDW

matcher using Stoilos-Stamou-Kollias algorithm [17],

and the third matcher, named the CONTX matcher,

computes three facet contexts of concepts, which are

structure facet, attribute facet and instance facet [18],

using the algorithm of vector space model [19]. The

other set consists of variants of the above three

matchers separately, named the EW+, CDW+, and

CONTX+ matcher, optimized with Maxium Weight

Bipartite Graph Matching (MWBGM) method

(presented in Section 4.1), which has been used for

correspondences selection by Similarity Flooding [20]

matcher, and by AgreementMaker aggregator. We

expand its usage as a generic self-tuning add-on for all

matchers.

3.3.3. The aggregator. We design the aggregator

featuring Stable Match method (introduced in Section

5.1) to assign weights for matcher automatically and

using linear weighted combination to obtain the

weighted average for the similarity values from

different matchers. The aggregator is also equipped

with the MWBGM method to optimize the final

outcome of the system.

4. Maxium Weight Bipartite Graph

Matching method for self-tuning matcher

4.1. Overview

We narrowed our study to deal with one-to-one

matching case, because this kind of case is often

required in real-world scenarios, and many-to-many

matching can hopefully be established based on it [21].

Given the source ontology has m elements and the

target ontology has n elements, we assume that the

matcher produces one-to-one correspondences among

entities of different ontologies, and the amount of the

correspondences is the minimum of m and n. We also

assume that the matcher expects the overall ‘best’

similarity.

Inspired by the study of Similarity Flooding and

AgreementMaker, we transform this problem into an

well-known optimization problem, named the

Assignment Problem, and adopt to model the candidate

correspondences as weighted bipartite graph G= (S ∪

T, E), where S contains the source ontology entities, T

contains the target ontology entities, and E contains

one edge from S to T for each correspondence

weighted with a similarity value computed by the

matcher. Algorithms such as the Hungarian Method

[22] and the Shortest Augmenting Path [23] algorithm

can be adopted to solve this problem then, finding out

a maximum weight matching M. For each vertex in G

at most one adjacent edge is contained in M, where the

sum of the weights of the edges is maximized.

4.2. Self-tuning matcher test

4.2.1. Test One. We compare the original EW, CDW

and CONTX matcher, with their variants, the EW+,

CDW+, and CONTX+ matcher separately, using #205

and #101 ontologies of OAEI 2008 benchmark

(http://oaei.ontologymatching.org/2008/results/benchm

arks). #101 is used as the reference ontology.

For the original matchers, we set the thresholds on

purpose to make the amount of output correspondences

close to that of correct ones, and then we can get

relatively high F-Measure. We also observe that these

three original matchers use different thresholds to

achieve this. However, the overall results of original

matchers are obviously inferior to those of the

optimized ones. In real scenarios, we cannot know how

170

many correct correspondences there are between

different ontologies, so we have no means to know

what the ‘proper’ thresholds are, which we can only

know in experimental scenarios. When we decrease the

thresholds, we can get higher recall rate, at the expense

of the precision and the comprehensive F-value.

Especially in the case of EW matcher, we lower the

threshold from 0.9 to 0.8, the recall rate increases from

0.42 to 0.64 but the precision rate drops from 0.38 to

0.19.

Table 2. Results of test one

M
atch

ers

T
h
resh

o
ld
s

C
o
rrect/A

ll

P
recisio

n

R
ecall

F
-M

easu
re

EW
0.90 14/37 0.38 0.42 0.40

0.80 21/111 0.19 0.64 0.29

EW+ - 20/33 0.61 0.61 0.61

CDW
0.55 13/35 0.37 0.39 0.38

0.40 16/65 0.25 0.48 0.33

CDW+ - 13/33 0.39 0.39 0.39

CONTX
0.60 29/33 0.88 0.88 0.88

0.40 31/39 0.79 0.94 0.86

CONTX+ - 33/33 1.00 1.00 1.00

4.2.2. Test Two. In this test, we compare EW+, I-Sub+,

and CONTX+ matcher with ASMOV, LILY and

RiMOM, using #301, #302, #303, #304 and #101

ontologies of OAEI 2008 benchmark suite. #101 is

used as the reference ontology as well.

Table 3. Results of test two

#301 #302 #303 #304

P
recisio

n

R
ecall

P
recisio

n

R
ecall

P
recisio

n

R
ecall

P
recisio

n

R
ecall

Lily 0.94 0.82 0.89 0.65 0.65 0.71 0.95 0.97

RiMOM 0.76 0.69 0.72 0.65 0.76 0.88 0.90 0.97

ASMOV 0.89 0.77 0.61 0.46 0.73 0.83 0.90 0.92

EW+ 0.80 0.72 0.60 0.54 0.43 0.85 0.77 0.85

CDW+ 0.91 0.82 0.72 0.65 0.42 0.83 0.85 0.93

CONTX+ 0.89 0.80 0.72 0.65 0.36 0.73 0.86 0.95

Comparing to these powerful matching systems, our

simple matchers obtain amazing results, especially the

overall recall rates close to that of the best of these

three systems. However, the precision rates of our

three matchers are significantly low in the case of #303,

where the amount of correct correspondences is 48,

and the size of smaller ontology is 96, so the

theoretical precision rate of our self-tuning matcher

then will be or less than 48/96=0.50.

5. Stable Match method for self-tuning

aggregator

5.1. Overview

As defined above, the aggregator aims to combine

the outcomes of the multiple matchers. The key of self-

tuning aggregator is the weights of the matchers

involved, which also associates with quality evaluation

of the matchers. AgreementMaker proposes a unique

measure, which is proportional to the similarity values

of selected mappings, while detecting and penalizing

those matchers which tend to assign high similarity

values too generously.

We present here another method. In the one-to-one

matching case, given two ontology O1 and O2, e1 from

O1, and e2 from O2, we define a stable match as both

the similarity value from e1 to e2 and that from e2 to e1

are the maximum. In Figure 1, there are two stable

matches, matching(“Inbook”, “Inbook”) and

matching(“Incollection”, “Collection”).

matching(“Inbook”, “Book”) is not a stable match,

although its value is larger than that of

matching(“Incollection”, “Collection”).

Actually, stable match is an idea similar to well-

known stable marriage, modeling the candidate

correspondences as weighted bipartite graph as well.

We evaluate a matcher by its ability of finding stable

matches, which also represents the preference of the

matcher. For example, if a matcher finds more stable

matches than others, we think this matcher is more

suitable for these ontologies, and assign it larger

weight in turn. Unlike the strategies adopted by other

systems like Falcon-AO, using design-time rules to

link the ontology and a preferred matcher, we then

provide a method to magnify a matcher automatically

when we find it capable of finding more stable matches.

171

Figure 1. Example of stable matching

5.2. Self-tuning aggregator test

5.2.1. Test one. In the test of Section 4.2.1, the overall

marks of three self-tuning matchers are CONTX+ the

best, then EW+ and CDW+ in turn. If they are

combined to get the final alignment, the aggregator

should assign CONTX+ a highest weight, and then

EW+ the second highest weight, and CDW+ the lowest

weight.

We calculate the amount of stable matches found by

the matchers, CONTX+ 30, EW+ 25, and CDW+ 20.

The weights for these matchers are obtained then,

CONTX+ 0.40, EW+ 0.33, and CDW+ 0.27.We find it

is interesting that the better marking the matcher gets

in this matching case, the more stable matches it finds

out.

5.2.2. Test two. We run the aggregator in two rounds.

In the first round, we turn off the MWBGM method,

and in the second round, we turn it on. The results of

two rounds are show in Figure 2 and Figure 3 as

LiSTOMS-1, and LiSTOMS-2 separately.

The results are amazing. Although our system is a

light-weighted self-tuning prototype with three simple

matchers, the overall recall rates are leading, and the

precision rates are competing. With MWBGM, we

improve precision with only a little loss of recall in the

#303 case.

6. Conclusions

With RMOMS, the Reference Model of Ontology

Mapping System, we break down self-tuning ontology

system problem into a few more feasible parts, and

focus our research on two of them, the matchers and

aggregator. We design LiSTOMS as our first prototype

and evaluation platform of RMOMS, and extend

Maxium Weight Bipartite Graph Matching method

(presented in Section 4.1), as a generic self-tuning add-

on for all matchers, and use Stable Match method for

self-tuning aggregator. Equipped with these methods,

our light-weighted system, LiSTOMS has already

shown its leading recall rate and competing precision

rate.

Table 3. Results of precision
 #301 #302 #303 #304

Lily 0.94 0.89 0.65 0.95

RiMOM 0.76 0.72 0.76 0.9

ASMOV 0.89 0.61 0.73 0.92

LiSTOMS-1 0.88 0.67 0.36 0.78

LiSTOMS-2 0.91 0.72 0.43 0.86

Table 4. Results for Recall

 #301 #302 #303 #304

Lily 0.82 0.65 0.71 0.97

RiMOM 0.69 0.65 0.88 0.97

ASMOV 0.77 0.46 0.83 0.97

LiSTOMS-1 0.82 0.65 0.88 0.96

LiSTOMS-2 0.82 0.65 0.85 0.95

7. References

[1] J. Euzenat and P. Shvaiko, Ontology Matching,

Springer Berlin Heidelberg, 2007.

[2] P. Shvaiko and J. Euzenat, “Ten Challenges for

Ontology Matching,” On the Move to Meaningful

Internet Systems: OTM 2008, Springer Berlin /

Heidelberg, 2008.

[3] M. Sayyadian, Y. Lee, A. Doan, and A.S. Rosenthal,

“Tuning schema matching software using synthetic

scenarios,” Proceedings of the 31st International

Conference on Very Large Data Bases, Trondheim,

Norway: VLDB Endowment, 2005, pp. 994-1005.

[4] Y. Lee, M. Sayyadian, A. Doan, and A.S. Rosenthal,

“eTuner: tuning schema matching software using

synthetic scenarios,” The VLDB Journal, vol. 16,

2007, pp. 97-122.

[5] A. Doan, P. Domingos, and A.Y. Halevy,

“Reconciling schemas of disparate data sources: a

machine-learning approach,” SIGMOD Rec., vol. 30,

2001, pp. 509-520.

[6] M. Ehrig, S. Staab, and Y. Sure, “Bootstrapping

ontology alignment methods with APFEL,” Special

interest tracks and posters of the 14th international

conference on World Wide Web, Chiba, Japan: ACM,

2005, pp. 1148-1149.

[7] N. Jian, W. Hu, G. Cheng, and Y. Qu, “Falcon-AO:

Aligning Ontologies with Falcon,” Proceedings of the

K-Cap Workshop on Integrating Ontologies, CEUR-

WS.org, 2005, pp. 85-91.

[8] J. Tang, J. Li, B. Liang, X. Huang, Y. Li, and K.

Wang, “Using Bayesian decision for ontology

mapping,” Web Semantics: Science, Services and

 B
o
o
k

C
o
llectio

n

In
b
o
o
k

B
o
o
k
p
art

Inbook 0.90 0.00 1.00 0.69

Incollection 0.00 0.85 0.10 0.00

Chapter 0.00 0.05 0.00 0.00

Conference 0.00 0.10 0.00 0.00

Match(O2,O1)

M
a
tch

(O
1
, O

2
))

172

Agents on the World Wide Web, vol. 4, 2006, pp. 243-

262.

[9] I. F.Cruz, F.P. Antonelli, and C. Stroe, “Efficient

Selection of Mappings and Automatic Quality-driven

Combination of Matching Methods,” Proceedings of

the 4th International Workshop on Ontology Matching

(OM-2009) Collocated with the 8th International

Semantic Web Conference (ISWC-2009), CEUR-

WS.org, 2009.

[10] A. Gal and P. Shvaiko, “Advances in Ontology

Matching,” Advances in Web Semantics I, 2009.

[11] Y.R. Jean-Mary, E.P. Shironoshita, and M.R. Kabuka,

“Ontology matching with semantic verification,” Web

Semantics: Science, Services and Agents on the World

Wide Web, vol. 7, Sep. 2009, pp. 235-251.

[12] D. Aumueller, H.H. Do, S. Massmann, and E. Rahm,

“Schema and ontology matching with COMA++,”

Proceedings of the 2005 ACM SIGMOD international

conference on Management of data, ACM New York,

NY, USA, 2005, pp. 906-908.

[13] A. Valarakos, V. Spiliopoulos, and G. Vouros,

“AUTOMS-F: A Framework for the Synthesis of

Ontology Mapping Methods,” Networked Knowledge

- Networked Media, Springer Berlin / Heidelberg,

2009, pp. 45-59.

[14] H. Do and E. Rahm, “COMA: a system for flexible

combination of schema matching approaches,”

Proceedings of the 28th international conference on

Very Large Data Bases, Hong Kong, China: VLDB

Endowment, 2002, pp. 610-621.

[15] V. Levenshtein, “Binary codes capable of correcting

deletions, insertions, and reversals,” vol. 10, 1966, pp.

707-710.

[16] Z. Wu and M. Palmer, “Verbs semantics and lexical

selection,” Proceedings of the 32nd annual meeting

on Association for Computational Linguistics, Las

Cruces, New Mexico: Association for Computational

Linguistics, 1994, pp. 133-138.

[17] G. Stoilos, G. Stamou, and S. Kollias, “A String

Metric for Ontology Alignment,” The Semantic Web –

ISWC 2005, Springer Berlin / Heidelberg, 2005, pp.

624-637.

[18] Z. Zhen, J. Shen, and S. Lu, “WCONS: An ontology

mapping approach based on word and context

similarity,” 2008 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent

Technology - Workshops, WI-IAT Workshops 2008,

Sydney, NSW, Australia: Inst. of Elec. and Elec. Eng.

Computer Society, 2008, pp. 334-338.

[19] V.V. Raghavan and S.K.M. Wong, “A critical analysis

of vector space model for information retrieval,”

Journal of the American Society for Information

Science, vol. 37, 1986, pp. 279-287.

[20] S. Melnik, H. Garcia-Molina, and E. Rahm,

“Similarity Flooding: A Versatile Graph Matching

Algorithm and Its Application to Schema Matching,”

Proceedings of the 18th International Conference on

Data Engineering, IEEE Computer Society, 2002, p.

117.

[21] Y. Chen and F. Fonseca, “A Bipartite Graph Co-

Clustering Approach for Ontology Mapping,”

Proceedings of the Workshop on Semantic Web

Technologies for Searching and Retrieving Scientific

Data. Colocated with the Second International

Semantic Web Conference (ISWC-03), CEUR-WS.org,

2003.

[22] H.W. Kuhn, “The Hungarian method for the

assignment problem,” Naval Research Logistics, vol.

52, 2005, pp. 7-21.

[23] R.M. Karp, “An algorithm to solve the m × n

assignment problem in expected time O(mn logn),”

Networks, vol. 10, 1980, pp. 143-152.

173

