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Abstract 
 

We argue that it is more practical to address the 

ontology mapping self-tuning problem in a whole 

system context instead of in a single matcher context. 

In this paper we introduce RMOMS, a Reference 

Model for Ontology Mapping Systems, consisting of six 

parts, the Preprocessor, the Dispatcher, the 

Matcher(s), the Aggregator, the Pruner, and the User 

Interface, with which to disassemble the self-tuning 

problem into more feasible units. We propose 

Maximum Weight Bipartite Graph Matching method 

for self-tuning matchers and Stable Match method for 

self-tuning aggregator, and test them in LiSTOMS, a 

light-weighted prototype sample of RMOMS. With 

comparison with some notable systems, LiSTOMS 

shows leading recall rate and competing precision rate. 

 

1. Introduction 
 

The final goal for ontology mapping is to find the 

correspondences between semantically related entities 

of different ontologies correctly, completely, and 

efficiently. Since an algorithm might be effective only 

for a few scenarios, and not for others, most ontology 

mapping systems adopt multiple matching methods, or 

matchers, to improve generality of mapping [1], 

finding linguistic and/or structural similarities between 

ontologies entities. However, these systems have to use 

various parameters for better fitting in with the need of 

diverse context, and the matching outcome of these 

systems heavily rely on their parameters, even within 

the same scenario, changing the parameters can lead to 

significant different outcome. So the more we rely on 

the trick of setting weights and thresholds manually, 

the less usability such systems may retain, especially in 

a dynamic application context, such as the Web. 

Tuning ontology mapping system automatically has 

become one of the challenges in ontology mapping 

field [2]. 

To disassemble this problem into more feasible units, 

we introduce RMOMS, a Reference Model for 

Ontology Mapping Systems, which consists of six 

parts, the Preprocessor, the Dispatcher, the Matcher(s), 

the Aggregator, the Pruner, and the User interface. 

Within this framework, the solution to the problem lies 

largely in four parts: the Dispatcher, the Matcher(s), 

the Aggregator and the Pruner. We concentrate on the 

Matchers and the Aggregator in this paper. 

The remainder of this paper organized as follows. In 

Section 2, we brief the related works. In Section 3, we 

present RMOMS and our sample implementation of 

this model, LiSTOMS, a Light-weighted Self-Tuning 

Ontology Mapping System. In Section 4 and 5, we 

propose and test Maximum Weight Bipartite Graph 

Matching (MWBGM) method for self-tuning matchers 

and Stable Match method for self-tuning aggregator 

used in LiSTOMS. Finally, in Section 6 we summarize 

our findings of this paper. 

 

2. Related Works 
 

As stated in [3], tuning a multiple components 

ontology mapping system is a must, but skill- and 

time-intensive process, and efforts have been made to 

reduce the cost.  

eTuner project [3][4] proposes a staged tuning 

method, where the matchers are organized in an 

execution tree to avoid exhaustive tuning. Output of 

the lower level matchers serves as input to the higher 

level matchers, and tuning starts with the matchers at 

the leaf level, then moves to the matchers at the upper 

level, and so on.  

Another approach to parameter tuning is machine 

learning. For example, LSD algorithm [5] performs a 

liner regression to determine the weights of learners, 

and then uses weighted average to combine learners’ 
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grades. Another example is APFEL [6], which uses 

users’ feedback to generate new hypotheses for the 

tuning process.  

We also investigated some of the systems which 

took part in the last few Ontology Alignment 

Evaluation Initiative (OAEI) campaigns, with special 

focus on their architecture, components and tuning 

methods.  

Falcon-AO [7] uses four matchers, and the 

association between detected similarities and matchers 

to be combined is predefined. For example, if the two 

ontologies have a high linguistic factor, Falcon-AO 

will reduce the thresholds of its linguistic matchers and 

leak more output from these matchers.  

RiMOM [8] implements more than eight matchers. 

Similarly to Falcon-AO, it holds a predefined 

association its strategy with three ontology feature 

factors: label similarity, structure similarity, and label 

meaning. For example, if the two ontologies have a 

high structure similarity factor, the system will use 

similarity-propagation based strategies on them. 

Multiple matching results are combined with 

predefined experimental weights.  

AgreementMaker [9] features an extensible 

architecture to incorporate new methods and to tune 

their performance. It implements a variety of matchers, 

and allows serial and parallel composition of them. It 

employs Linear Weighted Combination (LWC) method 

and bipartite graph based selection method to get the 

final alignment, where the weights of LWC can be 

assigned manually or automatically, using a matcher 

confidence measure. 

 

3. The Reference Model of Ontology 

Mapping System (RMOMS) 
 

3.1 Components of RMOMS 
 

The direction of matcher self-tuning is still largely 

unexplored[10], and the problem gets even more 

complicated since most current mapping systems 

employs more than one matcher to improve robustness. 

We argue that it is more practical to consider the 

tuning problem in a whole system context instead of in 

a single matcher context.  

We get a good and easy view of mainstream 

ontology mapping systems by checking results of 

OAEI ontology matching campaigns. Besides Falcon-

AO, RiMOM and AgreementMaker mentioned above, 

we also studied some other notable systems, such as 

ASMOV [11], COMA++ [12].  

Each of these systems contains similar components 

with those of others, more or less, and there appears to 

be a generic mapping process, however, they use 

different term “dialect” to name their components, 

which makes it hard for further discussion. We present 

here RMOMS, a Reference Model of Ontology 

Mapping System, inspired by the systems we studied, 

as well as AUTOMS-F [13], to help us to anatomize 

the self-tuning problem within a system context. 

RMOMS includes following six components: 

The Preprocessor imports and parses the ontologies, 

and probably provides formatted storage of them. 

Some systems, for example Falcon-AO and COMA++, 

partition the large ontologies into smaller blocks for 

later matching operations,.  

The Dispatcher selects and combines proper 

matchers to work, in run-time or design-time fashion, 

serialized or paralleled, or even iteratively, by user 

interaction or automatic analyzing features of ontology. 

The Dispatcher is actually the central controller of 

matching process. Many systems do not have an 

explicit dispatching module, while COMA++ has two 

components named Execution Engine and Match 

Customizer. Matching processing is performed in 

Execution Engine in the form of match iterations, and 

each iteration can be configured individually with 

Match Customizer.  

The Matcher is the key of the system and controlled 

by the Dispatcher, implementing matching algorithms. 

We call the one which computing with single 

algorithm an atomic matcher, and that computing with 

multiple algorithms a hybrid matcher. COMA++ 

extends its previous prototype COMA[14], 

implementing atomic matchers such as Affix, N-Gram, 

and EditDistance matcher, and hybrid matchers such as 

Name matcher, integrating three atomic matchers 

above, and TypeName matcher further integrating 

Name and DataType matchers. 

The Aggregator combines multiple similarity values 

from matchers into one value. In AgreementMaker, the 

Aggregator exists as its third layer matchers to obtain a 

unique matching by combining the results of two or 

more matchers.  

The Pruner removes semantically invalid or 

unsatisfiable correspondences. ASMOV performs 

comprehensive validation and pruning process in each 

mapping iteration, with five kinds of semantic 

verification inferences, such as multiple-entity 

correspondences, disjointness-equivalence 

contradiction, subsumption incompleteness, and so on. 

The User interface gets the user inputs, such as the 

parameters, weights and thresholds, or assists uses to 

get final alignment by suggesting plausible matching 

candidates. All systems investigated by us have 

graphic user interface.  

We summarize in Table 1 the components of 

RMOMS with those of ASMOV, COMA++, Falcon-

AO, and RiMOM. 
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Table 1. Components of RMOMS and 
ontology mapping systems 

RMOMS 

A
S
M
O
V
 

C
O
M
A
+
+
 

F
alco

n
-

A
O
 

R
iM

O
M
 

Preprocessor Have Have Have Have 

Dispatcher Have Have Have Have 

Matcher(s) Have Have Have Have 

Aggregator Have Have Have Have 

Pruner Have No No Have 

User Interface GUI GUI GUI GUI 

With RMOMS, it is clarified now that a self-tuning 

ontology mapping system mostly features its self-

tuning dispatcher, matchers, aggregator, and pruner. 

However, only two of them are addressed in this paper, 

the matchers and aggregator. 

 

3.2 LiSTOMS: a prototype sample of RMOMS 
 

3.2.1. Overview. We design LiSTOMS as our first 

prototype and evaluation platform of RMOMS, with 

only four components developed by now, the 

preprocessor, six matchers, the aggregator, with a 

graphic user interface. The system has an extensible 

matcher architecture so new matchers can be included 

and used in combination with others in future.  

 

3.2.2. The matchers. We design and implement two 

sets of matchers, and each set consists of three 

matchers. The first set includes one atomic matcher 

and two hybrid matchers. The first matcher, named the 

EW matcher, which combines an edit distance matcher 

[15] and a Word-Net matcher using Wu-Palmer 

algorithm [16]. The second matcher, called the CDW 

matcher using Stoilos-Stamou-Kollias algorithm [17], 

and the third matcher, named the CONTX matcher, 

computes three facet contexts of concepts, which are 

structure facet, attribute facet and instance facet [18], 

using the algorithm of vector space model [19]. The 

other set consists of variants of the above three 

matchers separately, named the EW+, CDW+, and 

CONTX+ matcher, optimized with Maxium Weight 

Bipartite Graph Matching (MWBGM) method 

(presented in Section 4.1), which has been used for 

correspondences selection by Similarity Flooding [20] 

matcher, and by AgreementMaker aggregator. We 

expand its usage as a generic self-tuning add-on for all 

matchers. 

 

3.3.3. The aggregator. We design the aggregator 

featuring Stable Match method (introduced in Section 

5.1) to assign weights for matcher automatically and 

using linear weighted combination to obtain the 

weighted average for the similarity values from 

different matchers. The aggregator is also equipped 

with the MWBGM method to optimize the final 

outcome of the system.  

 

4. Maxium Weight Bipartite Graph 

Matching method for self-tuning matcher 
 

4.1. Overview 
 

We narrowed our study to deal with one-to-one 

matching case, because this kind of case is often 

required in real-world scenarios, and many-to-many 

matching can hopefully be established based on it [21].  

Given the source ontology has m elements and the 

target ontology has n elements, we assume that the 

matcher produces one-to-one correspondences among 

entities of different ontologies, and the amount of the 

correspondences is the minimum of m and n. We also 

assume that the matcher expects the overall ‘best’ 

similarity. 

Inspired by the study of Similarity Flooding and 

AgreementMaker, we transform this problem into an 

well-known optimization problem, named the 

Assignment Problem, and adopt to model the candidate 

correspondences as weighted bipartite graph G= (S ∪ 

T, E), where S contains the source ontology entities, T 

contains the target ontology entities, and E contains 

one edge from S to T for each correspondence 

weighted with a similarity value computed by the 

matcher. Algorithms such as the Hungarian Method 

[22] and the Shortest Augmenting Path [23] algorithm 

can be adopted to solve this problem then, finding out 

a maximum weight matching M. For each vertex in G 

at most one adjacent edge is contained in M, where the 

sum of the weights of the edges is maximized.  

 

4.2. Self-tuning matcher test  
 

4.2.1. Test One. We compare the original EW, CDW 

and CONTX matcher, with their variants, the EW+, 

CDW+, and CONTX+ matcher separately, using #205 

and #101 ontologies of OAEI 2008 benchmark 

(http://oaei.ontologymatching.org/2008/results/benchm

arks).  #101 is used  as the reference ontology. 

For the original matchers, we set the thresholds on 

purpose to make the amount of output correspondences 

close to that of correct ones, and then we can get 

relatively high F-Measure. We also observe that these 

three original matchers use different thresholds to 

achieve this. However, the overall results of original 

matchers are obviously inferior to those of the 

optimized ones. In real scenarios, we cannot know how 
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many correct correspondences there are between 

different ontologies, so we have no means to know 

what the ‘proper’ thresholds are, which we can only 

know in experimental scenarios. When we decrease the 

thresholds, we can get higher recall rate, at the expense 

of the precision and the comprehensive F-value. 

Especially in the case of EW matcher, we lower the 

threshold from 0.9 to 0.8, the recall rate increases from 

0.42 to 0.64 but the precision rate drops from 0.38 to 

0.19.  

Table 2. Results of test one 

M
atch

ers 

T
h
resh

o
ld
s 

C
o
rrect/A

ll 

P
recisio

n
 

R
ecall 

F
-M

easu
re 

EW 
0.90 14/37 0.38 0.42 0.40 

0.80 21/111 0.19 0.64 0.29 

EW+ - 20/33 0.61 0.61 0.61 

CDW 
0.55 13/35 0.37 0.39 0.38 

0.40 16/65 0.25 0.48 0.33 

CDW+ - 13/33 0.39 0.39 0.39 

CONTX 
0.60 29/33 0.88 0.88 0.88 

0.40 31/39 0.79 0.94 0.86 

CONTX+ - 33/33 1.00 1.00 1.00 

 

4.2.2. Test Two. In this test, we compare EW+, I-Sub+, 

and CONTX+ matcher with ASMOV, LILY and 

RiMOM, using #301, #302, #303, #304 and #101 

ontologies of OAEI 2008 benchmark suite. #101 is 

used as the reference ontology as well. 

Table 3. Results of test two 

 

#301 #302 #303 #304 

P
recisio

n
 

R
ecall 

P
recisio

n
 

R
ecall 

P
recisio

n
 

R
ecall 

P
recisio

n
 

R
ecall 

Lily 0.94 0.82 0.89 0.65 0.65 0.71 0.95 0.97 

RiMOM 0.76 0.69 0.72 0.65 0.76 0.88 0.90 0.97 

ASMOV 0.89 0.77 0.61 0.46 0.73 0.83 0.90 0.92 

EW+ 0.80 0.72 0.60 0.54 0.43 0.85 0.77 0.85 

CDW+ 0.91 0.82 0.72 0.65 0.42 0.83 0.85 0.93 

CONTX+ 0.89 0.80 0.72 0.65 0.36 0.73 0.86 0.95 

Comparing to these powerful matching systems, our 

simple matchers obtain amazing results, especially the 

overall recall rates close to that of the best of these 

three systems. However, the precision rates of our 

three matchers are significantly low in the case of #303, 

where the amount of correct correspondences is 48, 

and the size of smaller ontology is 96, so the 

theoretical precision rate of our self-tuning matcher 

then will be or less than 48/96=0.50.  

 

5. Stable Match method for self-tuning 

aggregator 
 

5.1. Overview  
 

As defined above, the aggregator aims to combine 

the outcomes of the multiple matchers. The key of self-

tuning aggregator is the weights of the matchers 

involved, which also associates with quality evaluation 

of the matchers. AgreementMaker proposes a unique 

measure, which is proportional to the similarity values 

of selected mappings, while detecting and penalizing 

those matchers which tend to assign high similarity 

values too generously. 

We present here another method. In the one-to-one 

matching case, given two ontology O1 and O2, e1 from 

O1, and e2 from O2, we define a stable match as both 

the similarity value from e1 to e2 and that from e2 to e1 

are the maximum. In Figure 1, there are two stable 

matches, matching(“Inbook”, “Inbook”) and 

matching(“Incollection”, “Collection”). 

matching(“Inbook”, “Book”) is not a stable match, 

although its value is larger than that of 

matching(“Incollection”, “Collection”). 

Actually, stable match is an idea similar to well-

known stable marriage, modeling the candidate 

correspondences as weighted bipartite graph as well. 

We evaluate a matcher by its ability of finding stable 

matches, which also represents the preference of the 

matcher. For example, if a matcher finds more stable 

matches than others, we think this matcher is more 

suitable for these ontologies, and assign it larger 

weight in turn. Unlike the strategies adopted by other 

systems like Falcon-AO, using design-time rules to 

link the ontology and a preferred matcher, we then 

provide a method to magnify a matcher automatically 

when we find it capable of finding more stable matches.  
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Figure 1. Example of stable matching 
 

5.2. Self-tuning aggregator test 
 

5.2.1. Test one. In the test of Section 4.2.1, the overall 

marks of three self-tuning matchers are CONTX+ the 

best, then EW+ and CDW+ in turn. If they are 

combined to get the final alignment, the aggregator 

should assign CONTX+ a highest weight, and then 

EW+ the second highest weight, and CDW+ the lowest 

weight. 

We calculate the amount of stable matches found by 

the matchers, CONTX+ 30, EW+ 25, and CDW+ 20. 

The weights for these matchers are obtained then, 

CONTX+ 0.40, EW+ 0.33, and CDW+ 0.27.We find it 

is interesting that the better marking the matcher gets 

in this matching case, the more stable matches it finds 

out.  

 

5.2.2. Test two. We run the aggregator in two rounds. 

In the first round, we turn off the MWBGM method, 

and in the second round, we turn it on. The results of 

two rounds are show in Figure 2 and Figure 3 as 

LiSTOMS-1, and LiSTOMS-2 separately. 

The results are amazing. Although our system is a 

light-weighted self-tuning prototype with three simple 

matchers, the overall recall rates are leading, and the 

precision rates are competing. With MWBGM, we 

improve precision with only a little loss of recall in the 

#303 case.  

 

6. Conclusions 
 

With RMOMS, the Reference Model of Ontology 

Mapping System, we break down self-tuning ontology 

system problem into a few more feasible parts, and 

focus our research on two of them, the matchers and 

aggregator. We design LiSTOMS as our first prototype 

and evaluation platform of RMOMS, and extend 

Maxium Weight Bipartite Graph Matching method 

(presented in Section 4.1), as a generic self-tuning add-

on for all matchers, and use Stable Match method for 

self-tuning aggregator. Equipped with these methods, 

our light-weighted system, LiSTOMS has already 

shown its leading recall rate and competing precision 

rate.  

Table 3. Results of precision 
 #301 #302 #303 #304 

Lily 0.94 0.89 0.65 0.95 

RiMOM 0.76 0.72 0.76 0.9 

ASMOV 0.89 0.61 0.73 0.92 

LiSTOMS-1 0.88 0.67 0.36 0.78 

LiSTOMS-2 0.91 0.72 0.43 0.86 

 

Table 4. Results for Recall 

 #301 #302 #303 #304 

Lily 0.82 0.65 0.71 0.97 

RiMOM 0.69 0.65 0.88 0.97 

ASMOV 0.77 0.46 0.83 0.97 

LiSTOMS-1 0.82 0.65 0.88 0.96 

LiSTOMS-2 0.82 0.65 0.85 0.95 
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