
Automatic Generation of Mediated Schemas
Through Reasoning Over Data Dependencies

Xiang Li, Christoph Quix, David Kensche, Sandra Geisler and Lisong Guo
Informatik 5 (Databases and Information Systems)

RWTH Aachen University, Germany
Email: LastName@dbis.rwth-aachen.de

Abstract—Mediated schemas lie at the center of the well rec-
ognized data integration architecture. Classical data integration
systems rely on a mediated schema created by human experts
through an intensive design process. Automatic generation of
mediated schemas is still a goal to be achieved. We generate
mediated schemas by merging multiple source schemas inter-
related by tuple-generating dependencies (tgds). Schema merging
is the process to consolidate multiple schemas into a unified view.
The task becomes particularly challenging when the schemas
are highly heterogeneous and autonomous. Existing approaches
fall short in various aspects, such as restricted expressiveness
of input mappings, lacking data level interpretation, the output
mapping is not in a logical language (or not given at all), and
being confined to binary merging. We present here a novel system
which is able to perform native n-ary schema merging using P2P
style tgds as input. Suited in the scenario of generating mediated
schemas for data integration, the system opts for a minimal
schema signature retaining all certain answers of conjunctive
queries. Logical output mappings are generated to support the
mediated schemas, which enable query answering and, in some
cases, query rewriting.

I. INTRODUCTION

Data integration systems involve a multitude of data sources.
A unified user view called the mediated schema lies at the
center of a data integration architecture. Logical mappings,
e.g., tuple-generating dependencies (tgds), from the source to
the mediated schema are the key to enable query processing
over the mediated schema. Classical data integration systems
[1] nowadays still rely on a mediated schema created by an
intensive manual design process by human experts, which is
costly and inflexible in a dynamic evolving world. Automatic
generation of mediated schemas is still a goal to be achieved.

Schema merging is the process of consolidating multiple
related heterogeneous input schemas to produce a merged
schema. It is widely applied to different scenarios, such as
view integration (designing a storage schema from a set of
desired user views) and data integration (generating mediated
schemas). In vision of the importance of schema merging,
Merge is proposed as one of the major operators in Model
Management [2]. As retrospected by Bernstein and Melnik
in [3], the original vision of Model Management 1.0 is not
semantic but structural, i.e., not relating schema and data.
That is, operators are interpreted in terms of schemas, while
lacking the connection to the underlying data of the schemas.
A semantic merge is in need, not only for expressiveness
reasons but also for executability reasons. Merging using

Query Certain Answer 

Mediated	  Query	  Interface	  

User 

Peer	  P2	  
Peer	  P1	  

Peer	  P4	  Peer	  P3	  

Peer	  P5	  

Output Mapping 

Fig. 1. An N-ary Schema Merging Scenario

logical schema mappings is inevitable for realizing a model
management engine to address real-world data programmabil-
ity problems. We demonstrate a system, which makes use of
expressive mapping constraints in tgds and produces mediated
schemas with provable qualities, i.e., minimal signature with
complete certain answers. Our work is a follow-up in the
direction of constraint driven merging, extending the work in
[4], [5], [6].

Most of the early merging approaches surveyed by Batini
et al. [7] are binary, i.e., merging two schemas at a time. We
deem a native n-ary merge (e.g., as in [8]) as advantageous for
generating mediated schemas for a multitude of data sources.
Though binary merging algorithms can be applied iteratively
to merge multiple schemas, the process needs a complete
human supervision, i.e., in each iteration an expert is required
to generate mappings between a new source schema and the
intermediate merged result from previous steps. Moreover, in
a scenario of ad hoc P2P environments, only some particular
mappings are available and nobody has the complete know-
ledge to produce arbitrary mappings. Therefore, a native n-ary
merging algorithm is more suited to exploit all the available
mappings for multiple data sources.

Batini et al. [7] contribute the popularity of binary merge
to a complexity reason, that is, by involving less input the
problem of merging will become less complicated. However,
as we have already described, constructing schema mappings
is also quite expensive and requires a lot of human supervision,
which compensates for the increased computation efforts of a
native n-ary merge.

quix
Schreibmaschinentext
Proceedings of the 27th International Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany.

quix
Schreibmaschinentext



In this demo, we present a novel prototype performing
native n-ary merging to generate mediated schemas auto-
matically. The prototype is backed by a solid semantic in-
terpretation relating schemas and the underlying data. The
schema merging problem is modeled as searching for minimal
schema signatures that are able to retain all certain answers
of conjunctive queries. We propose a novel algorithm that is
able to test whether a given mediated schema, resulting from
a transformation of the joint union of the source schemas, is
complete with respect to certain answers of conjunctive queries
[9]. We employ an A-priori variant to enumerate candidate
mediated schemas to reduce unnecessary reasoning. Even
taking unambiguous logical constraints as input, alternatives
of mediated schemas can still arise, since the same piece of
information can be represented differently. In recognition of
this, our system returns a series of minimal mediated schemas.
Practical schemas are usually accompanied by integrity con-
straints which clarify the intra-schema structures. Therefore,
source integrity constraints are treated as first-class citizens in
our algorithm. To the best of our knowledge, our prototype
is the first system that is able to incorporate source integrity
constraints (in the general form of tgds and egds) seamlessly.

The rest of the paper is organized as follows. Section II
introduces briefly the modeling of the semantic merge frame-
work and the merging algorithm opting for minimized me-
diated schemas. Section III describes the system architecture
and query processing strategies over the mediated schemas.
Section IV details the demo scenario we are proposing.

II. SCHEMA MERGING THROUGH REASONING

This section summarizes the modeling and the algorithm
behind our merging prototype, presented in [10] and [9].

A. The N-ary Merging Problem

Consider the scenario of merging multiple data sources,
such as merging the employee databases of Sun and Oracle.
Since the data sources are independently developed, their
extensions, i.e., explicitly stored data, usually do not conform
to any inter-schema logical constraints. This is one main
reason why Pottinger and Bernstein [6] interprete their input
mapping as specification of overlap between schemas instead
of direct logical constraints over data instances. In this paper,
we take a different direction by interpreting the input mapping
as constraints that are expected to hold over the integrated
global database, which is inline with the common assumption
in data integration that sources are incomplete.

Given an incomplete database I of schema S, the semantics
of I wrt. a set of data dependencies Σ over S is SemΣ(I) =
{I ′ : I ′ ∈ Inst(S)∧I ⊆ I ′∧I ′ |= Σ}. When the dependencies
are clear from context, we simply write Sem(I) for brevity.

Consider n source schemas S1, S2, . . . , Sn with no two
relations sharing the same name. Each source schema Si has
a set of integrity constraints Σi as a union of tgds and egds.
The input mapping is specified by a set of inter-schema tgds
Σin among the source schemas. The joint source schema is the
disjoint union of the n source schemas, while a joint source

instance is the disjoint union of n instances with one instance
for each source schema. The merge input is then a pair (S, Σ),
with S being a joint source schema and Σ = Σin∪

⋃
i Σi. The

semantics of a joint source instance I is then SemΣ(I). In the
following, we only consider sound data sources, that is, they
are consistent with the specified data dependencies and the
possible world set they present is not empty.

For a merge input (S, Σ), a merge output is a binary
mapping Mo = (S, G, Σo), called the output mapping, in
which G is the mediated schema and Σo is a set of data
dependencies.

B. Semantics for Schema Merging

In [11], Miller et al. use formal schema equivalence results
to characterize the semantics of schema merging. However, as
we understand it today, the semantics of a mediated schema is
better characterized using not only the signature of the schema
but also the mapping relating the mediated schema to data
sources that host base data. Based on such an observation, the
semantics of schema merging in our approach is characterized
as query answering properties of the output mapping system
between the joint source schema and the mediated schema.

An output mapping is complete if for every conjunctive
query q, there exists another conjunctive query over the
mediated schema, which has an equivalent certain answer to
q over the incomplete source, for every merge input. Our
definition of completeness differs from the one in [6] in that
under the open world assumption, we focus on certain answers
(of CQs) instead of data source extensions.

Since data sources are incomplete, two different joint source
instances may have the same semantics, i.e., the same possible
world set. Therefore, we require the output mapping not to
distinguish these equivalent joint sources. This is achieved by
requiring that an incomplete joint source instance is mapped to
the union of images of each possible world in its semantics. To
put it more formally, under the output mapping, the solution
space of a joint source instance I should be the union of the
solution spaces of each source instance in Sem(I). Since it has
an effect of mixing equivalent data, we call it integratedness.

For creating a mediated query interface for data integration
systems, we take the assumption that a smaller query interface
(still retaining all the query capabilities) is better and head for
a minimal schema with no redundant column. Redundancy of
columns is defined wrt. a given output mapping. Minimality
states that an output mapping system cannot be transformed
via a family of mappings to achieve another output mapping
with a smaller mediated schema without losing a given prop-
erty. We are interested in properties such as completeness and
integratedness raised earlier.

A complete and formal treatment of the semantics can be
found in [10] and [9].

C. Algorithm Overview

Since the desired properties such as completeness and
integratedness are in general undecidable [10], we consider
a class of output mappings that have a mediated schema as



a transformation result from the joint source schema. The
algorithm has two stages: a constraint repairing stage and a
mediated schema minimization stage.

In the first stage, we construct an initial canonical output
mapping trying to “repair” the joint source instance. The
canonical output mapping consists of two parts: a set of
copy tgds from the joint source schema to one replica, and
all the input data dependencies encoded as target dependen-
cies. It is straightforward to show that the canonical output
mapping is both complete and integrated [10]. Interestingly,
Melnik describes in Theorem 4.2.4 of [12] a straightforward
algorithm creating a mediated schema for view integration,
which corresponds to our initial output mapping but in a
“reversed” direction. However, since the size of the signature
does not matter for view integration, schema minimization is
not performed.

During the second stage, we enumerate candidate mediated
schemas, and test whether a candidate is still complete. A
candidate is minimal if it cannot be reduced further in size and
will then be output as a possible result. This stage is composed
of two main components: completeness test and enumeration
strategy. In [9], we provide a procedure based on chase that
is able to test completeness for unions of CQs (UCQs) and
show that it is in PTIME if each data dependency involved
has a bounded length. Since we are trying to reduce redundant
columns in the mediated schema, we consider transformations
that project out some columns of a given schema. This family
of transformations strictly reduce the size of the mediated
schema and hence termination of the minimization process
is ensured.

III. SYSTEM OVERVIEW

The system diagram is shown in Figure 2. It is based on
Eclipse Rich Client Platform and it makes use of a Prolog
Knowledge Base Engine extensively for reasoning tasks, e.g,
completeness test and query rewriting. On top of the Prolog
engine, there are two layers:
• an algorithmic layer takes care of schema merging, query

processing, and I/O among disk files, Java and Prolog;
• a workbench layer deals with presenting schema and

mapping structures, browsing data sources (in the form
of Prolog source files), receiving user queries, keeping
lineage of source mappings and merged results, etc.

We currently support only source data as files. An imple-
mentation for supporting JDBC is in progress. The following
subsections reveals some major implementation decisions and
our query processing strategies over mediated schemas.

A. Implementation

The section details various important design/implementation
choices during the development of the system.

A-priori Enumeration: the most costly part in our merging
algorithm is repeating completeness tests for various can-
didates. A characteristic we exploit to reduce unnecessary
reasoning is that the redundant columns in the schemas possess
the A-priori property, i.e., any subset of a set of redundant

Merger 

Data 
Browser 

Mapping 
View 

Query 
View 

Schema 
View 

Enumerator 

rewriter 

Completenes 
Test Facility 

Metadata 
repository 

Query 
Engine 

I/O 

Prolog	  KB	  

Workbench 

User 

Fig. 2. System Architecture

columns is also redundant. A variant of the A-priori algorithm
[9] is employed to prune unnecessary reasoning.

Chase implementation: we implemented a parallel chase
on top of the Prolog engine. Labelled nulls (or variables) are
represented by ground skolem terms. An interesting lesson we
learnt is that the skolem term should not be nested further, due
to performance reasons. In an early version, we nested skolem
terms in the hope of recording the lineage of chasing, which
soon lead to an explosion in expression complexity.

Value Conversion Functions: real world data sources are
usually incompatible in data formats, which is a main source
for the necessity of value conversion functions. We distinguish
invertible functions and non-invertible functions. The former
is treated similarly as skolem functions used in chasing, while
the latter needs some auxiliary rule rewriting to avoid recursive
nesting [9].

Static Analysis of Mappings: we have implemented a
syntax checker which tests input whether mappings admit ter-
minating chase. Currently, only weak acyclicity is supported.
More general conditions such as stratification are also in our
research agenda. Our weak acyclicity tests already take into
account the use of value conversion functions in the mapping.

Mapping Syntax: the input mappings used by our system
are plain tgds and egds in a Prolog syntax [9]. Output
mappings are a result of a composition of a standard schema
mapping (s-t tgds with target dependencies) and a set of full
s-t tgds, which cannot be represented even by second order
tgds. However, a recent result by Arenas et al. [13] shows
that composition of two mappings specified by s-t tgds with
target dependencies is able to be expressed using source-to-
target second order dependencies (s-t SO dependencies). In
our current implementation, the output mapping is represented
as egds and tgds, using helper predicates from the canonical
mediated schema.

Batch Completeness Test: completeness tests for a given
candidate mediated schema is consolidated into one test, by
assigning disjoint domains for the data. This is due to a
consideration of reducing the communication costs between
Java and Prolog.



Fig. 3. Example of N-ary Mapping Visualization

B. Query Processing

Given a user query against the mediated schema, there are
two strategies for query processing. The first way is query
answering using a materialized instance called the universal
solution [14], while the second is query rewriting.

When the input data dependencies admit a terminating
chase, the output mapping generated by our system is guar-
anteed to admit also a terminating chase. Therefore, query
answering can be performed by chasing the source instances
against the output mapping and then perform query evaluation
over the materialized instance of the mediated schema.

However, the expressive mapping language we allow im-
poses challenges on query rewriting, since the output mapping
may involve recursion of relations. We detail here an algorithm
which is able to rewrite a conjunctive query into a Datalog
program when the input mapping consists of weakly acyclic
tgds [14]. The rewriting algorithm is an extension of the
inverse rule algorithm for query rewriting in Local-As-View
systems [15]. The rewriting algorithm proceeds in three stages.
In the first stage, bottom-up generation of functional patterns
of predicates are performed until a fixpoint is reached. This
stage can be shared by rewriting of different queries against
a given mediated schema. In the second stage, for a given
user query, we check the reachability of patterned predicates
backward from the given query. The third stage takes as input
the reachable patterned rules obtained in the previous stage
and employs the predicate-split [15] technique to produce a
function-free Datalog program.

IV. DEMO SCENARIO

First, we will show and analyze an n-ary mapping
input, taken from the real world data set Illinois Se-
mantic Integration Archive (http://pages.cs.wisc.edu/∼anhai/
wisc-si-archive/). The goal is to show the flexibility of our
system to model real world P2P style mappings and our novel
n-ary mapping visualization. Recognizing that a constraint in

an an n-ary mapping may involve multiple schemas, visual-
ization is done constraint-wise. Each constraint has two sides,
which are two conjunctive queries over multiple schemas.

Second, we will demonstrate the merging process. Our sys-
tem supports multiple configuration options, such as minimal
schema vs. minimal-sized schema and enum-one-schema vs.
enum-all-schemas. During the merging process, the reasoning
procedure would be visible via our log console view. At the
end of merging, the user is able to navigate the multiple
choices of the alternative mediated schemas with correspond-
ing output mappings.

The third part will demonstrate the query processing ca-
pability of our mediated schemas. The user will be allowed
to attach data sources to the source schemas and a data
browser is provided for introspecting the contents. A query
view can be opened on a mediated schema and users are
able to enter conjunctive queries over the mediated schema.
Our query engine is able to compute the maximal certain
answer and present the result in a tabular form to the user.
Furthermore, we will demonstrate the query rewriting function
over weakly acyclic inputs. When no egds are involved, a
maximally contained rewriting in Datalog will be produced.

ACKNOWLEDGMENT

The work is supported by the Research Cluster on Ultra
High-Speed Mobile Information and Communcation UMIC
(http://www.umic.rwth-aachen.de).

REFERENCES

[1] M. Lenzerini, “Data integration: A theoretical perspective,” in PODS,
2002, pp. 233–246.

[2] P. A. Bernstein, A. Y. Halevy, and R. Pottinger, “A vision for manage-
ment of complex models,” SIGMOD Record, vol. 29, no. 4, pp. 55–63,
2000.

[3] P. A. Bernstein and S. Melnik, “Model management 2.0: Manipulating
richer mappings,” in Proc. SIGMOD, Beijing, China, 2007, pp. 1–12.

[4] J. Biskup and B. Convent, “A formal view integration method,” in Proc.
SIGMOD, Washington, D.C., 1986, pp. 398–407.

[5] M. A. Casanova and V. M. P. Vidal, “Towards a sound view integration
methodology,” in PODS. Atlanta, GA: ACM, 1983, pp. 36–47.

[6] R. Pottinger and P. A. Bernstein, “Schema merging and mapping creation
for relational sources,” in Proc. EDBT, 2008.

[7] C. Batini, M. Lenzerini, and S. B. Navathe, “A comparative analysis
of methodologies for database schema integration,” ACM Computing
Surveys, vol. 18, no. 4, pp. 323–364, 1986.

[8] Proc. SIGMOD, 2008.
[9] X. Li, C. Quix, D. Kensche, and S. Geisler, “Automatic schema merging

using mapping constraints over incomplete sources,” in CIKM, 2010.
[10] X. Li, “Towards a unified framework for schema merging,” in VLDB

PhD Workshop, 2010.
[11] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan, “The use of

information capacity in schema integration and translation.” in Proc.
VLDB. Morgan Kaufmann, 1993, pp. 120–133.

[12] S. Melnik, Generic Model Management: Concepts and Algorithms, ser.
LNCS. Springer, 2004, vol. 2967.

[13] M. Arenas, R. Fagin, and A. Nash, “Composition with target con-
straints,” in ICDT, 2010.

[14] R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa, “Data exchange:
Semantics and query answering,” Theoretical Computer Science, vol.
336, pp. 89–124, 2005.

[15] O. M. Duschka and M. R. Genesereth, “Answering recursive queries
using views,” in PODS, 1997, pp. 109–116.




