
Data Exchange and Schema Mappings in Open and Closed
Worlds

Leonid Libkin
University of Edinburgh

libkin@inf.ed.ac.uk

Cristina Sirangelo
University of Edinburgh

csirange@inf.ed.ac.uk

ABSTRACT

In the study of data exchange one usually assumes an open-
world semantics, making it possible to extend instances of
target schemas. An alternative closed-world semantics only
moves ‘as much data as needed’ from the source to the tar-
get to satisfy constraints of a schema mapping. It avoids
some of the problems exhibited by the open-world seman-
tics, but limits the expressivity of schema mappings. Here
we propose a mixed approach: one can designate different
attributes of target schemas as open or closed, to combine
the additional expressivity of the open-world semantics with
the better behavior of query answering in closed worlds.

We define such schema mappings, and show that they
cover a large space of data exchange solutions with two ex-
tremes being the known open and closed-world semantics.
We investigate the problems of query answering and schema
mapping composition, and prove two trichotomy theorems,
classifying their complexity based on the number of open
attributes. We find conditions under which schema map-
pings compose, extending known results to a wide range
of closed-world mappings. We also provide results for re-
stricted classes of queries and mappings guaranteeing lower
complexity.

Categories and Subject Descriptors. H.2.5 [Database
Management]: Heterogeneous Databases—Data trans-
lation; H.2.4 [Database Management]: Systems—Re-
lational databases, Query processing

General Terms. Theory, Languages

Keywords. Data exchange, schema mappings, closed
world assumption, open world assumption, incomplete in-
formation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’08, June 9–12, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-108-8/08/06 ...$5.00.

1. Introduction

Data exchange is the problem of finding an instance of a
target schema, given an instance of a source schema and a
specification of a mapping between the source and the target
schemas, and answering queries over target instances. The
study of both data exchange and schema mappings has been
actively pursued recently (see, e.g., recent SIGMOD and
PODS keynotes [17, 6]). Existing implementations [25, 27]
have been incorporated into major database products.

Theoretical foundations of data exchange were first de-
veloped in [10, 11]. For a source instance S and a schema
mappingM , a target instance T is a solution forS if S and T
together satisfy the conditions ofM . Target instances often
contain incomplete information as mappings are rarely fully
specified: for example, it is common for target schemas to
have attributes that are not present in the source. To account
for missing information, target instances are populated with
nulls.

Papers [10, 11] also developedquery answering techniques
for data exchange that work very well for positive relational
algebra queries, but have been shown to exhibit strange be-
havior for queries involving negation. This happens even
with very simple mappings, for example, mapping specify-
ing that each tuple from the source be copied into the target
[10, 3]. There are several reasons for such unnatural behav-
ior, stemming from handling of incomplete information. We
shall outline them below.

A source instance S may havemany different solutions un-
der amappingM . Thus, the standard approach for answering
a queryQ over the target schema is to find certain answers
certainM (Q,S). These were defined in [10, 17] as the in-
tersection of Q(T)’s for all solutions T . Normally, only one
target instance T0 is materialized (typically a canonical solu-
tion [10] or its core [11]). Hence, the goal of query answering
in data exchange is to compute certain answers, by posing a
query against that materialized instance. That is, one needs
to evaluate some queryQ′ so that certainM (Q,S) = Q′(T0).

However, solutions T ’s (including the materialized solu-
tion T0) are instances with nulls, and there is no well-defined
concept ofQ(T) for databases with nulls [16, 21, 14]. Most
commonly, one tries to find the set�Q(T) of certain answers
to Q over T , i.e., answers independent of the interpretation
of nulls. There are several known evaluation mechanisms
for computing them. The one used in [10, 11] is the naive

evaluation Qnaive(T): it treats nulls as atomic values (i.e.,
two nulls are equal iff they are syntactically the same) and
only keeps null-free tuples in the output.

For conjunctive queries, and their unions, [10, 11] proved
that certainM (Q,S), defined as the intersection ofQnaive(T)
over all solutions T , can be computed as Qnaive(T0), where
T0 is the canonical solution. This follows from

certainM (Q,S) = �Q(T0) (1)
�Q(T0) = Qnaive(T0) (2)

for such queries. However, for full relational algebra, even if
(1) were to remain true, relying on (2) for finding the result
of a query is impossible, as the naive evaluation no longer
produces the set of certain answers [16]. Moreover, [3]
showed that there are relational calculus queriesQ for which
certainM (Q,S) cannot be expressed as Q′

naive(T0), where
Q′ is a relational calculus (or even an aggregate) query.

Furthermore, the notion of solutions is not unique (see,
e.g., [10, 11, 20]) and neither is the notion of �Q in general,
as both depend on assumptions about tuples in solutions and
interpretation of nulls. Papers [11, 10, 12] make the Open
World Assumption, or OWA [28]. Under this assumption,
tuples can be freely added to solutions. For example, if M
is a mapping stating that tuples from the source S must be
copied to the target T , then, under the OWA, every T that
extends S is a solution. In particular, computing certain
answers is as hard as finite validity (which is undecidable for
relational calculus) even in such simple settings.

There is an alternative notion of solutions, proposed in [20,
15]. It is based on the Closed World Assumption, orCWA
[28]. Such solutions T have “just as much as needed” to
satisfy the conditions imposed by M . For example, if M
states that every tuple in S must be in T , the only CWA-
solution for S would be a copy of S, since instances are no
longer open to adding new tuples. This approach guarantees
certainM (Q,S) = �Q(T0) for the canonical solution T0,
and eliminates some of the anomalies that have been shown to
arise under the OWA approach [3]. On the other hand, under
the CWA queries may produce counterintuitive answers too,
this time because of the “uniqueness of value” constraints
imposed by the CWA.

Fully open or fully closed mappings, being two extreme
cases, are bound to have their shortcomings. Thus, our
goal is to study mappings that are not rigidly controlled by
the OWA, as in [10, 12], or by the CWA, as in [20, 15].
We adapt an old idea of [13], and permit nulls – or, more
generally, attributes in targets – to be open or closed. Open
attributes can be instantiated by many values, but for closed,
only one value is permitted. We now illustrate this idea by
an example.

Example Consider a source schema σ with binary rela-
tionsPapers(paper#, title) andAssignments(paper#, re-
viewer). Each instance of σ represents the list of papers sub-
mitted to a given conference and the assignments of papers to
reviewers. The target schema τ consists of two binary rela-
tions Reviews(paper#, review) and Submissions(paper#,
author). The mapping between the source and the target is
provided by a set of rules below:

Submissions(xcl, zop) :– Papers(x, y)
Reviews(xcl, zcl) :– Assignments(x, y)
Reviews(xcl, zop) :– Papers(x, y)∧

¬∃rAssignments(x, r)

We use the syntax that will be introduced later; essentially,
we formulate mappings as in [10, 12] (using rule-based no-
tation as in [20]), with extra annotations op or cl (for open
and closed) of variables in the target atoms. Intuitively, the
first rule says that the target instance contains exactly the
submitted papers from the source (enforced by the closed
annotation of the attribute paper#). The author attribute
is populated with nulls, and its open annotation models the
one-to-many relationship between papers and their authors.

The second rule says that for each assigned paper and
each of its reviewers, exactly one review is associated to
the paper in the target. Completely closed annotation here
prevents the target from having reviews of assigned papers
without a corresponding reviewer in the source. The third
rule deals with papers that have not been assigned, according
to the source. In this case, the attribute review ofReviews is
annotated as open, to allow several reviews to be generated
for the same paper.

We remark that atoms of the same relation can be annotated
differently in different rules. Indeed, the annotation of an
atom of a given target relation R in a rule describes the way
the particular rule allows data to be moved from the source
to relationR in the target, and this may vary from a rule to a
rule. �

Open/closed annotations could be an easy addition to sys-
tems that handle schema mappings [25, 27, 7] as they essen-
tially state whether we have a one-to-one or a one-to-many
relationship for a correspondence between attributes in the
source and the target, and only require one-bit annotations
for target attributes.

Contributions Our first goal is to study data exchange
based on mappings that allow annotating target attributes
as open or closed. We define their semantics via different
interpretations of null values, and show the following:

• The solutions of [10, 20] are the two extreme cases:
when all attributes are open (solutions of [10]), and
when all are closed (solutions of [20]).

• For conjunctive (and positive) queries, certain answers
can be computed by the tractable naive evaluation, re-
gardless of annotations.

• Under the appropriate notion of certain answers with
mixed open and closed nulls, we always have (1) –
that is, certainM (Q,S) = �Q(T0), where T0 is the
canonical solution. Thus, query answering in data ex-
change is reduced to query answering over a particular
polynomial-time computable instance with nulls.

• For full relational algebra, we prove a trichotomy re-
sult, classifying the complexity of certain answers in
terms of the maximum number k of open attributes per
atom in a rule of themappingM : it is coNP-complete if
k = 0 (under the CWA), it is coNEXPTIME-complete
if k = 1, and undecidable for k > 1. Lower complex-
ity can be achieved by putting additional restrictions on
queries.

We then study schema mappings themselves. This subject
too has witnessed a lot of activity recently (see [6]). A central
topic is the study of operations onmappings, with perhaps the
most common one being composition: for mappings Mστ

andMτω between schemas σ and τ , and τ and ω, resp., how
do we obtain a mapping Mσω that transforms σ-databases
into ω-databases by applyingMστ first, followed byMτω?

Composition is crucial for understanding schema evolu-
tion, and it has been extensively studied [5, 12, 26, 22]. The
idea of the standard approach of [12] is to define composition
semantically, and then capture the same notion syntactically.
Semantically, a schema mappingM is a binary relation with
pairs (S, T) such that T is a solution for S. Then the com-
position of mappings is the composition of binary relations.
The definition of [12] does not permit instances with nulls,
and interprets both mappings and solutions under the OWA.
Then, under the OWA, [12] showed how to capture the se-
mantic notion of composition syntactically with Skolemized
constraints. But it is then natural to ask what happens if a
different interpretation, e.g. closed-world, is used?

As our second contribution, we study composition of
schema mappings that mix open and closed attributes. The
notion of [12] is obtained when all attributes are interpreted
under the OWA. Our main results are:

• We classify the complexity of composition (i.e., rec-
ognizing pairs of instances that belong to the compo-
sition of two mappings) by the maximum number k of
open attributes in rules of Mστ , proving another tri-
chotomy: NP-completeness for k = 0; NEXPTIME-
completeness for k = 1; and undecidability for k > 1.

• If only conjunctive queries are used in mappings (as
in [10, 11, 12]), then under both CWA and OWA the
composition problem is NP-complete.

• We show that the Skolemized constraints of [12] are
closed under composition not only under the OWA but
also under the CWA, and look at other conditions that
make composition work for mixed open/closed map-
pings.

Organization In Section 2 we review schema mappings,
data exchange solutions, and the basics of incomplete infor-
mation. Section 3 introduces mappings that combine open
and closed-world semantics. Complexity of query answering
under such mappings is studied in Section 4. In Section 5
we study the complexity and syntactic characterizations of
mapping composition. Concluding remarks are in Section 6.

2. Preliminaries

Schema mappings and data exchange

Let σ and τ be two relational database schemas; σ is thought
of as a source schema, and τ as a target schema. A mapping
M between schemas σ and τ is a condition that states how
instances of σ and τ are related [6, 17, 18]. In data exchange,
mappings are typically specified by sets of source-to-target
dependencies (STDs) of the form

ψτ (x̄, z̄) :– ϕσ(x̄, ȳ),

where ϕσ is a first-order (FO) formula over vocabulary σ,
and ψτ is a conjunction of atomic τ -formulae [10, 17]. A
mapping for us is thus a triple (σ, τ,Σ), where Σ is a set of
STDs. If S is a source instance, then a target τ -instance T
is called a solution for S under Σ if (S, T) |= Σ. More
precisely, for every ψτ (x̄, z̄) :– ϕσ(x̄, ȳ) in Σ, we have
(S, T) |= ∀x̄∀ȳ(ϕσ(x̄, ȳ) → ∃z̄ψτ (x̄, z̄)

)
.

Target instances can be populated by two different kinds of
elements: constants and nulls. Constants are elements that
come from the source, and nulls are new elements created in
targets. We assume two countably infinite disjoint domains
Const andNull; elements of Const are denoted by lowercase
letters, and elements of Null by ⊥ with sub/superscripts.
Source instances are interpreted as instances overConst, and
targets as instances overConst∪Null. We assume thatwe can
distinguish nulls from constants (e.g., by a unary predicate
testing for nulls, like IS NULL in SQL).

One particular solution plays a special role in data ex-
change: the canonical (universal) solution CSolΣ(S), for
a mapping (σ, τ,Σ) and a source S [10]. As in [3, 20], it
is computed as follows: for each STD ψ(x̄, z̄) :– ϕ(x̄, ȳ) in
Σ and for each pair of tuples ā, b̄ such that ϕ(ā, b̄) holds in
S, create a fresh tuple of distinct nulls ⊥̄ = ⊥̄(ϕ,ψ,ā,b̄) (so
that |⊥̄| = |z̄|) and put tuples in the target so that ψ(ā, ⊥̄),
which is a conjunction of atoms, holds. If the mapping is
understood from the context, we write just CSol(S). The
schemas σ and τ will always be clear from the context.

For example, if σ = {E}, τ = {R}, where E and R are
binary, and Σ contains R(x, z) :– E(x, y), then for E =
{(a, c1), (a, c2), (b, c3)}, the canonical solution has tuples
{(a,⊥1), (a,⊥2), (b,⊥3)} in R.

Databases with incomplete information

We briefly review some standard definitions [14, 16]. A
database instance with incomplete information is an instance
whose domain is a subset of Const ∪ Null. Nulls are treated
as existing but unknown values. A valuation is a partial map
v : Null → Const. Given an instance T with incomplete
information, and a valuation v defined on all of its nulls,
v(T) stands for the instance over Const in which every null
⊥ in T is replaced by v(⊥). The semantics of T , denoted by
Rep(T) [16], consists of all such instances:

Rep(T) = {v(T) | v is a valuation}.

Evaluation of queries Q on databases with nulls normally
means finding certain answers �Q(T) =

⋂{Q(R) | R ∈
Rep(T)}, i.e. tuples that belong to Q(R) for all possible R
in Rep(T).

If Q is a positive relational algebra query, then �Q(T) is
obtained by the naive evaluation ofQ onT (i.e. treating nulls
as values) and then discarding tuples containing nulls [16].
For full relational algebra queries one needs a rather com-
plicated mechanism of conditional tables [16] to represent
certain answers.

Data exchange under CWA

The definitions of solutions and query answering under the
CWA were given in [20]. The main idea is not to open the
target to arbitrary new tuples, and instead put there just what
is needed to satisfy the STDs. Solutions under the CWA
must satisfy three criteria: (a) the presence of each null
must be justified by the source instance and the STDs; (b)
a justification for a null should not generate multiple nulls;
and (c) facts true in the target instance must be justified by
the source instance and the STDs.

These were formalized in [20], which showed that a target
instance T is a CWA-solution iff it is a homomorphic image
ofCSol(S) and has a homomorphism back into CSol(S).

We now recall how (a), (b), (c) are formalized. Let
(σ, τ,Σ) be a mapping, where Σ is a set of STDs
{ψi(x̄i, z̄i) :– ϕi(x̄i, ȳi) | 1 ≤ i ≤ m}, and let S be
a source instance. A justification for a null consists of an
STD ψi :– ϕi, a tuple (ā, b̄) so that ϕi(ā, b̄) holds, and a vari-
able among the z̄’s. Note that justifications generate nulls in
the canonical solution CSol(S).

Each null in a target T must have a justification for
it, but the same justification should not justify different
nulls. This means that there is a mapping h from justifi-
cations onto the set of nulls of T , i.e. a homomorphism
h : CSol(S) → T that maps nulls of CSol(S) onto
the nulls of T . Such homomorphic images of CSol(S)
were called CWA-presolutions. In our previous exam-
ple of an STD R(x, z) :– E(x, y) and a source E =
{(a, c1), (a, c2), (b, c3)}, the canonical solution has nulls
⊥1,⊥2,⊥3 given by justifications: ((a, c1), z), ((a, c2), z),
and ((b, c3), z). If we have a homomorphism h(⊥1) =
h(⊥2) = ⊥ and h(⊥3) = ⊥′, we obtain a CWA-presolution
{(a,⊥), (b,⊥′)}.
Requirement (c) closes instances to unjustified facts, i.e., it

prohibits inventing facts based on equating nulls unless they
are implied by the source and the STDs. In our example, a
homomorphism h′ such that h′(⊥1) = h′(⊥3) = ⊥ gives us
tuples (a,⊥), (b,⊥) in the presolution. This says that a and
b are connected to the same element, which is not implied
by S and the STDs. Formally, a fact is a formula f(ā) =
∃z̄ γ(ā, z̄), where ā is over Const, and γ is a conjunction of
τ -atoms; it is satisfied in a target instance T if there is a tuple
of nulls ⊥̄ such that γ(ā, ⊥̄) is true. Then CWA-solutions
are defined as CWA-presolutions T so that every fact true in
T is also true inCSol(S). The presolution {(a,⊥), (b,⊥′)}
is a CWA-solution.

The characterization of CWA-solutions leads to algorithms
for finding certain answers, i.e. sets of tuples that belong
to Q(R) for every CWA-solution T for S and every R ∈
Rep(T). Namely, they can be computed as �Q(CSol(S))
[20]. If Q is a union of conjunctive queries and �Q can
be computed by the naive evaluation, this coincides with the
semantics used in [10]. As we move beyond positive queries,
the CWA semantics behaves nicer than the OWA semantics.
For example, even in copying mappings, with all STDs of
the form R′(x̄) :– R(x̄), under the semantics of [10] there
are FO-queries that cannot be answered over the canonical,
or other, solutions [3]. Under the CWA, certain answers
coincide with Q(CSol(S)) in such mappings.

3. Mixing OWA and CWA: mappings and so-
lutions

We define mappings that need not follow the all-OWA or
the all-CWA policy: in them, attributes of target atoms of
STDs can be annotated as open or closed. This results in
target instances in which different elements have different
semantics, so we define an appropriate semantics RepA for
them.

Annotated mappings

We shall allow each variable in the left-hand side ψ of an
STD to be annotated with an element of the set {op, cl},
referring to them as open or closed variables, respectively.
So formally an annotated STD is a usual STD

ψ(x1, . . . , xn, z1, . . . , zk) :– ϕ(x1, . . . , xn, y1, . . . , ym),

together with an annotation mapping α that assigns each
occurrence of a variable in ψ either op or cl. An annotated
mapping consists of source and target schemas σ and τ , and
a set of annotated STDs. We put annotation as a superscript,
writing xop or xcl when α(x) = op or α(x) = cl, resp.

Closed annotations specify one-to-one relationships, so
closed nulls behave just as nulls in CWA-solutions. Open
annotations specify one-to-many relationships and exhibit
the behavior of solutions of [10]. In the earlier example, ac-
cording to the STD Submissions(xcl, zop) :– Papers(x, y),
only papers from the source are moved to the target in the
exchange of data, but the paper -author relationship is not
one-to-one, and hence multiple values are allowed in the
second attribute.

Annotation in instances

Solutions under annotated mappings will be annotated in-
stances, which we now define. A finite relation over at-
tributes A1, . . . , An with domain D is a finite set of tuples,
and each tuple is a mapping t : {A1, . . . , An} → D. An
annotated tuple is a pair (t, α), where t is a tuple and α is a
mapping {A1, . . . , An} → {op, cl}. An annotated relation
is a finite set of annotated tuples, and an annotated instance
is a set of annotated relations. Again we use superscripts
for annotations, denoting, for example, a tuple (a, b) with
annotations cl and op as (acl, bop).

For purely technical reasons (to deal with empty tables) we
also have empty annotated tuples, denoted by (, α), where
α is an annotation on the set of attributes.

If T is an annotated relation over Const ∪ Null, in the se-
mantics RepA(T), after applying a valuation v to T , any
tuple (. . . , aop, . . .) in v(T) can be replicated arbitrarily
many times with (. . . , b, . . .), for b ∈ Const. For exam-
ple,RepA({(acl,⊥op)}) contains all relationsR whose pro-
jection on the first attribute is {a}, and RepA({(acl,⊥cl)})
contains all one-tuple relations {(a, b)} with b ∈ Const.

Formally, if T = {(ti, αi) | 1 ≤ i ≤ n}, then a relation R
over Const is in RepA(T) if, for some valuation v, the rela-
tionR contains the nonempty tuples among v(t1), . . . , v(tn),

and every tuple t ∈ R coincides with some v(ti) in all
positions annotated by closed by αi. Thus if α is an all-
open annotation, then the tuple (, α) allows any tuple to
be added to relations in RepA(T); otherwise such tuples do
not change the semantics. The difference between a tuple
of op-annotated nulls and such (, α) is that the semantics
of the latter also includes the empty table. Finally, RepA(·)
extends naturally from relations to database instances.

Annotated canonical solution

Let (σ, τ,Σα) be an annotated mapping (i.e., Σα is a set of
annotated STDs). Let S be a source instance. The annotated
canonical solution is defined by the same procedure as be-
fore, except that now it is populated with annotated tuples.
That is, for each STD ψ(x̄, z̄) :– ϕ(x̄, ȳ), we evaluate ϕ
over S, and for each tuple (ā, b̄) in the result, we create a
fresh tuple of nulls ⊥̄, and put annotated tuples in the solu-
tion to satisfy ψ(ā, ⊥̄), annotated as prescribed by α. If ϕ
evaluates to the empty set over S, we add empty tuples for
each atom in ψ, annotated according to α. The result is the
annotated canonical solution denoted by CSolΣα

a (S), or
just CSola(S), if the mapping is understood (the subscript
‘A’ distinguishes it from an unannotated solution).

In our previous example with σ = {E}, τ = {R},
let the STD be R(xcl, zop) :– E(x, y). Then, if E =
{(a, c1), (a, c2), (b, c3)}, the canonical solution has anno-
tated tuples {(acl,⊥op

1), (acl,⊥op
2), (bcl,⊥op

3)} in R.
Note that the same variable can be annotated differently

in different atoms. For example, if we have an STD
R(xop, zcl1)∧R(xcl, zop2) :– E(x, y) and a single tuple (a, c)
in the source, then CSola(S) = {(aop,⊥cl

1), (acl,⊥op
2)}.

Open (resp., closed) versions of the canonical solution cap-
ture the semantics of solutions in [10] and [20]. For reasons
to become clear soon, we call the solutions of [10] OWA-
solutions: i.e., an OWA-solution for a source S under Σ is
any target instanceT overConst∪Null such that (S, T) |= Σ.
We then define

[[S]]ΣOWA = {R ∈ Rep(T) | T an OWA-solution for S}
[[S]]ΣCWA = {R ∈ Rep(T) | T a CWA-solution for S}
These semantics produce sets of relations without nulls rep-
resented by OWA and CWA-solutions, respectively.

If Σ is a set of unannotated STDs, let Σop (resp., Σcl)
be the set of all Σ-STDs where each variable is annotated
with op (resp., cl). The canonical solutions under these two
extremes capture the semantics of the unannotated OWA-
and CWA-solutions:

Lemma 1. [[S]]ΣOWA = RepA(CSol
Σop
a (S));

[[S]]ΣCWA = RepA(CSolΣcl
a (S)).

Annotated solutions

We now define a general notion of solutions under annotated
mappings using an approach similar to the CWA-solutions
in Section 2, except that now we distinguish open and closed
nulls. A homomorphism of annotated instances h : T → T ′

is a mapping from Null to Null so that for each annotated
tuple (t, α) in a relation R in T , the tuple (h(t), α) is in R′
– that is, homomorphisms preserve annotations (by h(t) we
denote the tuple obtained from t by replacing each null ⊥
with h(⊥)).

Given an annotated mapping (σ, τ,Σα) and a source S,
each null in a target solution still needs to be justified by
an STD ψ :– ϕ and a witness for ϕ. It is the annotation
that will account for differences in the semantics: while
closed nulls behave as nulls in CWA-solutions, open nulls
can be instantiated by many values. Hence, we still define
presolutions as homomorphic images of CSola(S), since
homomorphisms preserve annotations.

Our last requirement for CWA-solutions was that facts true
in them must be implied by the source and the STDs, and
thus true inCSol(S). We still want to apply this restriction,
but only to closed nulls. For that, we use annotated facts,
i.e. pairs (f(ā), α) where f(ā) = ∃z̄ γ(ā, z̄) is a fact over
the target schema, and α is an annotation over all atoms in
γ. The notion of satisfaction is restricted to closed positions
of T . That is, T |=cl

(
f(ā), α

)
if there exists a tuple ⊥̄ of

nulls such that for each atomR(t) in γ(ā, ⊥̄), there is a tuple
(t0, α0) in relation R of instance T which coincides with
(t, α) in all positions annotated as closed in α0.

Then a presolution T is a Σα-solution for S if each anno-
tated fact that is true in T under |=cl is also true, under |=cl,
in the canonical solutionCSola(S).

If all annotations in Σα are cl, then |=cl is the usual notion
of satisfaction, and thusΣα-solutions are precisely the CWA-
solutions. If all annotations in Σα are op, then every fact is
true under |=cl which means that under the OWA arbitrary
facts could be true in solutions. We shall see soon that the
semantics of all-open solutions is equivalent to the semantics
of [10].

Example Consider an STD R(xop, zcl1) ∧
R(ycl, zcl2) :– S(x, y) and a source S = {(a, b)}
generating CSola(S) = {(aop,⊥cl

1), (bcl,⊥cl
2)}.

Let R = {(aop,⊥cl
1), (bcl,⊥cl

1)}. The fact
∃z R(aop, zcl) ∧ R(bcl, zcl) is true in CSola(S) with
z = ⊥1 (under |=cl, both atomsR(aop,⊥cl

1) andR(bcl,⊥cl
1)

are satisfied by (aop,⊥cl
1)), and R is a solution. �

Annotated mappings: basic properties

We know that CWA-solutions have a homomorphism back
into the canonical solution. A similar result is true for Σα-
solutions, except that we need to expand the canonical so-
lution, allowing for the open nulls to be replicated. We say
that T ′ ⊇ T is an expansion of T if every annotated tuple
t′ ∈ T ′ − T coincides with some tuple t ∈ T in all closed
positions of t.

Proposition 1. An annotated instance T is a Σα-
solution iff it is a homomorphic image of CSola(S),
and there is a homomorphism from T to an expansion
of CSola(S).

Similarly to the semantics [[·]]CWA and [[·]]OWA, we define
the semantics for arbitrary annotated mappings:

[[S]]Σα = {R ∈ RepA(T) | T is a Σα-solution}.
If α and α′ are annotations of a set Σ of STDs, we write
α � α′ if for each occurrence of a variable in a Σ-STD,
either both α and α′ annotations are cl, or α′ annotation is
op (i.e., closed annotations can be extended to open). The
following states that changing closed annotations to open
makes the semantics larger, that the extreme points are the
OWA and the CWA semantics of [10] and [20], and that
for every annotated mapping, [[S]]Σα is determined by the
annotated canonical solution.

Theorem 1. If Σ is a set of STDs and S is a source
instance, then

1. [[S]]Σcl = [[S]]ΣCWA.

2. [[S]]Σop = [[S]]ΣOWA.

3. If α � α′ then [[S]]Σα ⊆ [[S]]Σα′ .

4. [[S]]Σα = RepA(CSolΣα
a (S)).

There is a natural decision problem of recognizing in-
stances in [[S]]Σα .

Proposition 2. The problem of checking, for source and
target instances S and T , whether T ∈ [[S]]Σα is always
in NP, and furthermore:

• it is in PTIME if all annotations in Σα are open;
• there is a mapping Σα in which at most one closed-

annotated variable is used per atom so that the
problem of checking T ∈ [[S]]Σα is NP-complete.

Note that the complexity of recognizing instances rep-
resenting tables with incomplete information normally in-
creases with additional constraints on nulls: for example,
checking if an instance R is in Rep(S) is in PTIME if S
is a Codd table (which cannot equate nulls), but the same
problem is NP-complete for naive tables, which can equate
nulls [2]. Thus, it is natural that the complexity of this par-
ticular recognition problem increases as one allows closed
variables, which introduce extra constraints on nulls. But as
we shall see soon, most of the time it suffices to work with
the canonical solution, which can be constructed in PTIME
regardless of annotation, and thus the higher complexity of
[[·]]Σα with closed annotations will not affect problems such
as query answering.

4. Query answering

Query answering in data exchange normallymeans finding
certain answers. Since the notion of Q(T), where T is a
solution, is not well-defined due to T containing nulls, we
must find certain answers to Q over each solution T , and
then find tuples that belong to such certain answers over all
solutions T . That is, given an annotated mapping with STDs
Σα, a source instance S and a queryQ, we define

certainΣα(Q,S) =
⋂

T is a Σα−solution

⋂

R∈RepA(T)

Q(R)

We compare this with two existing notions of certain an-
swers in data exchange. The original open-world notion
certainOWA

Σ (Q,S) of [10] and many others was defined as
the set of tuples that belong toQ(T) for every OWA-solution
T , where Q is evaluated under the naive semantics. In [20,
15], certainCWA

Σ (Q,S) was defined as the set of tuples in all
Q(R)’s where R ranges over Rep(T) for CWA-solutions T .
Using a simple observation that in the definition of [10] it
suffices to look only at instances over Const, we show:

Proposition 3. If Σ is an arbitrary set of STDs, and
Σop and Σcl are its annotations that assign op (resp.,
cl) to each variable, then

certainOWA
Σ (Q,S) = certainΣop(Q,S)

certainCWA
Σ (Q,S) = certainΣcl

(Q,S)

Furthermore, for an arbitrary annotation α,

certainΣop(Q,S) ⊆ certainΣα(Q,S) ⊆ certainΣcl
(Q,S).

Hence the semantics of [10] and [20] are indeed the two ex-
treme semantics. For one class of queries, which was the
focus of several papers on data exchange [10, 11, 3], the
semantics coincide, regardless of annotations (we recall that
positive relational algebra refers to the fragment of relational
algebra allowing only projection, union, product and selec-
tion with positive Boolean combinations of equalities).

Proposition 4. Let (σ, τ,Σ) be a mapping, Σα an arbi-
trary annotation of Σ, and Q a positive relational alge-
bra query. Then

certainΣα(Q,S) = �Q(CSolΣ(S)).

Thus, to compute certain answers for positive queries, one
can simply construct the canonical solution and apply the
standard naive evaluation [16] to compute�Q over it, as was
done in [10].

We now study the general case. Our goal is to find
certainΣα(Q,S) using one materialized target. We can use
the annotated canonical solution as this target. Indeed, under
the natural notion of certain answers in annotated instances
defined as �Q(T) =

⋂{Q(R) | R ∈ RepA(T)}, we
conclude, from Theorem 1:

Corollary 1. certainΣα(Q,S) = �Q(CSolΣα
a (S)).

We know that CSolΣα
a (S) can be constructed in poly-

nomial time. Thus, to describe the complexity of query
answering in data exchange, we need to determine the com-
plexity of finding �Q. We do this for relational algebra
(i.e., FO) queries. Consider the problem DEQA(Σα, Q)
of data exchange query answering for an annotated mapping
(σ, τ,Σα) and a queryQ:

Problem DEQA(Σα, Q)
Input: a source database S, a tuple t
Question: is t ∈ certainΣα(Q,S).

Some partial answers under CWA or OWA are known [1,
10, 20]. We now classify the complexity ofDEQA(Σα, Q)
forFO queriesQ using,as themain parameter, themaximum

number of open positions per atom in an STD in a set of
annotated STDs Σα. It is denoted by#op(Σα).

In a CWAmapping,#op(Σα) = 0 (since there are no open
positions), and in an all-open mapping, it is the maximum
arity of a relation. Note that we measure the number of open
annotations per atom and not per rule. For example, for the
rule T (xcl, yop) ∧ T (xcl, zop) :–ϕ, the value of#op(Σα) is
1, even though two variables occur with an open annotation.

We prove the following trichotomy result:

Theorem 2. The complexity of DEQA(Σα, Q) for FO
queries is:

• coNP-complete if #op(Σα) = 0;
• coNEXPTIME-complete if #op(Σα) = 1;
• undecidable if #op(Σα) > 1.

More precisely, we prove:

1. if #op(Σα) = 0, then DEQA(Σα, Q) ∈ coNP, and
there exists a mapping with #op(Σα) = 0 and an FO
queryQ so thatDEQA(Σα, Q) is coNP-hard;

2. if #op(Σα) = 1, then DEQA(Σα, Q) is in coNEX-
PTIME, and there exists a mapping with #op(Σα) =
1 and an FO query Q so that DEQA(Σα, Q) is
coNEXPTIME-hard;

3. if k > 1, then there is a mapping with #op(Σα) = k
and an FO query Q so that DEQA(Σα, Q) is unde-
cidable.

The main result is the decidable case 2 (others are easy
adaptations of known techniques [1, 2, 10, 20]). The proof is
quite involved: it first uses a games argument to establish an
exponential bound on the number of replicated open nulls in
a possible witness for t ∈ certainΣα(Q,S), and then codes
a version of the tiling problem. Below, we give instead a
sketch of an easier result, showing that for #op(Σα) = 1,
the query answering problem could be hard for an arbitrary
level of the polynomial hierarchy (PH).

Example Suppose the source database is a graph with
vertices V (·) and edges E(·, ·), the target schema has two
binary relations, and the STDs are

E′(xcl, ycl) :– E(x, y)
P (xcl, zop) :– V (x)

That is, E′ is a copy of the graph, and P assigns open nulls
to vertices: the semantics of P is any relation whose first
projection is V .

We next consider a sentence Φp saying that P encodes
the powerset of the set of vertices (i.e., for each value a of
the first attribute of P , there is a c so that P (a, c) holds,
and no other P (·, c) holds; and, for any c1, c2, there is a c
so that {a | P (a, c)} = {a | P (a, c1)} ∪ {a | P (a, c2)}
– all these are easily stated in FO). Let Ψ be an arbitrary
monadic second-order sentence over E. If P encodes the
powerset on V , we can easily restate Ψ as a sentence ψ over
the schema {E′, P}. Thus, the certain answer of Φp → ψ is
true iff the original graph satisfies Ψ. But it is well-known

that in monadic second-order logic one can encode problems
complete for all levels of PH [24] – hence query answering
is hard for every level of PH. �

We now look at some special cases when we can guarantee
better complexity of query answering. The hardness results
for #op(Σα) = 1 are achieved in simple mappings with all
STDs either copying, i.e. R′(x̄cl) :– R(x̄), or the simplest
open null introductions U ′(xcl, zop) :– U(x). Combining
several relations into one,we can also see that hardness iswit-
nessed by a two-rule mapping of the formR′

1(x̄cl) :–R1(x̄),
R′

2(x̄
cl, zop) :– R2(x̄). Thus, to achieve better complexity

we should look at subclasses of queries rather thanmappings.

We start with positive relational algebra queries. From
Proposition 4, we obtain

Corollary 2. If Q is a positive relational algebra query,
then DEQA(Σα, Q) is in PTIME.

But adding inequalities even to conjunctive queries takes us to
a larger class. Combining results of [23, 20] with properties
of annotated solutions, we derive:

Proposition 5. Let Σ be a set of STDs, α an arbitrary
annotation, and Q a monotone polynomial-time query.
Then DEQA(Σα, Q) is in coNP. Moreover, there ex-
ists a set Σ of STDs and a conjunctive query with two
inequalities Q so that DEQA(Σα, Q) is coNP-complete
for every annotation α.

Finally, we describe the complexity of universal or ∀∗∃∗
queries. It can also be viewed as the complexity of vali-
dating constraints in data exchange, since most commonly
used integrity constraints, equality- or tuple-generating, are
expressed as ∀∗ or ∀∗∃∗ sentences.
Proposition 6. If Q is a ∀∗∃∗ query, and Σα is an arbi-
trary annotated set of STDs, then DEQA(Σα, Q) is in
coNP.

5. Composing mappings

Composition and incomplete information

We now move to handling schema mappings themselves,
and see how they behave under open, closed, or mixed
open/closed annotations. We shall look in particular at com-
position of schema mappings, which is a key operation in
schema evolution and model management in general [5, 6,
12, 26, 22].

We shall be dealing with schema mappings used in data
exchange, i.e. triples (σ, τ,Σ). Since semantically a map-
ping is a binary relation consisting of pairs (S, T), where
S and T are source and target instances satisfying Σ, [12]
made a very natural proposal to use the composition of such
relations to define the composition of mappings. One more
condition, however, is required. Note that a pair (S,W) is
in the composition of the binary relations given by the map-
pings (σ, τ,Σ) and (τ, ω,Δ) iff there is an instance T such
that T is a solution for S (under Σ) andW is a solution for

T (underΔ). But while solutions as defined in [10, 20] and
here are instances over Const ∪ Null, we do not have a defi-
nition of a solution for a source instance with nulls. Indeed,
doing so would require evaluating universal constraints over
instances with nulls, something that has long been known to
be problematic [4, 16, 19].

So the definition of composition of [12] and others is re-
stricted to instances over Const: a pair (S,W) of instances
over Const belongs to the composition iff there is a solution
T for S over Const, and W is a solution for T . But recall
that, under the definition of a solution of [10], T that only
uses elements of Const is a solution for S iff T ∈ Rep(T ′)
for some OWA-solution T ′ – equivalently, iff T ∈ [[S]]ΣOWA.
Thus, the semantics of a schema mapping used in [12] is

(|Σ|)OWA

σ,τ
= {(S, T) | T ∈ [[S]]ΣOWA},

where S and T range over σ- and τ -instances. Hence,

their notion of composition is
(|Σ|)OWA

σ,τ
◦ (|Δ|)OWA

τ,ω
. (We

use slightly different brackets to denote the semantics of a
schema mapping as opposed to the semantics of solutions.)
In general, for an annotated mapping (σ, τ,Σα), we define
its semantics as

(|Σα|
)
σ,τ

= {(S, T) | T ∈ [[S]]Σα},
and the composition of two annotated mappings (σ, τ,Σα)
and (τ, ω,Δα′) as

Σα ◦ Δα′
def=

(|Σα|
)
σ,τ

◦ (|Δα′ |)
τ,ω
.

We omit the schemas from our notation Σα ◦ Δα′ as they
will always be clear from the context.

Notice that if both α and α′ are all-open annotations, then
this is the definition of composition of [12].

We now deal with two basic problems related to schema
mappings and their composition: their complexity, and syn-
tactic representations (i.e., what is a class of constraints that
captures Σα ◦ Δα′?).

For several results, the class of queries used as source
formulae ϕσ in STDs will be important. In [11, 10, 12] only
conjunctive queries are allowed in STDs; so far, as in [3,
20], we allowed arbitrary FO queries. We refer to STDs
ψτ (x̄, z̄) :– ϕσ(x̄, ȳ) as CQ-STDs or monotone STDs if
ϕσ is a conjunctive (resp., monotone) query. Otherwise it is
assumed to be an FO query, as before.

Complexity of composition

Let (σ, τ,Σα) and (τ, ω,Δα′) be two annotated mappings.
We consider the following composition problem:

Problem Comp(Σα,Δα′)
Input: a σ-database S, a ω-databaseW
Question: is (S,W) in Σα ◦ Δα′?

The all-open version Comp(Σop,Δop) with CQ-STDs
was shown to be NP-complete in [12]. We first extend this
to more general annotations.

Lemma 2. If Δ contains only monotone STDs, Σ is ar-
bitrary, and α is any annotation of Σ, then

Σα ◦ Δop = Σop ◦ Δop.

Corollary 3. If Δ contains only monotone STDs, then
Comp(Σα,Δop) is in NP for every Σα. Moreover,
there exist mappings with CQ-STDs Σ and Δ so
that for an arbitrary annotation α of Σ, the problem
Comp(Σα,Δop) is NP-complete.

We now look at arbitrary FO-STDs. The complexity of
the composition problem, as the complexity of query answer-
ing, is classified by the parameter #op(Σα), the maximum
number of open positions per atom in an STD in Σα. The
classification is another trichotomy:

Theorem 3. The complexity of Comp(Σα,Δα′) is

• NP-complete if #op(Σα) = 0;
• NEXPTIME-complete if #op(Σα) = 1;
• undecidable if #op(Σα) > 1.

More precisely, we prove the following. If (σ, τ,Σ) and
(τ, ω,Δ) are two schemamappingswith arbitraryFO-STDs,
and α and α′ are annotations of Σ andΔ, then:

• If #op(Σα) = 0 (i.e., α is the all-closed annotation),
thenComp(Σα,Δα′) is inNP.Moreover, there existΣ
andΔ, using only CQ-STDs, so thatComp(Σcl,Δα′)
is NP-hard for every annotation α′.

• If #op(Σα) = 1, then Comp(Σα,Δα′) is in NEXP-
TIME. Moreover, there exist Σα with #op(Σα) = 1
and Δ so that Comp(Σα,Δα′) is NEXPTIME-hard
for every annotation α′.

• For each k > 1, there exist Σα with#op(Σα) = k and
Δ so that Comp(Σα,Δα′) is undecidable for every
annotation α′.

Thus, if bothΣ andΔ contain only CQ-STDs, the compo-
sition problem is in NP if Σ has an all-closed annotation, or
Δ has an all-open annotation. Moreover, composingΣclwith
anyΔα′ (even if both have FO-STDs) matches the complex-
ity of OWA-composition achieved only for CQ-STDs. For
more open nulls, our results suggest that one needs to restrict
STDs to monotone to keep the complexity reasonable.

The results on the complexity of the composition problem
Comp(Σα,Δα′) presented in this section are summarized
in the table below:

Σα
Δα′

arbitrary
α′ = op and

monotone STDs

#op = 0 NP-complete

#op = 1 NEXPTIME-complete NP-complete

#op > 1 undecidable

Table 1: Complexity of Comp(Σα,Δα′)

Syntactic descriptions of composition

As was noticed in [12], under the OWA, schema mapping
composition cannot be captured syntactically without in-
creasing the class of STDs: there exist Σ and Δ (with
CQ-STDs only) such that one cannot find Γ with FO-STDs
satisfying

(|Γ|)OWA
=

(|Σ|)OWA ◦ (|Δ|)OWA
. One can see

this by a complexity gap argument: OWA-schema mappings
have low (AC0) complexity, but their composition could be
NP-hard [12]. Arbitrarily annotated mappings could be of
higher complexity, but we can still show the following strong
failure of closure under composition without any additional
assumptions.

Proposition 7. There exist schema mappings with CQ-
STDs Σ and Δ such that, given their arbitrary annota-
tions α and α′, there is no annotated mapping Γα′′ with
FO-STDs that satisfies

(|Γα′′ |) = Σα ◦ Δα′ .

So we need to extend the class of mappings to make it
closed under composition. We say that a class of mappings

C with a semantics (| · |)C is closed under composition if
for every two mappings (σ, τ,Mστ) and (τ, ω,Mτω) from
C, there exists another mapping (σ, ω,Mσω) from C so that

(|Mσω|
)C =

(|Mστ |
)C ◦ (|Mτω|

)C
.

In [12], such a class was found under the OWA: it was based
on Skolemized CQ-STDs1. We now define such Skolemized
STDs in an annotated setting,and prove a composition lemma
for them that gives us two classes of annotated mappings
closed under composition: the class of [12] and its closed-
world analog.

Assume that we have a countable collection F of func-
tion symbols. Given two schemas σ and τ , an annotated
Skolemized STD, or an annotated SkSTD, over them is an
expression of the form:

ψτ (u1, . . . , uk) :– ϕσ(x1, . . . , xn),

together with an annotation α of ψτ where

• ϕσ is an FO formula over σ ∪ F whose atomic sub-
formulae are either R(z̄), where z̄ are variables, or
y = f(z̄), where y is a variable;

• ψτ is a conjunction of atomic τ formulae; and
• each ui is either one of the xj’s, or f(z̄), for some
f ∈ F and |arity(f)| variables z̄ among x̄.

Annotations are defined as before, i.e. by assigning op or cl
to each position in each atom in ψτ .

For example, if our source has tuples (em,proj) of em-
ployee names and projects and we want to create a target
with tuples (empl id,em,phone) that invents ids and phones
of employees, we can capture this by an annotated SkSTD

T (f(em)cl, emcl, g(em,proj)op) :– S(em,proj) (3)
1Such STDs were called second-order in [12] because their
semantics was defined by existentially quantifying over the
Skolem functions. We prefer to call them Skolemized STDs,
and use CQ, FO, etc in STDs to restrict the class of formulae
ϕ in ψ :– ϕ.

indicating that one id is created for each name, with f being
the function from names to ids. Using a null instead of
f(em) would have generated a new null for each (em,proj)
pair, rather than just the name. The phone attribute is open,
allowing employees to have multiple phones.

Next, we extend the definition of the semantics to anno-
tated mappings (σ, τ,Σα) with SkSTDs. Let S be a source
instance. Let F = {f1, . . . , fr} be the set of function sym-
bols used in Σα, and for each m-ary fi, let f ′

i be a function
from Constm to Const. For this set F ′ = {f ′

1, . . . , f
′
r}, we

construct a solution SolΣα

F ′ (S) as follows: compute the re-
sult of ϕσ in S, with functions interpreted as F ′, and for
each tuple ā in it, put annotated tuples in the target to satisfy
ψτ (ū′), where, if ui = xj , then u′i = aj , and if ui = f(x̄)
then u′i = f ′(ā). The annotation is the same as in Σα. If ϕσ
evaluates to the empty set, then, as before, empty annotated
tuples are added.

In our example (3), if S = {(John,P1)} and f ′(John) =
001 and g′(John,P1) = 1234, then Sol{f ′,g′}(S) has one
tuple (001cl, Johncl, 1234op).

For Σα with SkSTDs, the semantics of S is given by

[[S]]Σα =
⋃

F ′
RepA

(
SolF ′(S)

)
,

as F ′ ranges over functions from Const to Const that match
the arity of functions in F . Note that as SolF ′(S) has
no nulls, the only effect of applying RepA to it is adding
tuples that coincide with some tuple t in SolF ′(S) on
all attributes annotated cl. For example, [[S]]Σα for the
SkSTD (3) and the above source will contain a relation
{(001, John, 1234), (001, John, 5678)}.
Then, finally, we define

(|Σα|
)

= {(S, T) | T ∈ [[S]]Σα}.
First observe that if Σ is a set of un-annotated SkSTDs, then(|Σop|

)
is precisely the semantics of [12]— that is, [12] used

the open-world semantics (a formal proof is given in the
appendix).

Second, even though mappings with SkSTDs do not ex-
plicitly allow null values, semantically they extend the usual
STD-based mappings:

Lemma 3. For every annotated mapping (σ, τ,Σα)
based on STDs there exists an equivalent mapping
(σ, τ,Γα) with the same annotations based on SkSTDs,
i.e.

(|Σα|
)

=
(|Γα|

)
. Furthermore, the right-hand sides

of STDs in Σ and in Γ are the same.

We now state the main technical lemmawhich showswhen
two annotated mappings can be composed.

Lemma 4. Let Σα and Δα′ be two schema mappings
with annotated SkSTDs such that either

• the annotation of Δα′ is all-open, and it only has
monotone queries in its SkSTDs; or

• the annotation of Σα is all-closed.
Then one can construct a composition mapping Γα′ (i.e.(|Γα′ |) =

(|Σα|
) ◦ (|Δα′ |)) with annotated SkSTDs such

that

• the left-hand sides and annotations of SkSTDs in
Γα′ and Δα′ are the same;

• the right-hand sides of SkSTDs in Γα′ are CQs if
the same is true for Σα and Δα′ .

As a corollary, we have our main composition result:

Theorem 4. The following two classes of schema map-
pings given by annotated SkSTDs are closed under com-
position:

1. mappings with all-open annotations in which only
conjunctive queries are used in SkSTDs; and

2. mappings with all-closed annotations in which ar-
bitrary FO queries are used in SkSTDs.

The first case of course is that of [12]. Theorem 4 says that
we can also achieve compositionality under the CWA with
more general queries used in mappings.

6. Conclusions

Two previous approaches to data exchange have been based
either on the OWA, or on the CWA, and both had their lim-
itations. We have shown that, using an old idea of allowing
both open and closed null values, we obtain mappings that
canmixOWA andCWA in an arbitrarymanner. We looked at
query evaluation and composition of mappings, proved two
classification results for their complexity, established criteria
for schema compositionality, and showed particularly nice
behaviour of positive queries in mixed contexts.

Several extensions of our results can be obtained. We
mention three. The first trichotomy theorem is true for any
query language of PTIME data complexity that contains
FO. Second, if we allow 1-to-m relationships in place of
1-to-many relationships and define such limited open nulls
(i.e. each such null can be replicated at mostm times), then
all the complexity results about CWAmappings apply to this
case. Third, if a mapping Δ has only existential queries,
then every composition Σα ◦ Δα′ is in NP, regardless of
annotations.

A few open problems remain. The next step is extending
results to covermappingswith target constraints, as was done
in [15]. It is likely that adding weakly acyclic constraints
[10, 9] would lead to a terminating chase as in both open-
world [10] and closed-world [15] cases. We also would like
to see if the mixed open/closed mappings are applicable in
more general frameworks that try to unify data exchange,
integration, and peer-to-peer scenarios, such as in [8].

Acknowledgments The authors were supported by the EPSRC

grant E005039; the first author also by the EC Marie Curie Ex-

cellence grant MEXC-CT-2005-024502.

7. References

[1] S. Abiteboul, O. Duschka. Complexity of answering queries
using materialized views. In PODS 1998, pages 254–263.

[2] S. Abiteboul, P. Kanellakis, G. Grahne. On the
representation and querying of sets of possible worlds. TCS
78 (1991), 158–187.

[3] M. Arenas, P. Barceló, R. Fagin, L. Libkin. Locally
consistent transformations and query answering in data
exchange. In PODS 2004, pages 229–240.

[4] P. Atzeni, N. Morfuni. Functional dependencies and
constraints on null values in database relations.
Information and Control 70(1): 1–31 (1986).

[5] P. Bernstein, T.Green, S. Melnik, A. Nash. Implementing
mapping composition. VLDB’06, pages 55–66.

[6] P. Bernstein, S. Melnik. Model management 2.0:
manipulating richer mappings. SIGMOD’07, pages 1–12.

[7] L. Chiticariu, W.-C. Tan. Debugging schema mappings
with routes. In VLDB’06, pages 79–90.

[8] G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati. On
reconciling data exchange, data integration, and peer data
management. In PODS’07, pages 133–142.

[9] A. Deutsch, V. Tannen. Reformulation of XML queries and
constraints. In ICDT’03, pages 225–241.

[10] R. Fagin, Ph. Kolaitis, R. Miller, L. Popa. Data exchange:
semantics and query answering. Theor. Comput. Sci.
336(1): 89–124 (2005).

[11] R. Fagin, Ph. Kolaitis, L. Popa. Data exchange: getting to
the core. ACM TODS 30(1): 174–210 (2005).

[12] R. Fagin, Ph. Kolaitis, L. Popa, W.C. Tan. Composing
schema mappings: second-order dependencies to the rescue.
ACM TODS 30(4) 994–1055 (2005).

[13] G. Gottlob, R. Zicari. Closed world databases opened
through null values. In VLDB’88, pages 50–61.

[14] G. Grahne. The Problem of Incomplete Information in
Relational Databases. Springer, 1991.

[15] A. Hernich, N. Schweikardt. CWA-solutions for data
exchange settings with target dependencies. In PODS’07,
pages 113–122.

[16] T. Imielinski, W. Lipski. Incomplete information in
relational databases. J. ACM 31 (1984), 761–791.

[17] Ph. Kolaitis. Schema mappings, data exchange, and
metadata management. In PODS 2005.

[18] M. Lenzerini. Data integration: a theoretical perspective.
In PODS’02, pages 233–246.

[19] M. Levene, G. Loizou. Axiomatisation of functional
dependencies in incomplete relations. Theoretical Computer
Science 206 (1998), 283–300.

[20] L. Libkin. Data exchange and incomplete information. In
PODS’06, pages 60–69.

[21] W. Lipski. On semantic issues connected with incomplete
information in databases. ACM Trans. Database Systems 4
(1979), 262–296.

[22] J. Madhavan, A. Halevy. Composing mappings among data
sources. In VLDB’03, pages 572–583.

[23] A. Madry. Data exchange: on the complexity of answering
queries with inequalities. IPL 94 (2005) 253–257.

[24] J. Makowsky and Y. Pnueli. Arity and alternation in
second-order logic. APAL, 78 (1996), 189–202.

[25] R. Miller, M. Hernandez, L. Haas, L. Yan, C. Ho, R. Fagin,
L. Popa. The Clio project: managing heterogeneity.
SIGMOD Record 30 (2001), 78–83.

[26] A. Nash, P. Bernstein, S. Melnik. Composition of mappings
given by embedded dependencies. ACM TODS 32(1): 4
(2007).

[27] L. Popa, Y. Velegrakis, R. Miller, M. Hernández, R. Fagin.
Translating web data. In VLDB 2002, pages 598–609.

[28] R. Reiter. On closed world databases. In Logic and
Databases, Plenum Press, 1978, pages 55–76.

