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Abstract In this paper, we present a data mining approach
to address challenges in the matching of heterogeneous data-
sets. In particular, we propose solutions to two problems
that arise in integrating information from different results
of scientific research. The first problem, attribute match-
ing, involves discovery of correspondences among distinct
numeric features (attributes) that are used to characterize
datasets that have been collected and analyzed in differ-
ent research labs. The second problem, cluster matching,
involves discovery of matchings between patterns (clusters)
across datasets. We treat both of these problems together as
a multi-objective optimization problem. A multi-objective
simulated annealing algorithm is described to find the opti-
mal solution and compared with the genetic algorithm. The
utility of this approach is demonstrated in a series of experi-
ments using synthetic and realistic datasets that are designed
to simulate heterogeneous data from different sources.

Keywords Multi-objective optimization · Cluster
matching · Attribute matching · Metaheuristics

1 Introduction

The presence of heterogeneity among schemas supporting
vast amount of information demands advanced solution for
semantic integration of disparate data sources to facilitate
interoperability and reuse of the information. The challenge
is especially pronounced in many scientific domains where a
massive amount of data are produced independently and thus
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each having their own data vocabulary. While manual inte-
gration is time-consuming and requires expensive specialized
human capital, the development of automatic approaches
becomes imminent to aid inter-institute collaborations. One
purpose of the present paper was to suggest a method for
solving a specific kind of schema/ontology matching prob-
lem under some severe constraints that can cause traditional
methods to be ineffective. The constraints that we deal with
are, namely, (1) little-to-no string-based or linguistic simi-
larity between terminologies, and (2) all numeric typed data
instances. This phenomenon is commonly seen in integrat-
ing scientific datasets which involves discovery of corre-
spondences among distinct numeric-typed summary features
(“attributes”) that are used to characterize datasets that have
been collected and analyzed in different research labs. We
call this the attribute matching problem.

Another challenging task given the multiple data sources
is to carry out meaningful meta-analysis that combines
results of several studies on different datasets to address a
set of related research hypotheses. Finding correspondences
among distinct patterns that are observed in different sci-
entific datasets is an example of meta-analysis. Supposing
the patterns are derived by clustering analysis, this problem
can be addressed by the application of cluster comparison
(or cluster matching) techniques. Clustering is an unsuper-
vised data mining task widely used to discover patterns and
relationships in a variety of fields. The clustering result pro-
vides a pattern characterization from a data-driven perspec-
tive. If similar results are obtained across multiple datasets,
this leads in turn to a revision and refinement of existing
domain knowledge, which is a central goal of meta-analysis.
However, there are noticeably few cluster comparison meth-
ods that are able to compare two clusterings derived from
different datasets. The difficulty for the comparison is further
exacerbated by the fact that the datasets may be described by
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Table 1 Example distance matrices between (a) two sets of attributes
and (b) two sets of clusters, respectively

attributes from heterogeneous schemas or ontologies. Even
those methods that are able to measure clustering similar-
ity across different datasets (e.g., the ADCO [1] method)
have to assume the homogeneous meta-data (e.g., the same
schemas).

Given this situation, in order to carry out cluster com-
parison for meta-analysis, researchers often need to perform
ontology or schema matching first to mitigate the gap for
meta-data. In previous work [18], we examined a practi-
cal attribute matching problem on neuroscience data where
schema elements from one dataset share no lexical similarity
with those from the other. Moreover, structural similarity is
also limited. One can only resort to instance-based (exten-
sional) methods. However, since all attributes are numeri-
cal, information clues available to an instance-level matcher
is very restricted. Traditional instance-based matchers typ-
ically make use of constraint-based characterization, such
as numerical value ranges and averages to determine corre-
spondences. However, this is often too rough in the case of
all-numerical dataset. Two attributes may have similar ranges
and averages but totally different internal value distributions
(an example is shown in Sect. 4.1). Given this, we propose to
represent the attribute value distribution at a finer granularity
by partitioning the values into groups. To do this, clustering
is performed, and resulting clusters are then aligned across
two datasets (assuming that the same pattern exists in both
datasets). In this way, each attribute can be characterized by,
instead of a single value, a vector of per-cluster statistical
quantities (i.e., the segmented statistical characterization).
A distance function can then be applied based on this rep-
resentation. Table 1a shows an example distance table on
the cross join of two sets of attributes. To discover attribute
matching from this table can be reduced to solving a mini-
mum assignment problem (assuming matching is bijective),
which is a classical combinatory optimization problem that
has a polynomial solution using the Hungarian Method [14].

Unfortunately, however, the above solution requires us to
be able to align clusters across datasets, which is a difficult
problem in its own right. If fully automated, as mentioned
above, methods such as ADCO adopt a so-called density pro-
file [1] representation of clusters that requires homogeneous
meta-data or a priori knowledge about the attribute matching
in heterogeneous scenarios. Then the cluster matching can be
carried out in a similar manner to the attribute matching by

casting to the assignment problem (see Table 1b, for exam-
ple). This leads to a circular causality, or a deadlock, between
the attribute matching (under the segmented statistical char-
acterization) and cluster matching (under the density profile
representation) problems—none of them can be solved auto-
matically without the other one being solved first.

To solve this difficulty, in the present paper, viewing the
two matching problems as combinatorial optimization prob-
lems with distinct yet interrelated objective functions, we
propose a novel approach using a multi-objective heuristics
to discover attribute matching and cluster matching simulta-
neously. The objectives in the optimization are to minimize
distances of attribute matching and cluster matching, respec-
tively. We explore the widely used simulated annealing algo-
rithm as the metaheuristics algorithm and briefly compare its
performance with the evolutionary multi-objective algorithm
in experiments.

The rest of this paper is organized as follows: We review
the basics of multi-objective optimization and describe the
relationship between various components of the proposed
method and existing methods in Sect. 2. We present detailed
description of our method for simultaneously discovering
attribute matching and cluster matching in Sect. 3. We report
experimental and comparison results in Sect. 4. We discuss
assumptions and implications of the proposed method in
Sect. 5 and conclude the paper in Sect. 6.

2 Background and Related Work

2.1 The Multiobjective Optimization Problem and
Pareto-Optimality

Multi-objective optimization problem (also called multi-
criteria, multi-performance or vector optimization) can be
defined mathematically as to find the vector X = [x1, x2, . . . ,

xk]T which satisfies the following m inequality constraints
and l equality constraints:

gi (X) ≥ 0, i = 1, 2, . . . , m

hi (X) = 0, i = 1, 2, . . . , l

and optimize the objective function vector

F(X) = [ f1(X), f2(X), . . . , fN (X)]T

where X = [x1, x2, . . . , xk]T is called the decision variable
vector.

Real-life problems require simultaneous optimization of
several incommensurable and often conflicting objectives.
Usually, there is no single optimal solution, but there is a set
of alternative solutions. These solutions are optimal in the
sense that no other solutions in the search space are superior
to each other when all the objectives are considered [25].
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Simultaneously Discovering Attribute Matching and Cluster Matching 135

They are known as Pareto-optimal solutions. To define the
concept of Pareto optimality, we take the example of a mini-
mization problem with two decision vectors a, b ∈ X. Vector
a is said to dominate b if

∀i = {1, 2, . . . , N } : fi (a) ≤ fi (b)

and

∃ j = {1, 2, . . . , N } : f j (a) < f j (b)

When the objectives associated with any pair of non-dom-
inated solutions are compared, it is found that each solu-
tion is superior with respect to at least one objective. The
set of non-dominated solutions to a multi-objective optimi-
zation problem is known as the Pareto-optimal set (Pareto
front) [27].

2.1.1 Metaheuristics on Solving Multi-Objective
Optimization Problems

Metaheuristics are used for combinatorial optimization in
which an optimal solution is sought over a large, discrete
search-space. Popular metaheuristics for combinatorial prob-
lems include simulated annealing by Kirkpatrick et al. [12],
genetic algorithms by Holland [11]. Extensive previous
research has been devoted to extend these methods to multi-
objective optimization problems as discussed in the follow-
ing, which yield sets of mutually non-dominating solutions
that are an approximation to the true Pareto front. In Sect. 3
we explore in detail the multi-objective simulated annealing
algorithm applied to the dual matching problem. We compare
the performance with the multi-objective genetic algorithm
in Sect. 4.

Simulated Annealing in Multi-Objective Optimiza-
tion: Simulated annealing (SA) is based on an analogy of
thermodynamics with the way metals cool and anneal. It has
been proved to be a compact and robust technique. Simulated
Annealing was started as a method or tool for solving sin-
gle objective combinatorial problems; these days it has been
applied to solve single as well as multiple objective optimi-
zation problems in various fields. A comprehensive survey
can be found in [25].

Evolutionary Multi-Objective Optimization: Evoluti-
onary multi-objective optimization covers the use of many
types of heuristic optimizers inspired by the natural process
of evolution. As in nature, a population of individuals (solu-
tions to the problem) exist and, through a process of change
and competition between these individuals, the quality of the
population is advanced. Deb [3] provides an introduction of
evolutionary algorithms (e.g., genetic algorithm) for multi-
objective as the state of the art.

2.2 The Schema Matching Problem

Our study of matching alternative attribute sets is closely
related to the schema matching problem in data integration.
According to the type of instance value, various instance-
based approaches have been developed in previous research.
For example, for textual attributes, a linguistic character-
ization based on information retrieval techniques can be
applied [21]; for nominal attributes, evaluation of the degree
of overlap of instance values is a preferred approach. Lar-
son et al. [15] and Sheth et al. [23] discussed how relation-
ships and entity sets could be integrated primarily based on
their domain relationships. Similarity of partially overlapped
instance set can be also calculated based on measures such
as Hamming distance and Jaccard coefficient; for numeric
attributes, most methods use aggregated statistics to char-
acterize the attributes, e.g., ‘SSN’ and ‘PhoneNo’ can be
distinguished based on their respective patterns [21]. Hybrid
systems that combine several approaches to determine
matching often achieve better performance. For example,
SemInt [16] is a comprehensive matching prototype exploit-
ing up to 15 constraint-based and 5 content-based match-
ing criteria. The LSD (Learning Source Descriptions) [6]
system uses several instance-level matchers (learners) that
are trained during a preprocessing step. The iMAP [4]
system uses multiple basic matchers, called searches, e.g.,
text, numeric, category, and unit conversion, each of which
addresses a particular subset of the match space.

Due to the nature of many scientific datasets, we face
several unique challenges. First, the data under study is
semi-structured, thus invalidating those matching methods
that presume a complete, known-in-advance schematic struc-
ture. In addition, totally different labels (usually acronyms
or pseudowords) are widely adopted for the same or similar
metrics, rendering lexical similarity-based methods unsuit-
able. Moreover, an important limitation of previous instance-
based matching methods is their inability to handle numerical
instances appropriately in certain domain applications. They
use statistical characterization extracted from the numerical
instances, such as range, mean and standard deviation, to
determine matching. However such information is too rough
to capture patterns in data that are crucial in determining the
correspondence.

2.3 The Cluster Matching Problem

The cluster matching (cluster comparison) problem is related
to the cluster validity problem, especially the technique of
external/relative indexing that aims at comparing two differ-
ent clustering results. Popular methods in this field, including
the Rand index [22], Jaccard index [10], normalized mutual
information [7], etc., are mostly based on examining mem-
bership of points to clusters. However, the basis of these
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Fig. 1 Two clusterings C = {c1, c2} and C ′ = {c′
1, c′

2}. Two attributes
X (attribute 1) and Y (attribute 2) are discretized into two bins each.
See [1] for details

methods is the comparison of different clustering results on
the same dataset.

By contrast, in the present case we are aiming to match
clusters across datasets that contain non-overlapping obser-
vations. Thus, membership-based cluster validity criteria
are unsuitable. A recent clustering similarity index known
as ADCO (Attribute Distribution Clustering Orthogonality)
proposed by Bae et al. [1] can match clusters from non-over-
lapping datasets. The ADCO measure determines the similar-
ity between two clusters based on their density profiles, which
incorporate distribution information of data points along each
attribute. The density profile representation of clusters are
defined as follows.

Density Profile: To represent clusters using density pro-
files, the attribute’s range in each cluster is first discretized
into a number of bins, and the similarity between two clusters
corresponds to the number of points of each cluster falling
within these bins. The formal definition for this number of
points is the density of an attribute-bin region for cluster ck

in clustering result C, denoted as densC (k, i, j). It refers to
the number of points in the region (i, j)—the j-th bin of the
i-th attribute—that belongs to the cluster ck of the cluster-
ing result C. For example, for clustering result C in Fig. 1,
densC (1, 1, 1) = 8, because there are 8 data points in region
(1, 1)—the first bin of the first attribute x—that belongs to
the first cluster c1.

The density profile vector VC for a clustering result C is
formally defined as an ordered tuple:

VC =
[

densC (1, 1, 1), . . . , densC (1, 1, Q),

densC (1, 2, 1), . . . , densC (1, M, Q),

densC (2, 1, 1), . . . , densC (N , M, Q)

]
, (1)

where Q is the number of bins in each of the M attributes,
and N is the number of clusters in C.

The ADCO measure: After the density profile vectors of
two clustering results C and C ′ are obtained, the degree of
similarity between C and C ′ can be determined by calculating
the dot product of the density profile vectors: sim(C, C ′) =
VC · VC ′ .

The ADC O(C, C ′) measure is defined as sim(C, C ′) nor-
malized by the maximum achievable similarity when using
either of the two clusterings:

ADC O(C, C ′) = sim(C, C ′)
N F(C, C ′)

,

where N F(C, C ′) = max
[
sim(C, C), sim(C ′, C ′)

]
.

2.4 Collective Classification for Schema and Data Matching

Collective classification in relational data has become an
important and active research topic in the last decade, where
class labels for a group of linked instances are correlated
and need to be predicted simultaneously [13]. It has been
applied to tackle multiple integration problems that are tra-
ditionally solved independently. Wick et al. [26] describe
a discriminatively trained model based on Markov random
field to perform joint reasoning about schema matching, core-
ference, and canonicalization. Namata et al. [20] proposed an
approach consisting of coupled collective classifiers to dis-
cover a latent graph structure underlying an observed one by
addressing entity resolution, link prediction, and node label-
ing simultaneously. The difference between these previous
methods and our proposed method mainly lies in the fact that
we do not require a training phase. Instead, the matchings are
discovered by simultaneously optimizing interrelated objec-
tive functions which circumvents the labor for acquiring
labeled data and the expense of statistical inference.

Last but not least, we have made important extensions in
this paper compared with our conference paper version [17].
In this paper, we implement an evolutionary multi-objective
approach as the metaheuristics algorithm to discover attribute
and cluster matching. We have also conducted more experi-
ments on real-world datasets to demonstrate the utility of the
proposed method.

3 Method

3.1 The Multi-Objective Simulated Annealing Framework

Problem Definition: We tackle two data integration tasks in
this work, namely, the attribute matching and cluster match-
ing problems. We cast the dual matching problems to a multi-
objective optimization problem so that the matchings can
be solved simultaneously. The two objective functions to be
optimized are defined as the total distance of matched ele-
ments in attribute and cluster matching, respectively. To this
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Simultaneously Discovering Attribute Matching and Cluster Matching 137

end, we explore methods to represent attributes and clusters
so that the distance measure can be reasonably defined. We
assume that the optimal matching lies at the Pareto front in
this multi-objective problem.

We use metaheuristics search algorithm to solve this multi-
objective optimization problem. In the following we describe
the widely used simulated annealing algorithm and how it
can be adapted to multi-objective optimization and applied
to solve the matching problems. Later in the Experiment
Section, we briefly describe an evolutionary multi-objective
algorithm (i.e., genetic algorithm) and compare their perfor-
mance.

To solve the dual matching problems, we adopt a strategy
of multi-objective simulated annealing (MOSA) described
in [24], in which the acceptance criterion in the simulated
annealing process is Pareto-domination based fitness. Fitness
of a solution is defined as one plus the number of dominat-
ing solutions in Pareto-optimal set. The larger the value of
fitness, the worse is the solution. The probability of making
the transition from the current state X to a candidate new
state X′ is specified by an acceptance probability function
P = exp(−�S

T ), where �S is the change of fitness and T is
a global time-varying parameter called the temperature. The
P function is chosen so that the probability of accepting a
move decreases when the difference of fitness increases—
that is, small worsening moves are more likely than large
ones. Initially, the temperature is high so any move may be
accepted, which makes it possible to explore the full solu-
tion space. As the number of iterations increases, temper-
ature decreases, and fitness difference between the current
and generated solutions may increase. Both of them make the
acceptance move more selective and it results in a well-diver-
sified solution in true Pareto-optimal solutions. Details of our
adaptation of the above multi-objective simulated annealing
framework is outlined in Algorithm 1.

Mathematically, the processes involved in the proposed
multi-objective simulated annealing framework can be defi-
ned as follows:

X = [xa, xc]
F = [ fa, fc]

Pa([x (n−1)
a , x (n−1)

c ]) = [x (n)
a , x (n−1)

c ]
Pc([x (n−1)

a , x (n−1)
c ]) = [x (n−1)

a , x (n)
c ]

Gc|a([x (n)
a , x (n−1)

c ]) = [x (n)
a , x (n)

c ]
Ga|c([x (n−1)

a , x (n)
c ]) = [x (n)

a , x (n)
c ]

G ◦ P([x (n−1)
a , x (n−1)

c ]) = [x (n)
a , x (n)

c ]
X is the decision vector that contains two variables for attri-
bute matching, xa, and cluster matching, xc, respectively
(details in Sect. 3.2). F is the objective function vector that
contains two criterion functions ( fa and fc) to evaluate attri-
bute matching and cluster matching decisions (details in

Algorithm 1 Multi-Objective Simulated Annealing
Require: Empty Pareto-optimal set of solutions �

Require: Empty current decision vector X = [xa, xc]
Require: Initial temperature T

count = 0
while T > threshold do

ini tiali ze(X)

Put X in �

X′ = generate_solution(X)

SX′ = evaluate_solution(X′)
�S = SX′ − SX
if r = rand(0, 1) < exp(−�S

T ) then
X = X′
SX = SX ′

end if
count = count + 1
//Periodically restart
if count == restart_limit then

X = select_random_ f rom_Pareto(�)

continue
end if
reduce_temperature(T )

end while

Sect. 3.4). P is the random perturbation function that takes
a decision vector in the (n − 1)th iteration and partially
advances it to the nth iteration (we use Pa or Pc to distinguish
between the random selections). The partial candidate deci-
sion generation function G takes the output of P and fully
generate a decision vector for the nth iteration (by advanc-
ing the left-out variable in P to its nth iteration). Thus, the
compound function G ◦ P fulfills the task of generating an
nth-iteration candidate decision vector given the (n − 1)th
one (details in Sect. 3.5.2).

3.2 Decision Variable

The domains of the decision variables in the matching prob-
lems take values on a permutation space. In other words, by
formalizing the problem of finding correspondent elements
of two sets S and S′ of cardinality n as an optimization prob-
lem, the solution is completely specified by determining an
optimal permutation of 1, . . . , n. For instance, for two sets
of three elements, their indexes range over {0, 1, 2}. Apply-
ing a permutation π = {2, 0, 1} ∈ P3 on S′ can be viewed
as creating a mapping (bijection) from elements on the new
positions of S′ to elements on the corresponding positions in
S. In this example, the permutation π on S′ specifies the fol-
lowing correspondences: S0 ↔ S′

2, S1 ↔ S′
0, and S2 ↔ S′

1.

Formally, let Pn (n ∈ N) be the symmetric group of all
permutations of the set {1, 2, . . . , n}. Given two sets S and
S′ with the same cardinality of n, performing identity per-
mutation on one set and an arbitrary permutation π ∈ Pn on
the other specifies a matching (or mathematically speaking,
mapping) between the two sets. In the multi-objective optimi-
zation formalism for solving attribute matching and cluster
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matching problems, the decision vector has two variables:
X = [xa, xc]. If we have M attributes and N clusters to
match respectively, then xa ∈ PM and xc ∈ PN .

3.3 Data Representation

The central objects of interest in our study, namely, the
numeric-typed attributes and clusters, need to be represented
in a way that meaningful quantities can be defined to mea-
sure the “goodness” of a matching decision. To this end, we
propose to use the segmented statistical characterization to
represent attributes, and the density profiles to represent clus-
ters. Details of these representations are described below.

3.3.1 Representation of Attributes

Numeric-typed attributes can be represented by the segmen-
ted statistical characterization, in which data instances are
first partitioned into groups (e.g., through unsupervised clus-
tering) and then characterized by a vector of indicators, each
denoting a statistical characterization of the corresponding
group. For example, if values of an attribute A are clustered
into n groups, then it can be represented by a vector of seg-
mented statistical characterization as follows:

VA = [μ1, μ2, . . . , μn],
where we choose the mean value μi for cluster i as the sta-
tistical indicator in our implementation.

3.3.2 Representation of Clusters

Clusters can be represented by density profiles [1] as
described in Sect. 2. The attribute’s range in each cluster is
discretized into a number of bins, and the similarity between
two clusters corresponds to the number of points of each clus-
ter falling within these bins. Given this, density profile vector
VC for a clustering C is formally defined as an ordered tuple
by Eq. 1 where densC (k, i, j) refers to the number of points
in the region (i, j)—the j-th bin of the i-th attribute—that
belongs to the cluster ck of clustering C.

3.4 Objective Functions

The objective functions in the attribute matching and cluster
matching problems are criteria to evaluate the “goodness” of
matchings. We use the sum of pair-wise distances between
matched elements (see Table 1 for example) as the objective
function. Given this, to determine the form of objective func-
tions amounts to defining proper pair-wise distance measures
for the attribute and cluster matching problems, respectively,
as detailed in the following.

3.4.1 Distance Function Between Two Attributes

The pairwise distance between two attributes is defined as the
Euclidean distance between their segmented statistical char-
acterization vectors, and fa calculates the sum of pair-wise
distances under the attribute matching specified by xa :

fa(xa) =
M∑

k=1

L
(
(Va)k, (V ′

a)xa(k)
)

=
M∑

k=1

√√√√ N∑
i=1

(
μk

i − (μ′)xa(k)
i

)2
(2)

where xa ∈ PM .

3.4.2 Distance Function Between Two Clusters

The ADCO similarity described in Sect. 2.3 can be trans-
formed to a distance defined as follows [1]:

DADC O(C, C ′) =
{

2−ADC O(C,C ′), if C 
=C ′

0, otherwise
(3)

We use DADC O as the pair-wise distance between two clus-
ters under the density profile representation, and fc calculates
the sum of pair-wise distances under the cluster matching
specified by xc

fc(xc) =
N∑

k=1

DADC O

(
(Vc)

k, (V ′
c)

xc(k)

)

=
N∑

k=1

(
2 −

M∑
i=1

Q∑
j=1

(
dens(k,i, j)×dens(xc(k),i, j)

)/

max

[ M∑
i=1

Q∑
j=1

dens(k,i, j)2,

M∑
i=1

Q∑
j=1

dens(xc(k),i, j)2

])
, (4)

where xc ∈ PN .

3.5 Generation of New Solution

In each iteration of the simulated annealing process, we ran-
domly generate the candidate decision in the neighborhood
of the last-iteration decision by applying two consecutive
processes, namely, the random perturbation and the partial
candidate decision generation, as described below.

3.5.1 Random Perturbation

In each iteration, we select at random one variable (either xa

or xc) in the decision vector and perturb it by randomly swap-
ping two positions in the selected variable. This advances that
variable from the (n−1)th iteration to the nth iteration. Then
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Simultaneously Discovering Attribute Matching and Cluster Matching 139

the following partial candidate generation process is carried
out to bring the other variable also to the nth iteration.

3.5.2 Partial Candidate Decision Generation

Given x (n)
c , derive x0(n)

a :

xn
a = arg min

π
fa(π, x (n)

c )

= arg min
π

M∑
k=1

L
(
(Va)k, (V ′

a)π(k)
)

= arg min
π

M∑
k=1

√√√√ N∑
i=1

(
μk

i − (μ′)π(k)

x (n)
c (i)

)2

(5)

Given x (n)
a , derive x (n)

c :

xn
c = arg min

π
fc(π, x (n)

a )

= arg min
π

N∑
k=1

DADC O

(
(Vc)

k, (V ′
c)

π(k)
)

= arg min
π

N∑
k=1

⎛
⎝ M∑

i=1

Q∑
j=1

(
dens(k,i, j)×dens(π(k),x (n)

a (i), j)
) /

max

⎡
⎣ M∑

i=1

Q∑
j=1

dens(k,i, j)2,

M∑
i=1

Q∑
j=1

dens(π(k),x (n)
a (i), j)2

⎤
⎦

⎞
⎠
(6)

To calculate π that satisfies Eqs. 5 and 6, rather than iter-
ating through all possible permutations, we can consider the
equation as a minimum-cost assignment problem. Table 1a,
for example, illustrates a distance table between two attri-
bute sets A and A′. Matching of the two sets can be consid-
ered as an assignment problem where the goal is to find an
assignment of elements in {Ai } to those in {A′

i } that yields the
minimum total distance without assigning each Ai more than
once. This problem can be efficiently solved by the Hungar-
ian Method in polynomial time of O(K 3

min) [14]. It is worth
noting that by formulating the problem as the assignment
problem, we assume the matching between two sets to be a
one-to-one function.

4 Experiment

Because we are interested in understanding the property
of the Pareto front obtained by our method, we con-
ducted a series of experiments to highlight tradeoffs of the
objectives functions. First, to illustrate that the proposed
method is indeed capable of determining matchings between
numeric-typed attributes and clusters, we synthesized a data-
set simulating some extreme conditions under which previ-

ous methods are ineffective. Also, from the results obtained
on the synthetic dataset, we empirically study tradeoffs
between the two objective functions. Then, to evaluate the
scalability of the method, we carry out a series of tests on
a set of data with varied sizes. Finally, encouraged by these
results, we applied our methods to actual neuroscience ERP
(event-related potentials) data to highlight the applicability
of our method to the neuroscience domain.

4.1 Synthetic Dataset

4.1.1 Data Generation

In the synthetic dataset, tables are generated in such a way
that each attribute consists of several Gaussians with distinct
mean and standard deviation, and for one attribute in the
source table, there exists exactly one attribute in the target
table whose Gaussians possess the same configuration (hence
they match each other). However if the attribute is viewed
as a single distribution, as is typical in previous methods,
its mean and standard deviation would be indistinguishable
from those of other attributes in the same table. For example,
Fig. 2 illustrates the value distributions of three attributes
(a1, a2, and a3) from one dataset and their corresponding
counterparts (a′

1, a′
2, and a′

3) from another.

4.1.2 Results

Figure 3 illustrates the Pareto front obtained from matching
two synthetic datasets, each having 20 attributes and 5 clus-
ters. Most notably, the gold standard results for both attribute
matching and cluster matching are obtained from the left-
most point on the Pareto front. In other words, given the deci-
sion variables (X ) corresponding to that point, we obtained
100 % correct matching results. We further observed that in
our subsequent tests on other synthetic datasets with varied
number of attributes and clusters, the derived Pareto fronts all
contain the gold standard result, and the point corresponding
to the gold standard can always be found towards the mini-
mum end of fa . Given this, we propose the following method
to reduce the Pareto-optimal set to a single point correspond-
ing to the most favored choice (X∗) in the decision space.
The idea is to find the decision with the minimum weighted
sum of objective values in the obtained Pareto-optimal set,
i.e., X∗ = arg minX

[
α fa(X) + β fc(X)

]
, where α and β

are weights. We first conducted preliminary experiments to
determine the best values for α and β (0.8 and 0.2, respec-
tively) and used them in all subsequent experiments. This
method works markedly well on the synthetic datasets. For
all the tests described in Table 2, 100 % correct results for
both attribute and cluster matchings are obtained (hence we
omit the precision in the table).
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Fig. 2 Scatter plots of data instances from three sample attributes in one synthetic dataset (upper frame) and those of their corresponding attributes
from another (lower frame) are illustrated to show their respective value distributions

Fig. 3 An example Pareto front obtained from matching two synthetic
datasets with 20 attributes and 5 clusters

Table 2 Running time of the annealing process on synthetic datasets
with varied configurations of attribute and cluster sizes

# Attributes # Clusters Time (s)

5 20 0.28

20 20 1.81

20 40 7.04

20 60 17.80

40 20 4.66

40 40 11.74

40 60 25.93

60 20 10.95

60 40 20.70

60 60 37.35

100 100 172.23

The time is obtained by averaging over results of 5 runs of each test

4.1.3 Running Time

We systematically altered the number of attributes and clus-
ters present in the data and conducted a series of tests to
show the scalability of the proposed method. The running
time under different configurations is reported in Table 2.
The time is calculated by averaging over 5 runs of each test
(on a 2.53 GHz dual-core CPU with 4 gigabytes memory),
each run having 1000 iterations in the simulated annealing
process. The main computationally expensive part of the
annealing process is the generation of new candidate solution
phase (function G) in which an assignment problem is solved
using the Hungarian method. The complexity of the Hungar-
ian method is cubic and is already the most efficient algo-
rithm for solving the assignment problem (e.g., a brute force
algorithm has a factorial complexity). Fortunately, rarely is
the case that the number of attributes or clusters is large in
real-world scenarios where the proposed technique is needed.
For reasonable configurations in most practical applications,
the computation time is within a tractable range as shown in
Table 2.

4.2 Neuroscience Dataset

4.2.1 Data Acquisition

To address the problems of attribute and cluster matching
in a real-world neuroscience application, we used a set of
realistic simulated ERP (event-related potentials) datasets,
which were designed to support evaluation of ERP analy-
sis methods [8]. The datasets were specifically designed to
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simulate heterogeneous data from different groups of sub-
jects under different conditions (via distinct simulated brain
activities), as well as distinct measurement methods (spatial
and temporal metrics), and distinct patterns (reflecting two
different pattern decomposition techniques). Real ERP data
arise from superposition of latent scalp-surface electrophys-
iological patterns, each reflecting the activity of a distinct
cortical network that cannot be reconstructed from the scalp-
measured data with any certainty. Thus, real ERP data are
not appropriate for evaluation of ERP pattern mapping. By
contrast, simulated ERP data are derived from known source
patterns and therefore provide the necessary gold standard
for evaluation of our proposed methods.

The raw data for this study consist of 80 simulated event-
related potentials (ERPs), in which each ERP comprises sim-
ulated measurement data for a particular subject (n = 40).
The 40 simulated subjects are randomly divided into two 20-
subject groups, SG1 and SG2, each containing 40 ERPs (20
subjects in 2 experimental conditions). Each ERP consists of
a superposition of 5 latent varying spatiotemporal patterns.
These patterns were extracted from the two datasets, SG1 and
SG2, using two techniques: temporal Principal Components
Analysis (tPCA) and spatial Independent Components Anal-
ysis (sICA), two data decomposition techniques widely used
in ERP research [5]. To quantify the spatiotemporal char-
acteristics of the extracted patterns, two alternative metric
sets, m1 and m2, were applied to the two tPCA and the two
sICA-derived datasets. For a complete explanation of these
alternative metrics, please see Appendix in [8].

In summary, the simulated ERP data generation process
yielded eight test datasets in total, reflecting a 2 (attribute
sets) × 2 (subject groups) × 2 (decomposition methods) fac-
torial design. Therefore, for each attribute sets there are 4
datasets generated from different combinations of subject
groups and decomposition methods, resulting 4 × 4 = 16
cases for the studies of attribute matching and cluster match-
ing. The reason to include such variabilities was to test the
robustness of our matching method to different sources of
heterogeneities across the different datasets. Within all test
datasets, 5 major ERP spatiotemporal patterns are present.
They are P100, N100, N3, MFN, and P300. These patterns
can be identified in the datasets by clustering analysis. Pre-
tending that the latent patterns underlying discovered clus-
ters are unknown, we hope to match clusters across datasets
to recover the fact that the same patterns are present in all
datasets.

4.2.2 Results

We applied the weighted sum method as the post-process
step after obtaining the Pareto-optimal solutions to deter-
mine the most favored choice using the parameters (α and
β) discovered in the preliminary experiments on synthetic

Table 3 Matching performance of the proposed method with MOSA
on the 16 test cases from the neuroscience dataset

Test
case

Source params Target params Pa Pc |�|

1 〈 SG1, sICA, m1 〉 〈 SG1, sICA, m2 〉 13/13 5/5 5

2 〈 SG1, sICA, m1 〉 〈 SG2, sICA, m2 〉 13/13 5/5 6

3 〈 SG1, sICA, m1 〉 〈 SG1, tPCA, m2 〉 10/13 5/5 6

4 〈 SG1, sICA, m1 〉 〈 SG2, tPCA, m2 〉 7/13 3/5 8

5 〈 SG2, sICA, m1 〉 〈 SG1, sICA, m2 〉 11/13 3/5 7

6 〈 SG2, sICA, m1 〉 〈 SG2, sICA, m2 〉 13/13 5/5 7

7 〈 SG2, sICA, m1 〉 〈 SG1, tPCA, m2 〉 10/13 5/5 6

8 〈 SG2, sICA, m1 〉 〈 SG2, tPCA, m2 〉 9/13 2/5 8

9 〈 SG1, tPCA, m1 〉 〈 SG1, sICA, m2 〉 7/13 5/5 4

10 〈 SG1, tPCA, m1 〉 〈 SG2, sICA, m2 〉 8/13 5/5 6

11 〈 SG1, tPCA, m1 〉 〈 SG1, tPCA, m2 〉 11/13 5/5 6

12 〈 SG1, tPCA, m1 〉 〈 SG2, tPCA, m2 〉 7/13 3/5 5

13 〈 SG2, tPCA, m1 〉 〈 SG1, sICA, m2 〉 7/13 3/5 5

14 〈 SG2, tPCA, m1 〉 〈 SG2, sICA, m2 〉 9/13 5/5 6

15 〈 SG2, tPCA, m1 〉 〈 SG1, tPCA, m2 〉 10/13 3/5 8

16 〈 SG2, tPCA, m1 〉 〈 SG2, tPCA, m2 〉 8/13 3/5 8

The source and target parameter configuration of the data acquisition
process of each test case are shown. Pa and Pc denote the accuracy of
attribute matching and cluster matching, respectively. � is the number
of points in the obtained Pareto-front. The quantities listed in the table
are obtained by averaging over 5 runs of each test

datasets (cf. Sect. 4.1). The accuracy of attribute matching
and cluster matching along with the number of points in the
Pareto front are listed in Table 3 (all these results are obtained
by taking average from 5 runs for each test case).

It can be observed from the results in Table 3 that more dif-
ferent factors involved in the acquisition of the two datasets
for matching can negatively affect the matching performance.
For example, in test case 1, the two datasets are drawn from
the same subject group (SG1) and preprocessed using the
same decomposition method (sICA), whereas in test case 4,
the subject groups and decomposition methods are all differ-
ent, resulting in greater variability and hence the performance
is less satisfactory.

It is worth noting that our method greatly outperforms
a baseline method called WS (see Fig. 4) that determines
attribute matching based on data distribution at the whole
attribute level, which is typical in previous systems such as
SemInt [16]. In this figure we also demonstrate the accu-
racy of the segmented statistics characterization with expert-
labeled patterns, meaning that the data are partitioned and
aligned in the most accurate way, which marks the best
achievable attribute matching performance. But it is not fea-
sible because, as mentioned in Sect. 1, manually recognizing
patterns (partitioning data) and aligning them across datasets
require a priori knowledge of attributes in the datasets which
is exactly what the problem of attribute matching tries to
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Fig. 4 A comparison of the attribute matching accuracy of three meth-
ods on the 16 test cases of the neuroscience dataset. The three methods
being compared are matching based on whole-attribute statistics (WS),

segmented attribute statistics without knowing a priori cluster matching
(SS-u), and segmented attribute statistics with expert-aligned clusterings
(SS)

discover (the circular causality problem). On the other hand,
our method does not require human involvement (except the
specification of the number of clusters (patterns) present in
the data to run the clustering analysis) in determining both
the attribute matching and cluster matching and is able to
achieve close-to-optimal results.

4.3 Comparison with Multi-Objective Genetic Algorithm

The concept of Genetic Algorithm (GA) was developed by
Holland and his colleagues [11]. GA is first inspired by the
evolutionary process in which weak and unfit species within
their environment are faced with extinction and stronger ones
have greater opportunities to pass their genes to next gener-
ation. Comparing with Simulated Annealing (SA), Genetic
Algorithm often offers a different perspective in the field of
numerical optimization. Starts from a number of random gen-
erated population, cross over and evolve; GA has the ability
to search in parallel around different and often fully scat-
tered instances in the solution space, in contrast to the “sin-
gle thread” search in Simulated Annealing. In this paper,
we also implemented the Multi-Objective Genetic Algorithm
(MOGA) as the metaheuristics to solve the dual matching
problem.

To compare the performance between GA and SA, we
first carry out an experiment on the same set of neuroscience
data, as shown in Table 4. The iteration parameters of both
algorithms are tuned so that the convergence time are about
the same. The performances are then compared under such
setting. We manually examine the Pareto front derived in
each test case and find the solution that is closest to the gold
standard and the accuracy of which is reported in Table 4
(averaged over 5 independent runs).

Table 4 Matching performance of the proposed method with MOGA
on the 16 test cases from the neuroscience dataset

Test case Pa (%) Pc (%) �

1 100 100 9

2 98.2 96.6 10

3 53.4 98.0 9

4 53.3 98.0 11

5 100 98.2 5

6 71.2 96.0 6

7 59.4 94.4 6

8 59.7 98.8 6

9 25.2 100.0 6

10 38.5 100.0 5

11 77.7 99.2 7

12 69.2 100.0 9

13 38.7 100.0 9

14 40.3 98.8 11

15 45.0 96.0 8

16 84.6 98.8 16

The source and target parameter configuration of each test case is the
same as in Table 3

The number of population kept in each generation is an
important parameter regarding the complexity and perfor-
mance in MOGA. Intuitively, the more instances we keep,
the broader the search space we can explore in each genera-
tion. Table 4 shows the result with the number of population
set to 4. We have also tested other settings and found out
that the accuracy in most cases increases with the number
of population, but in rare cases the performance deteriorates.
The overall performance of MOGA is comparable to that of
MOSA but appears to be less robust. It is worth noting that
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Table 5 Summary of the statistical characteristics of attributes in the Wine Quality dataset

Fixed
acidity

Volatile
acidity

Citric acid Residual
sugar

Chlorides Free sulfur
dioxide

Total sulfur
dioxide

Density pH Sulphates Alcohol Quality

Mean

data1 6.86 0.28 0.34 6.35 0.05 35.58 138.98 0.99 3.19 0.49 10.53 5.88

data2 6.85 0.28 0.33 6.43 0.05 35.02 137.68 0.99 3.19 0.49 10.49 5.88

Stdev

data1 0.84 0.1 0.12 4.98 0.02 16.4 41.86 0.02 0.16 0.11 1.25 0.89

data2 0.86 0.1 0.12 5.16 0.02 17.61 43.18 0 0.15 0.12 1.22 0.89

Table 6 Performance of the proposed method with MOSA and MOGA
as metaheuristics, respectively, on the Wine Quality dataset

MOSA
accuracy
(%)

MOSA running
time (ms)

MOGA
accuracy
(%)

MOGA running
time (ms)

95.5 517 92.3 3356

the metaheuristics (MOSA and MOGA) we employed in the
experiments are simple algorithms. More modern and sophis-
ticated methods that explore various fitness assignment pro-
cedure, elitism, or diversification approaches will very likely
improve the performance.

In order to further validate our method, we implement our
method also on a real-world wine quality dataset [2] which is
available through the UCI machine learning repository.1 This
dataset has 12 attributes and 4898 records. We apply uniform
sampling to split it into two equal-sized subsets. The attri-
butes are anonymized and randomly reordered in each subset
to generate artificial heterogeneity.

We then apply the proposed method with MOSA and
MOGA as metaheuristics, respectively. The test is focused on
attribute matching because the gold standard is known while
the gold standard of cluster matching is unknown. Table 5
summarizes the statistics for each attribute in the dataset. For
both MOSA- and MOGA-derived Pareto optimal solutions,
we manually select the one that is closest to the gold-standard
matching (e.g., the solution with 10 out 12 attributes matched
correctly). Each metaheuristics is invoked five times and the
matching accuracy is averaged over these runs. The perfor-
mance for attribute matching is shown in Table 6. The results
demonstrate a markedly high accuracy for both MOSA and
MOGA. It is worth noting that in most runs the Pareto fronts
derived from MOSA and MOGA contain the gold standard
matching (hence the high accuracy). It suggests a strategy to
reduce the Pareto front in the matching problem by running
MOSA or MOGA repeatedly after some times and only those

1 http://archive.ics.uci.edu/ml/datasets/Wine+Quality.

“stable” points that appear more than certain proportion of
the times are considered to be presented to decision makers.

5 Discussion

5.1 Single Objective Versus Multi-Objective Approaches

In our previous work [18,19] we assumed the cluster match-
ing is known prior to attribute matching. Then the attribute
matching alone is simply a single objective problem. How-
ever, as we pointed out in the Introduction section, this is
a gross simplification because attribute matching and clus-
ter matching are intertwined and usually none can be known
without the knowledge of the other. Therefore in this work,
we focus on tackling this deadlock.

We argue that single objective approach is not appli-
cable given the way we represent attributes and clusters.
Specifically, we represent an attribute as an ordered tuple,
< v1, v2, . . . , v3 >, where vi is some statistics of the attri-
bute in a cluster ci of one dataset. Two attributes from dif-
ferent datasets can be compared only when we are able to
arrange the tuples so that matching positions correspond to
the same cluster. This assumes a certain kind of cluster match-
ing. The vice versa is true for cluster matching in that we
need some input on attribute matching. Essentially the prob-
lem at hand is to search in two permutation spaces, one for
each matching problem, which naturally leads to our multi-
objective approach. If one was to adopt a single objective
approach, the two spaces would have to be concatenated and
variables aggregated by some functions (e.g., weighted sum).
We argue it might be flawed because there is no way to jus-
tify the ad hoc choice of such function. On the contrary, the
multi-objective approach based on Pareto optimality circum-
vents the choice of aggregation, but focuses on obtaining a
non-dominating set of solutions (the Pareto set). We demon-
strate in our case studies one simple way to utilize the Pareto
set by combining both objectives based on weights that are
determined through pilot experiments. Note that applying
weights before and after the optimization is fundamentally
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different. The former carries more systematic risk of missing
true optimum due to the arbitrary choice of weights, while
the latter is just one way to post-process the Pareto set that is
very likely to contain the optimum. In practice, the Pareto set
itself can be well treated as the final product of the matching
analysis. Note that we show the sizes of Pareto sets in Table 3
for the neuroscience test case, which are all reasonably small
for examination to hand-pick best solutions.

5.2 Scalability Issues

The main computationally expensive part of the annealing
process is the generation of new candidate solution phase
(function G) in which an assignment problem is solved using
the Hungarian method. The complexity of the Hungarian
method is cubic and is already the most efficient algorithm
for solving the assignment problem (e.g., a brute force algo-
rithm has a factorial complexity). Although in our real-world
case studies data are of relatively small dimensionality, we
observe that there exist massive datasets that could render
our method computationally impractical. For example, the
ARCENE dataset [9] from the UCI machine learning repos-
itory contains mass-spectrometric output with 10,000 con-
tinuous input variables. ARCENE’s task is to distinguish
cancer versus normal patterns and the dataset is typically
used as a benchmark for classification and feature selection
algorithms. To match sets of attributes at this scale will def-
initely require more advanced adaptation of our metaheuris-
tics search algorithm, such as approximation or partitioning
of the search space to enable parallelism. On the other hand,
we have shown in our case studies that our method boasts
significant accuracy and the unique ability to distinguish
attributes with similar statistics. For the ARCENE dataset,
we create an artificial matching problem by first randomly
selecting a subset of data with 150 attributes as the source,
and then making a target dataset by injecting a small amount
of noise to the source. We then run the simulated anneal-
ing algorithm to find both attribute and cluster matchings
and achieved 132/150 accuracy for attribute matching and
4/5 accuracy for cluster matching. A baseline method that
simply utilizes one single statistics for each attribute scores
95/150 accuracy. This shows that, without employing paral-
lelism, our method provides for trade-off between accuracy
and scalability.

6 Conclusion

In this paper, we present a novel approach to address chal-
lenges in the matching of heterogeneous datasets. In partic-
ular, we have proposed solutions to two matching problems
(i.e., attribute matching and cluster matching) that arise in

combining information from different results of scientific
research. Our main contributions are

– A multi-objective approach to solve attribute matching
and cluster matching problems simultaneously.

– A segmented statistical characterization representation to
enable finer-grained modeling of internal distributions of
attributes.

– An exploration of the widely used simulated annealing
algorithm as the metaheuristics algorithm and a brief
comparison with the evolutionary multi-objective algo-
rithm in case studies.

The performance of this approach was demonstrated in
a series of experiments using synthetic and realistic data-
sets that were designed to simulate heterogeneous data from
different sources. In future work, we aim at improving the
scalability of the proposed method through employing par-
allelism and approximation by relaxing some certain con-
straints. We also hope to incorporate more state-of-the-art
research in the field of metaheuristics to improve the quality
of Pareto optimal solutions and explore more ways to utilize
these solutions.
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