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Abstract. In this paper, we present a data mining approach to chal-
lenges in the matching and integration of heterogeneous datasets. In
particular, we propose solutions to two problems that arise in combining
information from different results of scientific research. The first problem,
attribute matching, involves discovery of correspondences among distinct
numeric-typed summary features (“attributes”) that are used to charac-
terize datasets that have been collected and analyzed in different research
labs. The second problem, cluster matching, involves discovery of match-
ings between patterns across datasets. We treat both of these problems
together as a multi-objective optimization problem. A multi-objective
simulated annealing algorithm is described to find the optimal solution.
The utility of this approach is demonstrated in a series of experiments
using synthetic and realistic datasets that are designed to simulate het-
erogeneous data from different sources.

Keywords: Multi-Objective Optimization, Cluster Matching, Attribute
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1 Introduction

The presence of heterogeneity among schemas and ontologies supporting vast
amount of informational sources leads to one of the most important and tough-
est problems, that is, the semantic integration of heterogeneous data sources
to facilitate interoperability and reuse of the information. The difficulty is es-
pecially pronounced in many scientific domains where massive amount of data
are produced independently and thus each having their own data vocabulary.
While manual integration is time-consuming and requires expensive specialized
human capital, the development of automatic approaches becomes imminent to
aid inter-institute collaboration. One purpose of the present paper is to suggest
a method for solving a specific kind of ontology/schema matching problem un-
der some severe constraints that can cause traditional methods to be ineffective.
The constraints that we deal with are, namely, 1) little-to-no string-based or
linguistic similarity between terminologies, and 2) all numeric typed data in-
stances. This phenomenon is commonly seen in integrating scientific datasets
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which involves discovery of correspondences among distinct numeric-typed sum-
mary features (“attributes”) that are used to characterize datasets that have
been collected and analyzed in different research labs. We call this the attribute
matching problem.

Another challenging task given multiple data sources is to carry out meaning-
ful meta-analysis that combines results of several studies on different datasets
to address a set of related research hypotheses. Finding correspondences among
distinct patterns that are observed in different scientific datasets is an example
of meta-analysis. Supposing the patterns are derived by clustering analysis, this
problem can be addressed by the application of cluster comparison (or cluster
matching) techniques. Clustering is an unsupervised data mining task widely
used to discover patterns and relationships in a variety of fields. The clustering
result provides a pattern characterization from a data-driven perspective. If sim-
ilar results are obtained across multiple datasets, this leads in turn to a revision
and refinement of existing domain knowledge, which is a central goal of meta-
analysis. However, there are noticeably few cluster comparison methods that are
able to compare two clusterings derived from different datasets. The difficulty
for the comparison is further exacerbated by the fact that the datasets may be
described by attributes from heterogeneous ontologies or schemas. Even those
methods that are able to measure clustering similarity across different datasets
(e.g., the ADCO [1] method) have to assume the homogeneous meta-data.

Given this situation, in order to carry out cluster comparison for meta-analysis,
researchers often need to perform ontology or schema matching first in order to
mitigate the meta-data gap. In previous work [11], we examine a practical at-
tribute matching problem on neuroscience data where schema elements from one
dataset share no lexical similarity with those from the other. Moreover, struc-
tural similarity is also limited. One can only resort to instance-based (exten-
sional) methods. However, since all attributes are numerical, information clues
available to an instance-level matcher is very restricted. Traditional instance-
based matchers typically make use of constraint-based characterization, such as
numerical value ranges and averages to determine correspondences. However,
this is often too rough in the case of all-numerical dataset. Two attributes may
have similar ranges and averages but totally different internal value distribu-
tions (an example is shown in Section 4.1). Given this, we propose to represent
the attribute value distribution at a finer granularity by partitioning the val-
ues into groups. To do this, clustering is performed, and resulting clusters are
then aligned across two datasets (assuming that the same pattern exists in both
datasets). In this way, each attribute can be characterized by, instead of a single
value, a vector of per-cluster statistical quantities (i.e., the segmented statistical
characterization). A distance function can then be applied based on this repre-
sentation. Table 1(A) shows an example distance table on the cross join of two
sets of attributes. To discover attribute matching from this table can be reduced
to solving a minimum assignment problem (assuming matching is bijective),
which is a classical combinatory optimization problem that has a polynomial
solution using the Hungarian Method [8].
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Unfortunately, however, the above solution requires us to be able to align
clusters across datasets, which is a difficult problem in its own right. If fully au-
tomated, as mentioned above, methods such as ADCO adopt a so called density
profile [1] representation of clusters that requires homogeneous meta-data or a
priori knowledge about the attribute matching in heterogeneous scenarios. Then
the cluster matching can be carried out in a similar manner to the attribute
matching by casting to the assignment problem (see Table 1(B), for example).
This leads to a circular causality, or a deadlock, between the attribute matching
(under the segmented statistical characterization) and cluster matching (under
the density profile representation) problems—none of them can be solved auto-
matically without the other one being solved first.

Table 1. Example distance matrices between (A) two sets of attributes and (B) two
sets of clusters, respectively

a′
1 a′

2 · · · a′
m

a1 d11′ d12′ · · · d1m′

a2 d21′ d22′ d2m′
...

. . .

an dn1′ dn2′ dnm′

(A)

c′1 c′2 · · · c′n
c1 d11′ d12′ · · · d1n′

c2 d21′ d22′ d2n′
...

. . .

cn dn1′ dn2′ dnn′

(B)

To solve this difficulty, in the present paper, viewing the two matching prob-
lems as combinatorial optimization problems with distinct yet interrelated ob-
jective functions, we propose a novel approach using a multi-objective simulated
annealing (MOSA) to discover attribute matching and cluster matching simulta-
neously. The objectives in the optimization are to minimize distances of attribute
matching and cluster matching respectively.

The rest of this paper is organized as follows. We review the basics of
multi-objective optimization and describes the relationship between various
components of the proposed method and existing methods in Section 2. We present
detailed description of our method for simultaneously discovering attribute match-
ing and cluster matching in Section 3. We report experimental results in Section 4
and conclude the paper in Section 5.

2 Background and Related Work

2.1 The Multiobjective Optimization Problem and
Pareto-Optimality

Multi-objective optimization problem (also called multi-criteria,
multi-performance or vector optimization) can be defined mathematically as to
find the vector X = [x1, x2, . . . , xk]T which satisfies the following m inequality
constraints and l equality constraints:

gi(X) ≥ 0, i = 1, 2, . . . , m

hi(X) = 0, i = 1, 2, . . . , l
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and optimize the objective function vector

F (X) = [f1(X), f2(X), . . . , fN (X)]T

where X = [x1, x2, . . . , xk]T is called the decision variable vector.
Real-life problems require simultaneous optimization of several incommensu-

rable and often conflicting objectives. Usually, there is no single optimal solution,
but there is a set of alternative solutions. These solutions are optimal in the sense
that no other solutions in the search space are superior to each other when all the
objectives are considered [16]. They are known as Pareto-optimal solutions. To
define the concept of Pareto optimality, we take the example of a minimization
problem with two decision vectors a, b ∈ X . Vector a is said to dominate b if

∀i = {1, 2, . . . , N} : fi(a) ≤ fi(b)
and

∃j = {1, 2, . . . , N} : fj(a) < fj(b)

When the objectives associated with any pair of non-dominated solutions are
compared, it is found that each solution is superior with respect to at least one
objective. The set of non-dominated solutions to a multi-objective optimization
problem is known as the Pareto-optimal set (Pareto front) [17].

2.2 Simulated Annealing in Multi-Objective Optimization

Simulated annealing (SA) is based on an analogy of thermodynamics with the
way metals cool and anneal. It has been proved to be a compact and robust
technique, which provides excellent solutions to single and multiple objective
optimization problems with a substantial reduction in computation time. It is
a method to obtain an optimal solution of a single objective optimization prob-
lem and to obtain a Pareto set of solutions for a multi-objective optimization
problem. Simulated Annealing was started as a method or tool for solving sin-
gle objective combinatorial problems, these days it has been applied to solve
single as well as multiple objective optimization problems in various fields. A
comprehensive survey can be found in [16].

2.3 The Schema Matching Problem

Our study of matching alternative attribute sets is closely related to the schema
matching problem. According to the type of instance value, various instance-
based approaches have been developed in previous research. For example, for
textual attributes, a linguistic characterization based on information retrieval
techniques can be applied [12]; for nominal attributes, evaluation of the degree
of overlap of instance values is a preferred approach. Larson et al. [9] and Sheth
et al. [14] discussed how relationships and entity sets could be integrated pri-
marily based on their domain relationships. Similarity of partially overlapped in-
stance set can be also calculated based on measures such as Hamming distance
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and Jaccard coefficient; for numeric attributes, most methods use aggregated
statistics to characterize the attributes, e.g., ‘SSN’ and ‘PhonNo’ can be distin-
guished based on their respective patterns [12]. Hybrid systems that combine
several approaches to determine matching often achieve better performance. For
example, SemInt [10] is a comprehensive matching prototype exploiting up to
15 constraint-based and 5 content-based matching criteria. The LSD (Learning
Source Descriptions) [4] system uses several instance-level matchers (learners)
that are trained during a preprocessing step. The iMAP [2] system uses multiple
basic matchers, called searches, e.g., text, numeric, category, unit conversion,
each of which addresses a particular subset of the match space.

Due to the nature of many scientific datasets, we face several unique chal-
lenges. First, the data under study are semi-structured, thus invalidating those
matching methods that presume a complete, known-in-advance schematic struc-
ture. In addition, totally different labels (usually acronyms or pseudowords) are
widely adopted for the same or similar metrics, rendering lexical similarity-based
methods unsuitable. Moreover, an important limitation of previous instance-
based matching methods is their inability to handle numerical instances ap-
propriately in certain domain applications. They use statistical characterization
extracted from the numerical instances, such as range, mean and standard de-
viation, to determine match. However such information is too rough to capture
patterns in data that are crucial in determining the correspondence.

2.4 The Cluster Matching Problem

The cluster matching (cluster comparison) problem is related to the cluster va-
lidity problem, especially the technique of external/relative indexing that aims at
comparing two different clustering results. Popular methods in this field, includ-
ing the Rand index [13], Jaccard index [7], normalized mutual information [5],
etc., are mostly based on examining membership of points to clusters. However,
the basis of these methods is the comparison of different clustering schema on
the same dataset.

By contrast, in the present case we are aiming to match clusters across
datasets that contain non-overlapping observations. Thus, membership-based
cluster validity criteria are unsuitable. A recent clustering similarity index known
as ADCO (Attribute Distribution Clustering Orthogonality) proposed by Bae
et al. [1] can match clusterings from non-overlapping datasets. The ADCO mea-
sure determines the similarity between two clusterings based on their density
profiles, which incorporate distribution information of data points along each
attribute. The density profile representation of clusters are defined as follows.

Density Profile: To represent clusters using density profiles, the attribute’s range
in each cluster is first discretized into a number of bins, and the similarity be-
tween two clusters corresponds to the number of points of each cluster falling
within these bins. The formal definition for this number of points is the density of
an attribute-bin region for cluster ck in clustering C, denoted as densC(k, i, j).
It refers to the number of points in the region (i, j)—the j-th bin of the i-th
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attribute—that belongs to the cluster ck of clustering C. For example, for clus-
tering C in Fig. 1, densC(1, 1, 1) = 8, because there are 8 data points in region
(1, 1)—the first bin of the first attribute x—that belongs to the first cluster c1.

The density profile vector VC for a clustering C is formally defined as an
ordered tuple:

VC =
[
densC(1, 1, 1), densC(1, 1, 2), . . . , densC(1, 1, Q), densC(1, 2, 1),

. . . , densC(1, M, Q), densC(2, 1, 1), . . . , densC(N, M, Q)
]

, (1)

where Q is the number of bins in each of the M attributes, and K is the number
of clusters in C.

The ADCO measure: After the density profile vectors of two clusterings C and
C′ are obtained, the degree of similarity between C and C′ can be determined
by calculating the dot product of the density profile vectors:

sim(C, C′) = VC · VC′ .

Given a permutation π under which the similarity function sim(C, π(C′))
is maximized, an ADCO measure is calculated using a normalization factor
(NF ) corresponding to the maximum achievable similarity of the clusterings:
NF (C, C′) = max

[
sim(C, C), sim(C′, C′)

]
. The ADCO(C, C′) measure is de-

fined as follows:

ADCO(C, C′) =
sim(C, C′)
NF (C, C′)

.

Fig. 1. Two clusterings C = {c1, c2} and C′ = {c′1, c′2}. Two attributes X (attribute
1) and Y (attribute 2) are discretized into 2 bins each. See [1] for details.
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3 Method

3.1 The Multi-Objective Simulated Annealing Framework

To solve the dual matching problems, we adopt a strategy of multi-objective sim-
ulated annealing described in [15], in which the acceptance criterion in the sim-
ulated annealing process is established based on the idea of Pareto-domination
based fitness. Fitness of a solution is defined as one plus the number of dominat-
ing solutions in Pareto-optimal set. The larger the value of fitness, the worse is
the solution. Initially, fitness difference between the current and the generated
solution is less and the temperature is high so any move is accepted due to both
of them. This gives a way to explore the full solution space. As the number
of iterations increases, temperature decreases and fitness difference between the
current and generated solutions may increase. Both of them make the accep-
tance move more selective and it results in a well-diversified solution in true
Pareto-optimal solutions. Details of our adaptation of the above multi-objective
simulated annealing framework is outlined in Algorithm 1.

Algorithm 1. Multi-Objective Simulated Annealing
Input: Empty Pareto-optimal set of solutions Σ
Input: Empty current decision vector X = [xa, xc]
Input: Initial temperature T

count = 0
while T > threshold do

initialize(X)
Put X in Σ
X′ = generate solution(X)
SX′ = evaluate solution(X′)
ΔS = SX′ − SX

if r = rand(0, 1) < exp(−ΔS
T

) then
X = X′

SX = SX′

end if
//Periodically restart
if count == restart limit then

X = select random from Pareto(Σ)
continue

end if
reduce temperature(T )

end while

Mathematically, the processes involved in the proposed multi-objective simu-
lated annealing framework can be defined as follows.
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X = [xa, xc]
F = [fa, fc]

Pa([x(n−1)
a , x(n−1)

c ]) = [x(n)
a , x(n−1)

c ]

Pc([x(n−1)
a , x(n−1)

c ]) = [x(n−1)
a , x(n)

c ]

Gc|a([x(n)
a , x(n−1)

c ]) = [x(n)
a , x(n)

c ]

Ga|c([x(n−1)
a , x(n)

c ]) = [x(n)
a , x(n)

c ]

G ◦ P ([x(n−1)
a , x(n−1)

c ]) = [x(n)
a , x(n)

c ]

X is the decision vector that contains two variables for attribute matching, xa,
and cluster matching, xc, respectively (details in Section 3.2). F is the objective
function vector that contains two criterion functions (fa and fc) to evaluate
attribute matching and cluster matching decisions (details in Section 3.4). P
is the random perturbation function that takes a decision vector in the (n −
1)th iteration and partially advances it to the nth iteration (we use Pa or Pc

to distinguish between the random selections). The partial candidate decision
generation function G takes the output of P and fully generate a decision vector
for the nth iteration (by advancing the left-out variable in P to its nth iteration).
Thus, the compound function G◦P fulfils the task of generating an nth-iteration
candidate decision vector given the (n − 1)th one (details in Section 3.5).

3.2 Decision Variable

The domains of the decision variables in the matching problems take values on
a permutation space. In other word, by formalizing the problem of finding cor-
respondent elements of two sets S and S′ of cardinality n as an optimization
problem, the solution is completely specified by determining an optimal permu-
tation of 1, . . . , n. For instance, for two sets of three elements, their indexes range
over {0, 1, 2}. Applying a permutation π = {2, 0, 1} ∈ S3 on S′ can be viewed as
creating a mapping (bijection) from elements on the new positions of S′ to ele-
ments on the corresponding positions in S. In this example, the permutation π
on S′ specifies the following correspondences: S0 ↔ S′

2, S1 ↔ S′
0, and S2 ↔ S′

1.
Formally, let Pn (n ∈ N) be the symmetric group of all permutations of the set

{1, 2, . . . , n}. Given two sets S and S′ with the same cardinality of n, performing
identity permutation on one set and an arbitrary permutation π ∈ Sn on the
other specifies a matching (or mathematically speaking, mapping) between the
two sets. In the multi-objective optimization formalism for solving attribute
matching and cluster matching problems, the decision vector has two variables:
X = [xa, xc]. If we have M attributes and N clusters to match respectively, then
xa ∈ PM and xc ∈ PN .

3.3 Data Representation

The central objects of interest in our study, namely, the numeric-typed attributes
and clusters, need to be represented in ways that meaningful quantities can
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be defined to measure the “goodness” of a matching decision. To this end, we
propose to use the segmented statistical characterization to represent attributes,
and the density profiles to represent clusters. Details of these representations are
described below.

Representation of Attributes: Numeric-typed attributes can be represented
by the segmented statistical characterization, in which data instances are first
partitioned into groups (e.g., through unsupervised clustering) and then charac-
terized by a vector of indicators, each denoting a statistical characterization of
the corresponding group. For example, if values of an attribute A are clustered
into n groups, then it can be represented by a vector of segmented statistical
characterization as follows:

VA =
[
μ1, μ2, . . . , μn

]
,

where we choose the mean value μi for cluster i as the statistical indicator in
our implementation.

Representation of Clusters: Clusters can be represented using density pro-
files [1] as described in Section 2. The attribute’s range in each cluster is first
discretized into a number of bins, and the similarity between two clusters corre-
sponds to the number of points (i.e. density) of each cluster falling within these
bins. Given this, density profile vector VC for a clustering C is formally defined
as an ordered tuple by Equation 1 and is repeated here:

VC =
[
densC(1, 1, 1), densC(1, 1, 2), . . . , densC(1, 1, Q), densC(1, 2, 1),

. . . , densC(1, M, Q), densC(2, 1, 1), . . . , densC(N, M, Q)
]

,

where Q is the number of bins in each of the M attributes, N is the number
of clusters in C, and densC(k, i, j) refers to the number of points in the re-
gion (i, j)—the j-th bin of the i-th attribute—that belongs to the cluster ck of
clustering C.

3.4 Objective Functions

The objective functions in the attribute matching and cluster matching prob-
lems are criteria to evaluate the “goodness” of matchings. We use the sum of
pair-wise distances between matched elements (see Figure 1 for example) as
the objective function. Given this, to determine the form of objective functions
amounts to defining proper pair-wise distance measures for the attribute and
cluster matching problems respectively, as detailed in the following.

Distance function between two attributes. The pairwise distance between
two attributes are defined as the Euclidean distance between their segmented
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statistical characterization vectors, and fa calculates the sum of pair-wise dis-
tances under the attribute matching specified by xa:

fa(xa) =
M∑

k=1

L
(

(Va)k, (V ′
a)xa(k)

)

=
M∑

k=1

√√√√ N∑
i=1

(
μk

i − (μ′)xa(k)
i

)2

, (2)

where xa ∈ PM .

Distance function between two clusters. The ADCO similarity described
in Section 2.4 can be transformed to a distance defined as follows [1]:

DADCO(C, C′) =
{

2 − ADCO(C, C′) , if C 	= C′ (VC 	= VC′)
0 , otherwise

(3)

We use DADCO as the pair-wise distance between two clusters under the density
profile representation, and fc calculates the sum of pair-wise distances under the
cluster matching specified by xc

fc(xc) =
N∑

k=1

DADCO

(
(Vc)k, (V ′

c )xc(k)

)

=
N∑

k=1

(
2 −

M∑
i=1

Q∑
j=1

(
dens(k, i, j) × dens(xc(k), i, j)

)

max
[ M∑

i=1

Q∑
j=1

dens(k, i, j)2 ,

M∑
i=1

Q∑
j=1

dens(xc(k), i, j)2
]
)

,

(4)

where xc ∈ PN .

3.5 Generation of New Solution

In each iteration of the simulated annealing process, we randomly generate can-
didate decision in the neighborhood of the last-iteration decision by applying two
consecutive processes, namely, the random perturbation and the partial candi-
date decision generation, as described below.

Random Perturbation: In each iteration, we select at random one variable
(either xa or xc) in the decision vector and perturb it by randomly swapping two
positions in the selected variable. This advances that variable from (n−1)th it-
eration to nth iteration. Then the following partial candidate generation process
is carried out to bring the other variable also to nth iteration.
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Partial candidate decision generation
Given x

(n)
c , derive x

(n)
a :

xn
a = arg min

π
fa(π, x(n)

c ) = argmin
π

M∑
k=1

L
(

(Va)k, (V ′
a)π(k)

)

= arg min
π

M∑
k=1

√√√√ N∑
i=1

(
μk

i − (μ′)π(k)

x
(n)
c (i)

)2

(5)

Given x
(n)
a , derive x

(n)
c :

xn
c = argmin

π
fc(π, x(n)

a ) = arg min
π

N∑
k=1

DADCO

(
(Vc)k, (V ′

c )π(k)

)

= arg min
π

N∑
k=1

(
2 −

M∑
i=1

Q∑
j=1

(
dens(k, i, j) × dens(π(k), x(n)

a (i), j)

)

max

[ M∑
i=1

Q∑
j=1

dens(k, i, j)2 ,

M∑
i=1

Q∑
j=1

dens(π(k), x(n)
a (i), j)2

]
)

(6)

To calculate π that satisfies equations 5 and 6, rather than iterating through
all possible permutations, we can consider the equation as a minimum-cost as-
signment problem. Table 1(A), for example, illustrates a distance table between
two attribute sets A and A′. Matching of the two sets can be considered as an
assignment problem where the goal is to find an assignment of elements in {Ai}
to those in {A′

i} that yields the minimum total distance without assigning each
Ai more than once. This problem can be efficiently solved by the Hungarian
Method in polynomial time of O(K3

min) [8]. It is worth noting that by formulat-
ing the problem as the assignment problem, we assume the matching between
two sets to be a one-to-one function.

4 Experiment

Because we are interested in understanding the property of the Pareto front ob-
tained by our method, we conducted a series of experiments to highlight tradeoffs
of the objectives functions. First, to illustrate the proposed method is indeed ca-
pable of determining matching between numeric-typed attributes and clusters,
we synthesized a dataset simulating some extreme conditions under which pre-
vious methods are ineffective. Also, from the results obtained on the synthetic
dataset, we empirically study tradeoffs between the two objective functions.
Then, to evaluate the scalability of the method, we carry out a series of tests
on a set of data with varied sizes. Finally, encouraged by these results, we ap-
plied our methods to actual neuroscience ERP (event-related potentials) data to
highlight the applicability of our method to the neuroscience domain.
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4.1 Synthetic Dataset

Data Generation: In the synthetic dataset, we generated values for each at-
tribute in such a way that each attribute can be divided into several clusters,
and each cluster corresponds to a Gaussian distribution with different mean and
standard deviation, but the overall mean and standard deviation of values from
all clusters in one attribute are made very close to those in other attributes. For
example, Figure 2 illustrates the value distributions of three attributes (a1, a2,
and a3) from one dataset and their corresponding counterparts (a′

1, a
′
2, and a′

3)
from another. It shows that the overall means and standard deviations for these
six attributes are almost indistinguishable, and their ranges are similar as well.
Previous methods using these whole-attribute-wise quantities as statistical char-
acterization of attributes would have a hard time determining the matchings.
However, as mentioned above and illustrated in the figure, the individual dis-
tributions underlying clusters in these attributes are distinct and, by using the
segmented statistical characterization of attributes, the difference is significant
enough to differentiate and identify matchings between attributes.

0 20 40 60 80 100
−5

0

5

0 20 40 60 80 100
−5

0

5

0 20 40 60 80 100
−5

0

5

a1 — range: [-4.74, 4.74] a3 — range: [-4.61, 4.61] a2 — range: [-4.02, 4.02]
μ: 0, σ:2.26 μ: 0, σ:2.30 μ: 0, σ:2.18

0 20 40 60 80 100

−5

0

5

0 20 40 60 80 100

−5

0

5

0 20 40 60 80 100

−5

0

5

a′
1 — range: [-5.72, 5.72] a′

3 — range: [-5.24, 5.24] a′
2 — range: [-4.25, 4.25]

μ: 0, σ:2.20 μ: 0, σ:2.35 μ: 0, σ:2.15

Fig. 2. Scatter plots of data instances from three sample attributes in one synthetic
dataset (upper frame) and those of their corresponding attributes from another (lower
frame) are illustrated to show their respective value distributions

Results: Figure 3 illustrates the Pareto front obtained from matching two syn-
thetic datasets, each having 20 attributes and 5 clusters. Most notably, the gold
standard results for both attribute matching and cluster matching are obtained
from the left-most point on the Pareto front. In other words, given the decision
variables (X) corresponding to that point, we obtained 100% correct match-
ing results. We further observed that in our subsequent tests on other synthetic
datasets with varied number of attributes and clusters, the derived Pareto fronts
all contain gold standard result, and the point corresponding to the gold stan-
dard can always be found towards the minimum end of fa. Given this, we propose
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Fig. 3. An example Pareto front obtained from matching two synthetic datasets with
20 attributes and 5 clusters

the following method to reduce the Pareto-optimal set to a single point corre-
sponding to the most favored choice (X∗) in the decision space. The idea is to
find the decision with the minimum weighted sum of objective values in the ob-
tained Pareto-optimal set, i.e., X∗ = argmin

X

[
αfa(X) + βfc(X)

]
, where α and

β are weights. We first conducted preliminary experiments to determine the best
values for α and β (0.8 and 0.2 respectively) and used them in all subsequent
experiments. This method works markedly well on the synthetic datasets. For
all the tests described in Table 2, 100% correct results for both attribute and
cluster matchings are obtained (hence we omit the precision in the table).

Running Time: We systematically altered the number of attributes and clus-
ters present in the data and conducted a series of tests to show the scalability
of the proposed method. The running time under different configurations is re-
ported in Table 2. The time is calculated by averaging over 5 runs of each test
(on a 2.53GHz dual-core CPU with 4 gigabytes memory), each run having 1000
iterations in the simulated annealing process. The main computationally expen-
sive part of the annealing process is the generation of new candidate solution
phase (function G) in which an assignment problem is solved using the Hungar-
ian method. The complexity of the Hungarian method is cubic and is already the
most efficient algorithm for solving the assignment problem (a brute force algo-
rithm has a factorial complexity). Fortunately, rarely is the case that the number
of attributes or clusters is large in real-world scenarios where the proposed tech-
nique is needed. For reasonable configurations in most practical applications, the
computation time is within a tractable range as shown in table 2.

4.2 Neuroscience Dataset

Data Acquisition: To address the problems of attribute and cluster matching
in a real-world neuroscience application, we used a set of realistic simulated ERP
(event-related potentials) datasets, which were designed to support evaluation
of ERP analysis methods [6]. The datasets were specifically designed to simulate
heterogeneous data from different groups of subjects under different conditions
(via distinct simulated brain activities), as well as distinct measurement methods



Simultaneously Solving Cluster Matching and Attribute Matching 711

Table 2. Running time of the annealing process on synthetic datasets with varied
configurations of attribute and cluster sizes. The time is obtained by averaging over
results of 5 runs of each test.

# attributes # clusters time (sec)

5 20 0.28
20 20 1.81
20 40 7.04
20 60 17.80
40 20 4.66
40 40 11.74
40 60 25.93
60 20 10.95
60 40 20.70
60 60 37.35

100 100 172.23

(spatial and temporal metrics) and distinct patterns (reflecting two different
pattern decomposition techniques). Real ERP data arise from superposition of
latent scalp-surface electrophysiological patterns, each reflecting the activity of a
distinct cortical network that cannot be reconstructed from the scalp-measured
data with any certainty. Thus, real ERP data are not appropriate for evaluation
of ERP pattern mapping. By contrast, simulated ERP data are derived from
known source patterns and therefore provide the necessary gold standard for
evaluation of our proposed methods.

The raw data for this study consist of 80 simulated event-related potentials
(ERPs), in which each ERP comprises simulated measurement data for a par-
ticular subject (n = 40). The 40 simulated subjects are randomly divided into
two 20-subject groups, SG1 and SG2, each containing 40 ERPs (20 subjects
in 2 experimental conditions). Each ERP consists of a superposition of 5 la-
tent varying spatiotemporal patterns. These patterns were extracted from the
two datasets, SG1 and SG2, using two techniques: temporal Principal Compo-
nents Analysis (tPCA) and spatial Independent Components Analysis (sICA),
two data decomposition techniques widely used in ERP research [3]. To quan-
tify the spatiotemporal characteristics of the extracted patterns, two alternative
metric sets, m1 and m2, were applied to the two tPCA and the two sICA de-
rived datasets. For a complete explanation of these alternative metrics, please
see Appendix in [6].

In summary, the simulated ERP data generation process yielded eight test
datasets in total, reflecting a 2 (attribute sets) × 2 (subject groups) × 2 (de-
composition methods) factorial design. Therefore, for each attribute sets there
are 4 datasets generated from different combinations of subject groups and de-
composition methods, resulting 4 × 4 = 16 cases for the studies of attribute
matching and cluster matching. The reason to include such variabilities was to
test the robustness of our matching method to different sources of heterogene-
ity across the different datasets. Within all test datasets, 5 major ERP spa-
tiotemporal patterns are present. They are P100, N100, N3, MFN, and P300.
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Fig. 4. Pareto fronts obtained from the 16 test cases of the neuroscience dataset

These patterns can be identified in the datasets by clustering analysis. Pretend-
ing that the latent patterns underlying discovered clusters are unknown, we hope
to match clusters across datasets to recover the fact that the same patterns are
present in all datasets.

Results: Figure 4 illustrates the Pareto fronts derived by the proposed method
on each of the 16 test cases. We applied the weighted sum method to determine
the most favored choice from the Pareto fronts using the parameters (α and β)
discovered in the preliminary experiments on synthetic datasets (cf. Section 4.1).
The accuracy of attribute matching and cluster matching along with the number
of points in the Pareto front are listed in Table 3 (all these results are obtained
by taking average from 5 runs for each test case).

It canbe observed from the results in Table 3 thatmore different factors involved
in the acquisition of the two datasets for matching can negatively affect the match-
ing performance. For example, in test case 1, the two datasets are drawn from the
same subject group (SG1) and preprocessedusing the same decompositionmethod
(sICA); whereas in test case 4, the subject groups and decomposition methods are
all different, resulting in greater variability and hence the performance is less sat-
isfactory. However, it is worth noting that our method greatly outperforms tra-
ditional whole-attribute-based statistic characterization, as is shown in Table 5.
In this table we also demonstrate the accuracy of the segmented statistics charac-
terization with expert-labeled patterns, meaning that the data is partitioned and
aligned in the most accurate way, which marks the best achievable attribute match-
ing performance.But it is not feasible because, asmentioned in Section 1, manually
recognizing patterns (partitioning data) and aligning themacross datasets requires
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Fig. 5. A comparison of the attribute matching accuracy of three methods on the 16
test cases of the neuroscience dataset. The three methods being compared are matching
based on whole-attribute statistics (WS), segmented attribute statistics without know-
ing a priori cluster matching (SS-u), and segmented attribute statistics with expert-
aligned clusterings (SS).

a priori knowledge of attributes in the datasetswhich is exactlywhat the problemof
attribute matching tries to discover (the circular causality problem). On the other
hand, our method does not require human involvement (except the specification of
the number of clusters (patterns) present in the data in order to run the clustering
analysis) in determining both the attribute matching and cluster matching and is
able to achieve close-to-optimal results.

Table 3. Matching performance of the proposed method on the 16 test cases from
the neuroscience dataset. The source and target parameter configuration of the data
acquisition process of each test case are shown. Pa and Pc denote the accuracy of
attribute matching and cluster matching respectively. Σ is the number of points in the
obtained Pareto-front. The quantities listed in the table are obtained by averaging over
5 runs of each test.

Test case Source params Target params Pa Pc |Σ|
1 〈 SG1, sICA, m1 〉 〈 SG1, sICA, m2 〉 13/13 5/5 5
2 〈 SG1, sICA, m1 〉 〈 SG2, sICA, m2 〉 13/13 5/5 6
3 〈 SG1, sICA, m1 〉 〈 SG1, tPCA, m2 〉 10/13 5/5 6
4 〈 SG1, sICA, m1 〉 〈 SG2, tPCA, m2 〉 7/13 3/5 8
5 〈 SG2, sICA, m1 〉 〈 SG1, sICA, m2 〉 11/13 3/5 7
6 〈 SG2, sICA, m1 〉 〈 SG2, sICA, m2 〉 13/13 5/5 7
7 〈 SG2, sICA, m1 〉 〈 SG1, tPCA, m2 〉 10/13 5/5 6
8 〈 SG2, sICA, m1 〉 〈 SG2, tPCA, m2 〉 9/13 2/5 8
9 〈 SG1, tPCA, m1 〉 〈 SG1, sICA, m2 〉 7/13 5/5 4
10 〈 SG1, tPCA, m1 〉 〈 SG2, sICA, m2 〉 8/13 5/5 6
11 〈 SG1, tPCA, m1 〉 〈 SG1, tPCA, m2 〉 11/13 5/5 6
12 〈 SG1, tPCA, m1 〉 〈 SG2, tPCA, m2 〉 7/13 3/5 5
13 〈 SG2, tPCA, m1 〉 〈 SG1, sICA, m2 〉 7/13 3/5 5
14 〈 SG2, tPCA, m1 〉 〈 SG2, sICA, m2 〉 9/13 5/5 6
15 〈 SG2, tPCA, m1 〉 〈 SG1, tPCA, m2 〉 10/13 3/5 8
16 〈 SG2, tPCA, m1 〉 〈 SG2, tPCA, m2 〉 8/13 3/5 8
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5 Conclusion

In this paper, we have presented a data mining approach to challenges in the
matching and integration of heterogeneous datasets. In particular, we have pro-
posed solutions to two problems that arise in combining information from differ-
ent results of scientific research. The first problem, attribute matching, involves
discovery of correspondences among distinct numeric-typed summary features
(“attributes”) that are used to characterize datasets that have been collected
and analyzed in different research labs. The second problem, cluster matching,
involves discovery of matchings between patterns across datasets.

We have treated both of these problems together as an multi-objective op-
timization problem. We developed a segmented statistics characterization to
represent numeric-typed attributes and adapted the density profile to represent
clusters. Based on these representations, we proposed objective functions that
best define the criteria for selecting matching decisions. A multi-objective simu-
lated annealing algorithm was described to find the optimal decision. The utility
of this approach was demonstrated in a series of experiments using synthetic
and realistic datasets that were designed to simulate heterogeneous data from
different sources.
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