
Automatic Ontology Merging by Hierarchical Clustering
and Inference Mechanisms

Nora Maiz, Muhammad Fahad, Omar Boussaid, Fadila Bentayeb
(ERIC Laboratory, University of Lyon2, Bron, France

firstname.lastname@univ-lyon2.fr)

Abstract: One of the core challenges for current landscape of ontology based research is to
develop efficient ontology merging algorithms which can resolve the mismatches with no or
minimum human intervention, and generate automatic global merged ontology on-the-fly to
fulfil the needs of automated enterprise business applications and mediation based data
warehousing. This paper presents our approach of ontology merging in context of data
warehousing by mediation that aims at building analysis contexts on-the-fly. Our methodology
is based on the combination of the statistical aspect represented by the hierarchical clustering
technique and the inference mechanism. It generates the global ontology automatically by four
steps. First, it builds classes of equivalent entities of different categories (concepts, properties,
instances) by applying a hierarchical clustering algorithm. Secondly, it makes inference on
detected classes to find new axioms, and solves synonymy and homonymy conflicts. This step
also consists of generating sets of concept pairs from ontology hierarchies, such as the first
component subsumes the second one. Third, it merges different sets together, and uses classes
of synonyms and sets of concept pairs to solve semantic conflicts in the global set of concept
pairs. Finally, it transforms this set to a new hierarchy, which represents the global ontology.

Keywords: Ontology Merging, Similarity Measure, Hierarchical Clustering and Inference,
Data Warehouse design, Data Mining
Categories: H.3.1, H.3.2, H.3.3, H.3.7, H.5.1

1 Introduction

Decision tools are more and more used in modern companies to conduct analysis and
take decisions at data that originate from distributed and heterogeneous data sources.
Therefore, data integration is crucial since the analysis context, also called data cube,
is built using data from different data sources in the same company or shared with
other companies or on the web. There are two main strategies for data integration, i.e.,
data warehousing [Inmon, 92; Kimball, 98] and mediation [Goasdoue, 00; Huang, 00;
Lamarre, 04]. The goal of former strategy is to build a centralized database that
contains all data coming from different data sources modeled in multidimensional
way promoting on-line analytical processing. This approach is characterized by its
performance in terms of query response time since the data is warehoused that
facilitates the decision processes. But, when data changes over time, decisional tools
necessitate several updates for sound decision making. The updating processes are
achieved using data warehouse refreshment strategies that cause much additional cost.
To tackle this problem, we propose mediator approach to construct a virtual data
warehouse to process analysis context on-the-fly.

Mediator approach consists of defining three elements; data source schemas as

Proceedings of I-KNOW 2010
1-3 September 2010, Graz, Austria 81

local schemas, the mediator layer as a global schema and correspondence rules
between local schemas. Querying data from their real sources to make decision
consists of defining decisional queries. For formulating decisional queries for the
mediator, we must first define a global schema that allows execution of this kind of
queries. To fulfill this task, we need a powerful strategy of query transformation from
the global schema language to the data sources languages. Furthermore, the obtained
results from different data sources are combined to build the data cube on-the-fly.
Since that we are in the analysis and decision domain, we are interested more by the
pertinence of query results, so a simple search of data is not sufficient and we must
proceed to a semantic research based on the semantic of terms used in the global
schema or in the user query. This requires usage of ontologies as a support to data
source semantic representation to ensure the knowledge sharing between different
heterogeneous data sources or between different users. In this context, we propose an
initial strategy for the definition of the global schema of the mediation system that
aims at data searching. We use the classification technique to build the concept
classes for the global ontology starting from the local ontologies that are
representative of local data sources. The clustering technique based on semantic
similarity is used to define clusters of concepts in the global ontology by merging
local ontology classes. It takes into account the concept context that is defined as a set
of roles that link this concept to other ones.

The remainder of this paper is structured as follows. Section 2 throws a light on
state-of-the-art systems. Section 3 presents the methodology of our ontology merging
system that exploits hierarchical clustering and inference mechanisms. Section 4
discusses the experimental validation of our approach. Finally, we draw some
conclusions and show ongoing research aspects in section 5.

2 State-of-the-Art on Ontology Mapping and Merging

There are many approaches and systems for ontology alignment and mapping in
research literature. IF-Map exploits instance similarity approach based on the formal
concepts analysis for mapping of source ontologies by considering common reference
ontology [Kalfoglou, 03]. GLUE integrates the instance matching with machine
learning approach, and calculates the probabilities of concept matching by analyses of
taxonomic structure for ontology integration [Doan, 04]. OBSERVER aims to work
with semantic heterogeneities between distributed data repositories, and translates
user queries from different ontologies using inter-ontology relationships (mappings)
and retrieves desired data [Mena, 00]. QOM exploits the heuristic based dynamic
programming approach for choosing only promising candidate mappings, and thus
reduces the runtime complexity [Ehrig, 04]. OLA transforms ontologies to OWL-
Graphs, and use Valtchev's similarity measure to compare entities belonging to the
same category (Object property, datatype property, etc.) for find alignments between
them [Euzenat, 04]. Besides these approaches, there are some semantic ontology
matching techniques, such as CtxMatch [Bouquet, 06], S-Match [Giunchiglia, 04] and
ASMOV [Jean-Marya, 09]. CtxMatch and S-Match follows the same methodology
by translating concepts into the Description Logic (DL) formulas and then solves the
propositional satisfiability problems with the help of available DL reasoners.
Mascardi et al. make use of upper ontologies as semantic bridges for matching source

N. Maiz, M. Fahad, O. Boussaid, F. Bentayeb: ...82

heterogeneous ontologies [Mascardi, 10].
For ontology merging, there are very few approaches contributed in the research

literature. The semi-automatic interactive tools PROMPT and AnchorPROMPT [Noy,
03], and Chimaera [McGuinness, 00] exploit concept labels and to some extent the
structure of source ontologies for ontology merging. These tools have no ability to
find correspondences between concepts that are semantically equivalent but modeled
with different names.. FCA-Merge is an algorithm for ontology merging that defines
an ascending formal method of ontologies merging based on a set of natural language
documents [Stumme, 01]. They use techniques for natural language treatment and
concepts formal analysis to derive the concept lattice. The later is explored and
transformed to ontology with the human intervention. H-Match and Merge, a dynamic
ontology matching algorithm developed in the Helios framework, adopts another
interesting approach by using linguistic and contextual affinity of concepts in peer-
based systems [Castano, 04].

Our research on ontology merging topic has two folds. First, our semantic based
ontology merger, DKP-OM, follows the hybrid approach and uses various
inconsistency detection algorithms in initial mapping found in first steps [Fahad, 07].
Our hybrid strategy makes it possible to find all possible mappings, and semantic
validation of mappings gives very promising final results by ignoring the incorrect
correspondences which don’t satisfy the test criteria. Secondly the contribution
presented in this paper, automatic merging of local ontologies by clustering and
inference mechanisms, for building analysis context (merged global ontology) on-the-
fly in the context of data warehousing by ontology mediation approach [Maiz, 07].
The previous approaches in research literature use ontologies in XML (Extensible
Markup Language), RDF (Resource Description Framework) or OWL-Lite (Ontology
Web Language) format, and are not capable for automatic generation of global
merged ontology. In addition, majority of them use similarity measures that cover at
least the ontology structure and use a stabilization threshold to stop the alignment
process, which limits the semantic propagation resulting reduction in precision.
Moreover, these approaches support only two ontologies to be aligned, contrary to the
reality where several ontologies need to be aligned in the same system for their share
and reuse especially in case of data warehouse design. So, we need a new approach
that takes into account the scalability by supporting several ontologies at the time. It is
the case of our approach that fulfills these challenges as explained below.

3 Ontology Integration by Hierarchical Clustering and Inference

The main idea in our approach is to combine the power of the statistical approach
represented by the hierarchical clustering algorithm with the inference mechanism
offered by the semantic language OWL-DL. For generation of automatic global
merged ontology, we apply the clustering algorithm on different categories of
ontological entities (concepts, properties, instances) to find classes of equivalent
entities belonging to different local ontologies as shown in Figure 1. For each class,
we make inference to discover the new axioms representing the new relationships
between entities in the same class or between different classes of the same category.
After that, we make use of different classes and axioms to build the global ontology.
The methodology starts by aligning the local ontologies by finding similar entities

N. Maiz, M. Fahad, O. Boussaid, F. Bentayeb: ... 83

belonging to different ones. Then, we use the result of the ontology alignment to
merge local ontologies automatically. The next sections discuss various aspects of our
methodology in detail.

Figure 1: Examples of three local ontologies of the same domain

3.1 Ontology Alignment Strategy

3.1.1 Clustering Algorithm

Ontology. The concept Ontology can be defined with different manners according to
its type and use. In our case, we define an ontology as a triplet (C, R, I), where C is
the set of concepts or OWL-classes, R is the set of relationships between concepts or
OWL-properties and I is the set OWL-instances.
Concept. A concept is an attribute vector Vi defined as, Vi = (Ti, At1, ..., Atk, P1, ...,
Pj) where Ti is the concept term, Ati(i=1, ..., k) are attributes that describe the concept.
Finally, Pm (m=1, ...,j) represent concept properties. They can be owl datatype
properties or object properties. Concept term and attributes are used to compute the
similarity between different concepts.
Similarity measure. Similarity measure allows managing the semantic equivalence
or independence between entities. It is based on the concept terminology, properties
and its neighborhood. In fact, there is a high probability of semantic equivalence of
two concepts which have the same terminology, the same properties and the same
relationships with other similar concepts in neighborhood. For computing the
similarity between concepts, we must start by computing similarity between different
pairs of attributes (Attributei, Attributej) where the first attribute belongs to the first
concept and the second attribute to the second one. Similarity between two attributes
Attributei and Attributej named Sim(Attributei, Attributej) is a terminological
similarity based on Wordnet thesaurus. Wordnet Java API returns the synonym set
(Synset) of a given term, and to find similarity between two terms (attributes) At1 and
At2, it will be necessary to perform a breadth-first search starting from the Synset of
At1 to the Synsets of Synset of At2, and so on, until At2 is found. Once the similarity
between different pairs of attributes is computed, we must define a similarity
threshold in the order to eliminate all pairs that are not similar and to take only into
account those that have a high similarity. Then, attributes similarity measure between
two concepts Ci and Cj is calculated as shown in equation 1. We define A, the set of
all selected attributes of concepts.

SimA(Ci , Cj) = Σ(k=1, ...,Card(A)) Π ik Sim(Attributeik , Attributejm) (1)

N. Maiz, M. Fahad, O. Boussaid, F. Bentayeb: ...84

Where, Attributeik (or Attributejm) is the kth attribute of the concept Ci (or Cj). It
can be a term, a property or a relationship between this concept and its neighbors. Πik
is the kth attribute weight, which is fixed by the user. Equation (2) and (3) represent
the local similarity SimL between two concepts and the global similarity SimG
respectively based on property similarity Simp and neighborhood similarity Simv .
Figure 2 shows the Similarity GSim between two concepts with input and output.

 SimL(Ci ,Cj) = SimT (Ci, Cj) + SimA(Ci, Cj) (2)
 SimG(Ci, Cj) = SimL(Ci, Cj) + Simp(Ci, Cj)+Simv(Ci, Cj) (3)

Figure 2: Similarity GSim between two concepts

3.1.2 Hierarchic clustering of ontological entities
The clustering algorithm use different categories of entities (concepts, properties,
etc.). We explain here only the case of concepts which is similar for other entities as
well. We explain the clustering algorithm that uses the set of concepts and the
similarity measure to define synonym concept classes. A synonym concept class is a
set, which contains only semantically equivalent concepts. The goal of clustering
algorithm is to devise the set C of all concepts belonging to all candidate ontologies,
to M sets of equivalent concepts. For that, clustering algorithm implements the
definition of the agglomerative hierarchical clustering mechanism that exploits the
similarity measure, which we defined previously to compute the semantic similarity
between different pairs of concepts.

Clustering Algorithm Application. The clustering algorithm is based on the use of a
similarity matrix in the algorithm of Figure 3. The first row and the first column of the
matrix contain the concepts of different ontologies. Each cell in the matrix contains a
number that represents the similarity value between the two concepts of the matrix.
The first step is to compute the similarity between different pairs of concepts and to
load its value in the corresponding cell of the similarity matrix.

Sim(SYNi , Cj) = Min(Sim(C1 , Cj), ..., Sim(Ci , Cj)) (4)
After that, the algorithm will search from the maximal value of similarity in the

matrix and keep the pair of concepts corresponding to this value. The first class will
contain the selected two concepts. The class built will be considered as an element or
an individual for the algorithm. For that, it updates the matrix by re-computing the
similarity value between the new class and other concepts. The similarity between a

N. Maiz, M. Fahad, O. Boussaid, F. Bentayeb: ... 85

class SYNi that contains j elements (C1,... ,Cj) and an other element Ck is defined in
equation 4. The algorithm continues it’s iterations until it obtains a representative set
of classes. The similarity between elements of the same class is maximal and the
similarity between different classes is minimal. The result of the algorithm is a set
SYN that contains M sets SYNi. Each set SYNi contains equivalent concepts belonging
to different ontologies. The maximal cardinality of a set SYNi is the cardinality of
the set C of all concepts, and the minimal cardinality is one.

Algorithm 1: Concepts Hierarchic Clustering Algorithm
1: Input:
2: Oi (i=1…n): candidate ontologies to be merged
3: C = Ci (i=1... k) / set of concepts of candidate ontologies
4: Mo : set of singleton of C
5: MatrSim[n+m+s , n+m+s] : Similarity matrix;
6: Similarity threshold S;
7: Output:
8: Clusters SYNi of equivalent concepts
9: Initialize the sub matrix M1[n , n], M2[n+1-n+m , n+1-n+m]
 and M3[n+m+1-n+m+s,n+m+1-n+m+s] of MatrSim with X.

10: FOR (1 <= i <= n+m+s) do
11: FOR (1 <= j <= n+m+s) do
12: IF MatrSim[i, j] <> X Then
13: MatrSim[i, j] GSim(Ci, Cj)
14: ENDIF
15: ENDFOR
16: ENDFOR
17: Max 0
18: REPEAT
19: FOR (1 <= i <= n+m+s) do
20: FOR (1 <= j <= n+m+s) do
21: IF MatrSim[i, j] > Max Then
22: Max Matrsim[i, j]
23: ENDIF
24: ENDFOR
25: ENDFOR
26: IF Max > seuil Then
27: Mi Mi-1 U Ci, Cj - Ci, Cj
28: MatrSim[i, j] X
29: ENDIF
30: Update MatrSim by taking into the count the new class
31: Make inference using the new relationship in the new class
32: Until GSim(Ci, Cj) < seuil

Figure 3: Concept Hierarchical Clustering Algorithm

Example. We consider three parts of three different heterogeneous ontologies showed
in Figure 1. We start by defining C, i.e., the set of all concepts. Then after the
application of the algorithm of hierarchical clustering, we obtain SY N, the set of nine
SY Ni as follows.
C = {SciencesF., Person, Department, Personal, Student, Course, Research, Admin.,
Professor; sciencesF., person, Departement, Student, Course, Research, Professor,
sciencesF., HOMME, Department, Employee, Student, Course, Research, Domain,

N. Maiz, M. Fahad, O. Boussaid, F. Bentayeb: ...86

 Professor}
SYN = {{SciencesF., SciencesF., SciencesF.}, {Person, Person, HOMME},
{Department, Department, Department}, {Student, Student, Student}; {Professor,
Professor, Professor}, {Employee, personal}, {Course, Course}, {Admin.}, {Domain}}

3.1.3 Inference

The mechanism of inference is used to discover the implicit relationships between
different entities belonging to different classes of different categories. For example, if
we have two classes Person and Homme belonging to two different ontologies, the
clustering algorithm merge the two previous classes to build only one. On the other
hand, if the class Person is an antecedent of an other class Student, and at the same
time the class Homme is an antecedent of an other class Student which is similar to
the first class Student, our inference mechanism detect that the property link the two
classes Person and Student is similar to the property link the two classes Homme and
Student. This is an example of the mechanism of inference that allows extracting all
implicit relationships between different entities belonging to different ontologies. It
allows to find all relations like owl:SameAs property, the owl:equivalent property and
the owl:subclassof property, and similar other entities.

3.2 Our Ontology Merging Strategy

Figure 4 presents our ontology merging methodology comprises of four steps. In the
first step, we used the hierarchical clustering algorithm in order to form a set of
concept classes. Each class contains the synonym concepts belonging to different
ontologies. The result of the algorithm is a set SY N, which is composed of N subset
SY Ni. Each subset contains the synonym concepts of different ontologies. The goal of
this step is to find all synonym concepts in different ontologies representing the local
data sources. To realize this task, we need a similarity measure for computing
similarity between the two concepts by taking into account their structure and
terminology.

Figure 4: General schema of the ontologies merging approach

Once the concept clusters are built, we pass them to the second step that
generates SUB, the set of pairs(Father, Son) of different ontologies. For this, we start

N. Maiz, M. Fahad, O. Boussaid, F. Bentayeb: ... 87

by generating the set of SUBi (i = 1, …, P), where each SUBi corresponds to an
ontology Oi. After that, we merge the sets SUBi to obtain the global set SUB. The goal
of this step is to keep the hierarchy of different ontologies in order to deduce the
merged ontology hierarchy. The third step consists in using classes SY Ni to find the
final set SUB by replacing each concept by the general concept corresponding to the
SY Ni, which contains it. The goal of this step is to prepare the set SUB that allows
semantic conflicts resolution. The result of this step is a set of pairs that can be similar
or different. In the first case, we eliminate all the instances of the same pair and we
keep only one. At the end of this step, we obtain a set SUB that contains all pairs of
general concepts and the hierarchy of the global ontology. Finally, we use directly
SUB to build the global ontology. The detail of each step based on similarity measure
defined previously is as follows.

Concepts merging and general concepts definition. In this phase, we proceed to
assign each class SY Ni, a representative concept (term), which can be one of the class
element or another concept more general. Before assigning the new term to the class,
we must verify that it is not yet affected to another class. In this case, we must change
it for the considered class. Like this, we do not solve only the synonymy conflicts, but
also homonymy conflicts. After that, we define correspondences tables to save
correspondences between the new general concept and class elements. These
correspondences will be used for other tasks like query rewriting.
Example. Once we built the set SY N, which contains subsets SY Ni of synonym
concepts, we replace each SY Ni by the general concept assigned to the correspondent
class. In our example, the set SY N becomes as follows.
SY N = {sciencesF., Person,Department, Student, Professor, Personal, Course,
Admin., Domain}
The general concept Cg attributes are the union of all concepts attributes belonging to
the corresponding subset SY Ni. The link between the general concept and the class
elements will be saved in the correspondences tables.

Generation of the set SUBg. This step consists in generating from different ontology
hierarchies, the set SUBg of pairs (Ci,Cj) ∈ Oi, where (i = 1,..,P) and P is the number
of ontologies to be merged) where Ci is the parent and Cj is its child in the ontology
hierarchy. The set SUBgis used to define the global ontology hierarchy, as follows.
Generation of subsets SUBi. The first phase consists in defining subsets SUBi, (i =
1,…,P). Each subset SUBi corresponds to an ontology Oi. The subsets definition is
done by a simple traversal of different ontologies hierarchies and we take the node
with its child. At the end of this phase, we obtain P subsets SUBi where each one
corresponds to ontology Oi. The obtained subsets contain semantic conflicts that we
solve in the next step using the set SY N generated in the previous step.
Example. : In our example, the three subsets SUB1, SUB2 and SUB3 that correspond to
the three ontologies are as below.
SUB1 = {(sciencesF., Person), (sciencesF.,Department), (Person, Personal), (Person,
Student), (Department,Course), (Department,Research), (Personal, Admin.),
(Personal, Professor)}
SUB2 = {(sciencesF., Person); (sciencesF.,Department), (Person, professor), (Person,
Student), (Department, Course), (Department, Research)}

N. Maiz, M. Fahad, O. Boussaid, F. Bentayeb: ...88

SUB3 = {(sciencesF., Homme); (sciencesF., Department), (sciencesF., Domain),
(Homme, Personal), (Homme, Student), (Homme, Professor)}
SUBi merging. After the generation of the subsets SUBi, we merge them to obtain a
set SUB that contains all pairs of concepts (Parent, Child) belonging to different
ontologies to be merged. SUB is so defined as below in equation 5.

SUBg = U i=1,...,P SUBi (5)
The union operation defined in the precedent formulas is the classic union that

takes only one instance of the element. But in our case, we can not compare elements
coming from different subsets and to find similarity between pairs of concepts. The
set SUB contains all redundant occurrences of all pairs of concepts belonging to
different subsets SUBi. For eliminating redundancies, we use the set of synonym
concepts SY N defined previously to find similar or equivalent pairs.

Example. The union of the three precedent subsets SUBi is the set SUBg as below.
SUBg = {(SciencesF., Person), (SciencesF.,Department),(Person, Personal), (Person,
Student), (Department,Course), (Department, Research), (Personal, Admin.);
(Personal,Professor), (sciencesF., Person), (sciencesF., Department), (Person,
Professor), (Person, Student), (Department, Course), (Department, Research),
(sciencesF., HOMME), (sciencesF., Department), (sciencesF., Domain), (Homme,
Employee), (HOMME, Student), (HOMME, Professor)}

Use of SYNi to generate SUBg. The generated set SUBg contains redundant
structures, and to eliminate them we use our knowledge store extracted from the
concepts population of different ontologies. Knowledge extraction is realized by the
application of the clustering algorithm defined in the first step according to the
semantic equivalence. The equivalence found between concepts helps us to eliminate
redundancies with two steps as follows.

1. Replace concepts in SUBg by their general concept. In SUB, we traverse all pairs
of concepts, one by one and for each component of the pair we find the corresponding
class in SY N that contains this concept. After that, we replace the pair component by
the class name. We do this for all pairs in the set SUB. We obtain so a set SUB, which
contains different pairs that we can compare them each to other.
Example. : SUBg in our example becomes as below.
SUBg = {(sciencesF., Personne), (sciencesF.Departement), (Personne, Salarie),
(Personne, Etudiant), (Departement, Cours), (Departement, Recherche), (Salarie,
Admin.), (Salarie, Enseignant), (sciencesF.,Personne), (sciencesF.,Departement),
(Personne, Enseignant), (Personne, Etudiant), (Departement, Cours), (Departement,
Recherche), (sciencesF., Personne), (sciencesF.,Departement), (sciencesF.,
Domaine), (Personne, Salarie), (Personne, Etudiant), (Personne,Enseignant)}

2. Removing redundancies in SUB. This phase consists in traverse SUBg and
comparing pairs of concepts two by two. The similar pairs are removed in order to
take into account only one occurrence of the pair in SUBg. Finally, these pairs are
used to build the hierarchy of global ontology.
Example. : Finally, we obtain set SUBg after removing redundant elements as follows.

N. Maiz, M. Fahad, O. Boussaid, F. Bentayeb: ... 89

SUBg = {(sciencesF., Personne), (sciencesF., Departement), (Personne, Salarie),
(Personne, Etudiant), (Departement, Cours), (Departement, Recherche), (Salarie,
Admin.), (Salarie, Enseignant), (Personne, Enseignant), (sciencesF.,Domaine)}
Merged ontology building. In this step, we use SUBg built previously to get the
global ontology hierarchy. For that, we start by traversing SUBg until finding the
concept, which is not the child of any one of other concepts belonging to the same set
of concepts. This concept represents the tree root. The second component of the pair
represents the first direct child of the selected concept (root). The selected pair will be
marked. Then, we seek another pair that has the tree root as first component, the
second component of this pair will represent the second child of the tree root. We
repeat this search until we have more pairs that contain the concept root. After that,
we take the first child of the root concept and we proceed in the same way to find
their children in the set SUBg. We continue with all concepts in the tree until marking
all pairs in SUBg to get the merged ontology.

4 Experimental Validation of OMerSec

To validate our approach, we used different variations of the geographic ontology
built for the project FoDoMust [Ont, 10]. These variations are showed in the Figure
5a. The basic ontology of geographic objects is composed of 39 concepts, 110
instances and 28 properties and 14 axioms. Figure 5b resumes the ontologies data set
statistics.

Figure 5: Variations made by us in (a), Data set statistics in (b)

Our experiments are performed using Eclipse platform with the free reasoner
Pellet and the framework Jena. For computing similarities between concepts, we use
the model similarity explained previously. It takes into account the term, attributes,
relations and neighbours similarity. The last one makes it recursive. To limit the
number of neighbours taken into account, we performed some tests to measure the
optimal value of the diameter of neighbourhood or the path length between a concept
and its neighbours that find the optimal similarity. In our case, we observed that the
optimal value which gives the best similarity is the second neighbour of the concept.
The experimental evaluation of our approach is conducted into two steps. First, we
aligned with the help of domain experts the different ontologies manually. The
mappings found in this step are considered as the alignment reference. The
comparison of the alignment reference with the automatic one produce three sets, i.e.,
AFound, AExpected and ACorrect. The first one represents the entity pairs aligned
with the alignment approach. The second one represents the set of entity pairs aligned

N. Maiz, M. Fahad, O. Boussaid, F. Bentayeb: ...90

in the alignment reference and the third represents the intersection of the two previous
sets that are AFound and AExpected. Using these three sets of entity pairs, we
calculated the three following quality measures, i.e., Precision, Recall and Fallout.
The Precision is the ratio between ACorrect and AFound, the Recall is defined as the
ratio between ACorrect and AExpected and the Fallout is defined as the ratio of the
difference between AFound and ACorrect. We used the candidate ontologies to
measure the quality of our alignment system OMerSec, and compared our results with
two other approaches that are, COMA++ and FCA-Merge. Our approach has shown
the best precision results as shown in the Figure 6.

Figure 6: Comparison of our system with others

5 Conclusion and Future Directions

This paper presents the methodology of our automatic ontology merging system that
deals in building analysis contexts on-the-fly for data warehouse design by defining a
mediation system based on ontologies. Our approach exploits clustering algorithm
and an inference mechanism offered by the language OWL. We start by clustering
different entities belonging to different local ontologies and making inference on
initial axioms to find others which are implicit for the user. After that, we use
information in local ontologies to validate those axioms, and build global ontology
from them. The proposed methodology benefits in determining and overcoming
differences between local ontologies in order to allow the reuse of such ontologies,
and the data annotated using these ontologies, throughout different heterogeneous
semantic multi-vendor applications. One of our ongoing researches is to apply
optimization strategies to enhance the performance of overall system.

References

[Bouquet, 06] Bouquet, P., Serafini, L., Zanobini, S., Sceffer, S.: Bootstrapping semantics on
the web: meaning elicitacion from schemas, In Proc. 15th Intl World Wide Web Conference
(WWW), 505–512 2006

[Castano, 06] Castano, S., Ferrara, A., Montanelli, S.: Matching Ontologies in Open Networked
Systems: Techniques and Applications, Journal on Data Semantics, JoDS 3870, Springer
Berlin, 25-63 2006

N. Maiz, M. Fahad, O. Boussaid, F. Bentayeb: ... 91

[Doan, 04] Doan, A., Madhaven, J., Domingos, P., Halevy, A.: Ontology matching: A machine
learning approach, Handbook on Ontologies in Information Systems, Springer-Verlag, 397-416
2004

[Ehrig, 04] Ehrig, M., Staab, S.: QOM - quick ontology mapping, In Proc. Third International
Semantic Web Conference (ISWC2004), Springer, LNCS 3298, 683–696 2004

[Euzenat, 04] Euzenat. J. and Valtchev, P.: Similarity-based ontology alignment in owl-lite, In
Proc. 16th ECAI-04, Valencia, Spain, 333–337 2004

[Fahad, 07] Fahad, M., Qadir, M.A., Noshairwan, M.W., Iftakhir, N.: DKP-OM: A Semantic
Based Ontology Merger, In Proc. 3rd International Conference I-Semantics 2007, Graz,
Austria, 313-322 2007

[Giunchiglia, 04] Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an algorithm and
implementation of semantic matching, In Proc. 1st European SemanticWeb Symposium, LNCS
3053, 61–75 2004

[Goasdoue, 00] Goasdoue, F., Lattues, V., Rousset, M.C.: The use of carin language and
algorithms for information integration: The picsel system, Int. J. Cooperative Inf. Syst., 9(4),
383-401 2000

[Huang, 00] Huang, H.C., Kerridge, J.M., Chen, S.L.: A query mediation approach to
interoperability of heterogeneous databases, In Australasian Database Conference, 41-48 2000

[Inmon, 92] Inmon, W.H., Building the Data Warehouse. John Wiley & Sons, Inc., New York,
USA, 1992.

[Kalfoglou, 03] Kalfoglou, Y., Schorlemmer, M.: If-map: an ontology mapping method based
on information flow theory, Journal of data semantics, Springer Berlin / Heidelberg, LNCS
2800, 98–127 2003

[Kimball, 98] Kimball, R.: The operational data warehouse, DBMS, 11(1), 14-16 1998.

[Klein, 01] Klein, M.: Combining and relating ontologies: an analysis of problems and
solution, In Proc. Workshop on Ontologies and Information Sharing (IJCAI-01), Seattle, USA,
53-62 2001

[Lamarre, 04] Lamarre, P., Cazalens, S., Lemp, S., Valduriez, P.: A flexible mediation process
for large distributed information systems, In CoopIS/DOA/ODBASE (1), LNCS vol. 3290,
Springer, 19-36 2004

 [Maiz, 07] Maiz, N., Bentayeb, F., Boussaid, O.: Ontology based mediation system. In Proc.
18th Information Resource Management Association International Conference (IRMA 07),
Canada, May 2007

[Mascardi, 10] Mascardi, V., Locoro, A., Rosso, P.: Automatic Ontology Matching Via Upper
Ontologies: A Systematic Evaluation. IEEE Transaction on Knowledge and Data Engineering.
Vol. 2 (5), pp. 609-623. 2010.

[McGuinness, 00] McGuinness, D., Fikes, L., Rice, J., Wilder, S.: An environment for merging
and testing large ontologies, In Proc. 7th Intl. Conference on Principles of Knowledge
Representation and Reasoning, Breckenridge, CO, USA, 483–493 2000

[Mena, 00] Mena, E., Illarramendi, A., Kashyap, V., Sheth, A., P.: OBSERVER: An approach
for query processing in global information systems based on interoperation across preexisting
ontologies, International Journal DAPD, 8(2), 223-271 2000

N. Maiz, M. Fahad, O. Boussaid, F. Bentayeb: ...92

[Noy, 03] Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools for ontology merging
and mapping. IJHCS, Elsevier, vol. 59(6), 983–1024 2003

[Ont, 10] http://lsiit-old.u-strasbg.fr/afd/sites/fodomust/fr-accueil.php

N. Maiz, M. Fahad, O. Boussaid, F. Bentayeb: ... 93

