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Abstract: One of the core challenges for current landscape of ontology based research is to 
develop efficient ontology merging algorithms which can resolve the mismatches with no or 
minimum human intervention, and generate automatic global merged ontology on-the-fly to 
fulfil the needs of automated enterprise business applications and mediation based data 
warehousing. This paper presents our approach of ontology merging in context of data 
warehousing by mediation that aims at building analysis contexts on-the-fly. Our methodology 
is based on the combination of the statistical aspect represented by the hierarchical clustering 
technique and the inference mechanism. It generates the global ontology automatically by four 
steps. First, it builds classes of equivalent entities of different categories (concepts, properties, 
instances) by applying a hierarchical clustering algorithm. Secondly, it makes inference on 
detected classes to find new axioms, and solves synonymy and homonymy conflicts. This step 
also consists of generating sets of concept pairs from ontology hierarchies, such as the first 
component subsumes the second one. Third, it merges different sets together, and uses classes 
of synonyms and sets of concept pairs to solve semantic conflicts in the global set of concept 
pairs. Finally, it transforms this set to a new hierarchy, which represents the global ontology. 
 
Keywords: Ontology Merging, Similarity Measure, Hierarchical Clustering and Inference, 
Data Warehouse design, Data Mining  
Categories: H.3.1, H.3.2, H.3.3, H.3.7, H.5.1 

1 Introduction  

Decision tools are more and more used in modern companies to conduct analysis and 
take decisions at data that originate from distributed and heterogeneous data sources. 
Therefore, data integration is crucial since the analysis context, also called data cube, 
is built using data from different data sources in the same company or shared with 
other companies or on the web. There are two main strategies for data integration, i.e., 
data warehousing [Inmon, 92; Kimball, 98] and mediation [Goasdoue, 00; Huang, 00; 
Lamarre, 04]. The goal of former strategy is to build a centralized database that 
contains all data coming from different data sources modeled in multidimensional 
way promoting on-line analytical processing. This approach is characterized by its 
performance in terms of query response time since the data is warehoused that 
facilitates the decision processes. But, when data changes over time, decisional tools 
necessitate several updates for sound decision making. The updating processes are 
achieved using data warehouse refreshment strategies that cause much additional cost. 
To tackle this problem, we propose mediator approach to construct a virtual data 
warehouse to process analysis context on-the-fly. 

Mediator approach consists of defining three elements; data source schemas as 
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local schemas, the mediator layer as a global schema and correspondence rules 
between local schemas. Querying data from their real sources to make decision 
consists of defining decisional queries. For formulating decisional queries for the 
mediator, we must first define a global schema that allows execution of this kind of 
queries. To fulfill this task, we need a powerful strategy of query transformation from 
the global schema language to the data sources languages. Furthermore, the obtained 
results from different data sources are combined to build the data cube on-the-fly. 
Since that we are in the analysis and decision domain, we are interested more by the 
pertinence of query results, so a simple search of data is not sufficient and we must 
proceed to a semantic research based on the semantic of terms used in the global 
schema or in the user query. This requires usage of ontologies as a support to data 
source semantic representation to ensure the knowledge sharing between different 
heterogeneous data sources or between different users. In this context, we propose an 
initial strategy for the definition of the global schema of the mediation system that 
aims at data searching. We use the classification technique to build the concept 
classes for the global ontology starting from the local ontologies that are 
representative of local data sources. The clustering technique based on semantic 
similarity is used to define clusters of concepts in the global ontology by merging 
local ontology classes. It takes into account the concept context that is defined as a set 
of roles that link this concept to other ones. 

The remainder of this paper is structured as follows. Section 2 throws a light on 
state-of-the-art systems. Section 3 presents the methodology of our ontology merging 
system that exploits hierarchical clustering and inference mechanisms. Section 4 
discusses the experimental validation of our approach. Finally, we draw some 
conclusions and show ongoing research aspects in section 5. 

2 State-of-the-Art on Ontology Mapping and Merging 

There are many approaches and systems for ontology alignment and mapping in 
research literature. IF-Map exploits instance similarity approach based on the formal 
concepts analysis for mapping of source ontologies by considering common reference 
ontology [Kalfoglou, 03]. GLUE integrates the instance matching with machine 
learning approach, and calculates the probabilities of concept matching by analyses of 
taxonomic structure for ontology integration [Doan, 04]. OBSERVER aims to work 
with semantic heterogeneities between distributed data repositories, and translates 
user queries from different ontologies using inter-ontology relationships (mappings) 
and retrieves desired data [Mena, 00]. QOM exploits the heuristic based dynamic 
programming approach for choosing only promising candidate mappings, and thus 
reduces the runtime complexity [Ehrig, 04]. OLA transforms ontologies to OWL-
Graphs, and use Valtchev's similarity measure to compare entities belonging to the 
same category (Object property, datatype property, etc.) for find alignments between 
them [Euzenat, 04]. Besides these approaches, there are some semantic ontology 
matching techniques, such as CtxMatch [Bouquet, 06], S-Match [Giunchiglia, 04] and 
ASMOV [Jean-Marya, 09]. CtxMatch  and S-Match  follows the same methodology 
by translating concepts into the Description Logic (DL) formulas and then solves the 
propositional satisfiability problems with the help of available DL reasoners. 
Mascardi et al. make use of upper ontologies as semantic bridges for matching source 
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heterogeneous ontologies [Mascardi, 10]. 
For ontology merging, there are very few approaches contributed in the research 

literature. The semi-automatic interactive tools PROMPT and AnchorPROMPT [Noy, 
03], and Chimaera [McGuinness, 00] exploit concept labels and to some extent the 
structure of source ontologies for ontology merging. These tools have no ability to 
find correspondences between concepts that are semantically equivalent but modeled 
with different names.. FCA-Merge is an algorithm for ontology merging that defines 
an ascending formal method of ontologies merging based on a set of natural language 
documents [Stumme, 01]. They use techniques for natural language treatment and 
concepts formal analysis to derive the concept lattice. The later is explored and 
transformed to ontology with the human intervention. H-Match and Merge, a dynamic 
ontology matching algorithm developed in the Helios framework, adopts another 
interesting approach by using linguistic and contextual affinity of concepts in peer-
based systems [Castano, 04]. 

Our research on ontology merging topic has two folds. First, our semantic based 
ontology merger, DKP-OM, follows the hybrid approach and uses various 
inconsistency detection algorithms in initial mapping found in first steps [Fahad, 07]. 
Our hybrid strategy makes it possible to find all possible mappings, and semantic 
validation of mappings gives very promising final results by ignoring the incorrect 
correspondences which don’t satisfy the test criteria. Secondly the contribution 
presented in this paper, automatic merging of local ontologies by clustering and 
inference mechanisms, for building analysis context (merged global ontology) on-the-
fly in the context of data warehousing by ontology mediation approach [Maiz, 07]. 
The previous approaches in research literature use ontologies in XML (Extensible 
Markup Language), RDF (Resource Description Framework) or OWL-Lite (Ontology 
Web Language) format, and are not capable for automatic generation of global 
merged ontology. In addition, majority of them use similarity measures that cover at 
least the ontology structure and use a stabilization threshold to stop the alignment 
process, which limits the semantic propagation resulting reduction in precision. 
Moreover, these approaches support only two ontologies to be aligned, contrary to the 
reality where several ontologies need to be aligned in the same system for their share 
and reuse especially in case of data warehouse design. So, we need a new approach 
that takes into account the scalability by supporting several ontologies at the time. It is 
the case of our approach that fulfills these challenges as explained below. 

3 Ontology Integration by Hierarchical Clustering and Inference 

The main idea in our approach is to combine the power of the statistical approach 
represented by the hierarchical clustering algorithm with the inference mechanism 
offered by the semantic language OWL-DL. For generation of automatic global 
merged ontology, we apply the clustering algorithm on different categories of 
ontological entities (concepts, properties, instances) to find classes of equivalent 
entities belonging to different local ontologies as shown in Figure 1. For each class, 
we make inference to discover the new axioms representing the new relationships 
between entities in the same class or between different classes of the same category. 
After that, we make use of different classes and axioms to build the global ontology. 
The methodology starts by aligning the local ontologies by finding similar entities 
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belonging to different ones. Then, we use the result of the ontology alignment to 
merge local ontologies automatically. The next sections discuss various aspects of our 
methodology in detail. 

 

Figure 1: Examples of three local ontologies of the same domain 

3.1 Ontology Alignment Strategy 

3.1.1 Clustering Algorithm 

Ontology. The concept Ontology can be defined with different manners according to 
its type and use. In our case, we define an ontology as a triplet (C, R, I), where C is 
the set of concepts or OWL-classes, R is the set of relationships between concepts or 
OWL-properties and I is the set OWL-instances. 
Concept. A concept is an attribute vector Vi defined as, Vi = (Ti, At1, ..., Atk, P1, ..., 
Pj) where Ti is the concept term, Ati(i=1, ..., k) are attributes that describe the concept. 
Finally, Pm (m=1, ...,j) represent concept properties. They can be owl datatype 
properties or object properties. Concept term and attributes are used to compute the 
similarity between different concepts. 
Similarity measure. Similarity measure allows managing the semantic equivalence 
or independence between entities. It is based on the concept terminology, properties 
and its neighborhood. In fact, there is a high probability of semantic equivalence of 
two concepts which have the same terminology, the same properties and the same 
relationships with other similar concepts in neighborhood. For computing the 
similarity between concepts, we must start by computing similarity between different 
pairs of attributes (Attributei, Attributej) where the first attribute belongs to the first 
concept and the second attribute to the second one. Similarity between two attributes 
Attributei and Attributej named Sim(Attributei, Attributej) is a terminological 
similarity based on Wordnet thesaurus. Wordnet Java API returns the synonym set 
(Synset) of a given term, and to find similarity between two terms (attributes) At1 and 
At2, it will be necessary to perform a breadth-first search starting from the Synset of 
At1 to the Synsets of Synset of At2, and so on, until At2 is found. Once the similarity 
between different pairs of attributes is computed, we must define a similarity 
threshold in the order to eliminate all pairs that are not similar and to take only into 
account those that have a high similarity. Then, attributes similarity measure between 
two concepts Ci and Cj is calculated as shown in equation 1. We define A, the set of 
all selected attributes of concepts.  

SimA(Ci , Cj) = Σ(k=1, ...,Card(A)) Π ik Sim( Attributeik , Attributejm )         (1) 
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Where, Attributeik (or Attributejm) is the kth attribute of the concept Ci (or Cj). It 
can be a term, a property or a relationship between this concept and its neighbors. Πik 
is the kth attribute weight, which is fixed by the user. Equation (2) and (3) represent 
the local similarity SimL between two concepts and the global similarity SimG 
respectively based on property similarity Simp and neighborhood similarity Simv . 
Figure 2 shows the Similarity GSim between two concepts with input and output. 
 
                    SimL(Ci ,Cj) = SimT (Ci, Cj) + SimA(Ci, Cj)               (2) 
            SimG(Ci, Cj) = SimL(Ci, Cj) + Simp(Ci, Cj)+Simv(Ci, Cj)           (3) 
 

 

Figure 2: Similarity GSim between two concepts 

3.1.2 Hierarchic clustering of ontological entities 
The clustering algorithm use different categories of entities (concepts, properties, 
etc.). We explain here only the case of concepts which is similar for other entities as 
well.  We explain the clustering algorithm that uses the set of concepts and the 
similarity measure to define synonym concept classes. A synonym concept class is a 
set, which contains only semantically equivalent concepts. The goal of clustering 
algorithm is to devise the set C of all concepts belonging to all candidate ontologies, 
to M sets of equivalent concepts. For that, clustering algorithm implements the 
definition of the agglomerative hierarchical clustering mechanism that exploits the 
similarity measure, which we defined previously to compute the semantic similarity 
between different pairs of concepts.  
 
Clustering Algorithm Application. The clustering algorithm is based on the use of a 
similarity matrix in the algorithm of Figure 3. The first row and the first column of the 
matrix contain the concepts of different ontologies. Each cell in the matrix contains a 
number that represents the similarity value between the two concepts of the matrix. 
The first step is to compute the similarity between different pairs of concepts and to 
load its value in the corresponding cell of the similarity matrix.  

Sim(SYNi , Cj ) = Min( Sim(C1 , Cj), ..., Sim(Ci  , Cj ) )                 (4) 
After that, the algorithm will search from the maximal value of similarity in the 

matrix and keep the pair of concepts corresponding to this value. The first class will 
contain the selected two concepts. The class built will be considered as an element or 
an individual for the algorithm. For that, it updates the matrix by re-computing the 
similarity value between the new class and other concepts. The similarity between a 
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class SYNi that contains j elements (C1,... ,Cj) and an other element Ck is defined in 
equation 4. The algorithm continues it’s iterations until it obtains a representative set 
of classes. The similarity between elements of the same class is maximal and the 
similarity between different classes is minimal. The result of the algorithm is a set 
SYN that contains M sets SYNi. Each set SYNi contains equivalent concepts belonging 
to different ontologies. The maximal cardinality of a set SYNi is the cardinality of 
the set C of all concepts, and the minimal cardinality is one.  
 

Algorithm 1: Concepts Hierarchic Clustering Algorithm 
1: Input:   
2:       Oi (i=1…n):  candidate ontologies to be merged 
3:       C =  Ci (i=1... k) / set of concepts of candidate ontologies 
4:        Mo : set of singleton of C 
5:        MatrSim[n+m+s , n+m+s] : Similarity matrix; 
6:        Similarity threshold S; 
7: Output: 
8:       Clusters SYNi of equivalent concepts 
9:       Initialize the sub matrix M1[n , n],  M2[n+1-n+m , n+1-n+m]  
          and M3[n+m+1-n+m+s,n+m+1-n+m+s] of  MatrSim with X. 
 
10:     FOR (1 <= i <= n+m+s) do 
11:            FOR (1 <= j <= n+m+s) do 
12:                  IF MatrSim[i, j] <> X  Then 
13:                           MatrSim[i, j]            GSim(Ci, Cj) 
14:                  ENDIF 
15:            ENDFOR 
16:    ENDFOR  
17:    Max            0 
18:    REPEAT 
19:    FOR (1 <= i <= n+m+s) do 
20:          FOR (1 <= j <= n+m+s) do 
21:             IF MatrSim[i, j] > Max  Then 
22:                     Max             Matrsim[i, j]  
23:             ENDIF 
24:          ENDFOR 
25:   ENDFOR 
26:   IF Max > seuil Then 
27:           Mi             Mi-1 U  Ci, Cj -  Ci, Cj 
28:           MatrSim[i, j]             X 
29:   ENDIF 
30:   Update MatrSim by taking into the count the new class  
31:   Make inference using the new relationship in the new class 
32:   Until GSim(Ci, Cj) < seuil 

Figure 3: Concept Hierarchical Clustering Algorithm 

Example. We consider three parts of three different heterogeneous ontologies showed 
in Figure 1. We start by defining C, i.e., the set of all concepts. Then after the 
application of the algorithm of hierarchical clustering, we obtain SY N, the set of nine 
SY Ni as follows. 
C = {SciencesF., Person, Department, Personal, Student, Course, Research, Admin., 
Professor; sciencesF., person, Departement, Student, Course, Research,  Professor, 
sciencesF., HOMME, Department, Employee, Student, Course, Research, Domain, 
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 Professor} 
SYN = {{SciencesF., SciencesF., SciencesF.}, {Person, Person, HOMME}, 
{Department, Department, Department}, {Student, Student, Student}; {Professor, 
Professor, Professor}, {Employee, personal}, {Course, Course}, {Admin.}, {Domain}} 

3.1.3 Inference 

The mechanism of inference is used to discover the implicit relationships between 
different entities belonging to different classes of different categories. For example, if 
we have two classes Person and Homme belonging to two different ontologies, the 
clustering algorithm merge the two previous classes to build only one. On the other 
hand, if the class Person is an antecedent of an other class Student, and at the same 
time the class Homme is an antecedent of an other class Student which is similar to 
the first class Student, our inference mechanism detect that the property link the two 
classes Person and Student is similar to the property link the two classes Homme and 
Student. This is an example of the mechanism of inference that allows extracting all 
implicit relationships between different entities belonging to different ontologies. It 
allows to find all relations like owl:SameAs property, the owl:equivalent property and 
the owl:subclassof property, and similar other entities. 

3.2 Our Ontology Merging Strategy 

Figure 4 presents our ontology merging methodology comprises of four steps. In the 
first step, we used the hierarchical clustering algorithm in order to form a set of 
concept classes. Each class contains the synonym concepts belonging to different 
ontologies. The result of the algorithm is a set SY N, which is composed of N subset 
SY Ni. Each subset contains the synonym concepts of different ontologies. The goal of 
this step is to find all synonym concepts in different ontologies representing the local 
data sources. To realize this task, we need a similarity measure for computing 
similarity between the two concepts by taking into account their structure and 
terminology. 

 

Figure 4: General schema of the ontologies merging approach 

Once the concept clusters are built, we pass them to the second step that 
generates SUB, the set of pairs(Father, Son) of different ontologies. For this, we start 
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by generating the set of SUBi (i = 1, …, P), where each SUBi corresponds to an 
ontology Oi. After that, we merge the sets SUBi to obtain the global set SUB. The goal 
of this step is to keep the hierarchy of different ontologies in order to deduce the 
merged ontology hierarchy. The third step consists in using classes SY Ni to find the 
final set SUB by replacing each concept by the general concept corresponding to the 
SY Ni, which contains it. The goal of this step is to prepare the set SUB that allows 
semantic conflicts resolution. The result of this step is a set of pairs that can be similar 
or different. In the first case, we eliminate all the instances of the same pair and we 
keep only one. At the end of this step, we obtain a set SUB that contains all pairs of 
general concepts and the hierarchy of the global ontology. Finally, we use directly 
SUB to build the global ontology. The detail of each step based on similarity measure 
defined previously is as follows. 

 
Concepts merging and general concepts definition. In this phase, we proceed to 
assign each class SY Ni, a representative concept (term), which can be one of the class 
element or another concept more general. Before assigning the new term to the class, 
we must verify that it is not yet affected to another class. In this case, we must change 
it for the considered class. Like this, we do not solve only the synonymy conflicts, but 
also homonymy conflicts. After that, we define correspondences tables to save 
correspondences between the new general concept and class elements. These 
correspondences will be used for other tasks like query rewriting. 
Example. Once we built the set SY N, which contains subsets SY Ni of synonym 
concepts, we replace each SY Ni by the general concept assigned to the correspondent 
class. In our example, the set SY N becomes as follows. 
SY N = {sciencesF., Person,Department, Student, Professor, Personal, Course, 
Admin., Domain}  
The general concept Cg attributes are the union of all concepts attributes belonging to 
the corresponding subset SY Ni. The link between the general concept and the class  
elements will be saved in the correspondences tables. 
 
Generation of the set SUBg. This step consists in generating from different ontology 
hierarchies, the set SUBg of pairs (Ci,Cj) ∈ Oi, where (i = 1,..,P ) and P is the number 
of ontologies to be merged) where Ci is the parent and Cj is its child in the ontology 
hierarchy. The set SUBgis used to define the global ontology hierarchy, as follows. 
Generation of subsets SUBi. The first phase consists in defining subsets SUBi, (i = 
1,…,P). Each subset SUBi corresponds to an ontology Oi. The subsets definition is 
done by a simple traversal of different ontologies hierarchies and we take the node 
with its child. At the end of this phase, we obtain P subsets SUBi where each one 
corresponds to ontology Oi. The obtained subsets contain semantic conflicts that we 
solve in the next step using the set SY N generated in the previous step. 
Example. : In our example, the three subsets SUB1, SUB2 and SUB3 that correspond to 
the three ontologies are as below. 
SUB1 = {(sciencesF., Person), (sciencesF.,Department), (Person, Personal), (Person, 
Student), (Department,Course), (Department,Research), (Personal, Admin.), 
(Personal, Professor)} 
SUB2 = {(sciencesF., Person); (sciencesF.,Department), (Person, professor), (Person, 
Student), (Department, Course), (Department, Research)} 
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SUB3 = {(sciencesF., Homme); (sciencesF., Department), (sciencesF., Domain), 
(Homme, Personal), (Homme, Student), (Homme, Professor)} 
SUBi merging. After the generation of the subsets SUBi, we merge them to obtain a 
set SUB that contains all pairs of concepts (Parent, Child) belonging to different 
ontologies to be merged. SUB is so defined as below in equation 5. 

SUBg = U i=1,...,P  SUBi                         (5) 
The union operation defined in the precedent formulas is the classic union that 

takes only one instance of the element. But in our case, we can not compare elements 
coming from different subsets and to find similarity between pairs of concepts. The 
set SUB contains all redundant occurrences of all pairs of concepts belonging to 
different subsets SUBi. For eliminating redundancies, we use the set of synonym 
concepts SY N defined previously to find similar or equivalent pairs. 
 
Example. The union of the three precedent subsets SUBi is the set SUBg as below. 
SUBg = {(SciencesF., Person), (SciencesF.,Department),(Person, Personal), (Person, 
Student), (Department,Course), (Department, Research), (Personal, Admin.); 
(Personal,Professor), (sciencesF., Person), (sciencesF., Department), (Person, 
Professor), (Person, Student), (Department, Course), (Department, Research), 
(sciencesF., HOMME), (sciencesF., Department), (sciencesF., Domain), (Homme, 
Employee), (HOMME, Student), (HOMME, Professor)} 
 
Use of SYNi to generate SUBg. The generated set SUBg contains redundant 
structures, and to eliminate them we use our knowledge store extracted from the 
concepts population of different ontologies. Knowledge extraction is realized by the 
application of the clustering algorithm defined in the first step according to the 
semantic equivalence. The equivalence found between concepts helps us to eliminate 
redundancies with two steps as follows. 
 
1. Replace concepts in SUBg by their general concept. In SUB, we traverse all pairs 
of concepts, one by one and for each component of the pair we find the corresponding 
class in SY N that contains this concept. After that, we replace the pair component by 
the class name. We do this for all pairs in the set SUB. We obtain so a set SUB, which 
contains different pairs that we can compare them each to other. 
Example. : SUBg in our example becomes as below. 
SUBg = {(sciencesF., Personne), (sciencesF.Departement), (Personne, Salarie), 
(Personne, Etudiant), (Departement, Cours), (Departement, Recherche), (Salarie, 
Admin.), (Salarie, Enseignant), (sciencesF.,Personne), (sciencesF.,Departement), 
(Personne, Enseignant), (Personne, Etudiant), (Departement, Cours), (Departement, 
Recherche), (sciencesF., Personne), (sciencesF.,Departement), (sciencesF., 
Domaine), (Personne, Salarie), (Personne, Etudiant), (Personne,Enseignant)} 
 
2. Removing redundancies in SUB. This phase consists in traverse SUBg and 
comparing pairs of concepts two by two. The similar pairs are removed in order to 
take into account only one occurrence of the pair in SUBg. Finally, these pairs are 
used to build the hierarchy of global ontology. 
Example. : Finally, we obtain set SUBg after removing redundant elements as follows. 
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SUBg = {(sciencesF., Personne), (sciencesF., Departement), (Personne, Salarie), 
(Personne, Etudiant), (Departement, Cours), (Departement, Recherche), (Salarie, 
Admin.), (Salarie, Enseignant), (Personne, Enseignant), (sciencesF.,Domaine)} 
Merged ontology building. In this step, we use SUBg built previously to get the 
global ontology hierarchy. For that, we start by traversing SUBg until finding the 
concept, which is not the child of any one of other concepts belonging to the same set 
of concepts. This concept represents the tree root. The second component of the pair 
represents the first direct child of the selected concept (root). The selected pair will be 
marked. Then, we seek another pair that has the tree root as first component, the 
second component of this pair will represent the second child of the tree root. We 
repeat this search until we have more pairs that contain the concept root. After that, 
we take the first child of the root concept and we proceed in the same way to find 
their children in the set SUBg. We continue with all concepts in the tree until marking 
all pairs in SUBg to get the merged ontology. 

4 Experimental Validation of OMerSec 

To validate our approach, we used different variations of the geographic ontology 
built for the project FoDoMust [Ont, 10]. These variations are showed in the Figure 
5a. The basic ontology of geographic objects is composed of 39 concepts, 110 
instances and 28 properties and 14 axioms. Figure 5b resumes the ontologies data set 
statistics. 
 

 

Figure 5: Variations made by us in (a), Data set statistics in (b) 

Our experiments are performed using Eclipse platform with the free reasoner 
Pellet and the framework Jena. For computing similarities between concepts, we use 
the model similarity explained previously. It takes into account the term, attributes, 
relations and neighbours similarity. The last one makes it recursive. To limit the 
number of neighbours taken into account, we performed some tests to measure the 
optimal value of the diameter of neighbourhood or the path length between a concept 
and its neighbours that find the optimal similarity. In our case, we observed that the 
optimal value which gives the best similarity is the second neighbour of the concept. 
The experimental evaluation of our approach is conducted into two steps. First, we 
aligned with the help of domain experts the different ontologies manually. The 
mappings found in this step are considered as the alignment reference. The 
comparison of the alignment reference with the automatic one produce three sets, i.e., 
AFound, AExpected and ACorrect. The first one represents the entity pairs aligned 
with the alignment approach. The second one represents the set of entity pairs aligned 
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in the alignment reference and the third represents the intersection of the two previous 
sets that are AFound and AExpected. Using these three sets of entity pairs, we 
calculated the three following quality measures, i.e., Precision, Recall and Fallout. 
The Precision is the ratio between ACorrect and AFound, the Recall is defined as the 
ratio between ACorrect and AExpected and the Fallout is defined as the ratio of the 
difference between AFound and ACorrect. We used the candidate ontologies to 
measure the quality of our alignment system OMerSec, and compared our results with 
two other approaches that are, COMA++ and FCA-Merge. Our approach has shown 
the best precision results as shown in the Figure 6.  
 

 

Figure 6: Comparison of our system with others 

5 Conclusion and Future Directions 

This paper presents the methodology of our automatic ontology merging system that 
deals in building analysis contexts on-the-fly for data warehouse design by defining a 
mediation system based on ontologies. Our approach exploits clustering algorithm 
and an inference mechanism offered by the language OWL. We start by clustering 
different entities belonging to different local ontologies and making inference on 
initial axioms to find others which are implicit for the user. After that, we use 
information in local ontologies to validate those axioms, and build global ontology 
from them. The proposed methodology benefits in determining and overcoming 
differences between local ontologies in order to allow the reuse of such ontologies, 
and the data annotated using these ontologies, throughout different heterogeneous 
semantic multi-vendor applications. One of our ongoing researches is to apply 
optimization strategies to enhance the performance of overall system.  
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