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Abstract. Identifying semantic correspondences betweenrdiffievocabularies

has been recognized as a fundamental step towahilsveng interoperability.

Several manual and automatic techniques have kmmtty proposed. Fully
manual approaches are very precise, but extrenwdilyc Conversely, auto-
matic approaches tend to fail when domain spebifickground knowledge is
needed. Consequently, they typically require a rahwalidation step. Yet,

when the number of computed correspondences is laegg, the validation

phase can be very expensive. In order to reduceribldems above, we pro-
pose to compute the minimal set of corresponderibaswe call the minimal

mapping, which are sufficient to compute all theestones. We show that by
concentrating on such correspondences we can gat@ 20% of the manual
checks required for validation.

Keywords: Interoperability, minimal mappings, mapping validat

1 Introduction

Establishing semantic correspondences betweendtitf@ocabularies is a fundamen-
tal step towards achieving interoperability amadngm [12]. In the recent years, sev-
eral manual and semi-automatic approaches havepreposed. For instance, we can
mention projects such as CARMENRenardus [15], Interconcept [12] and other
similar initiatives mainly focusing on LCSH [16, ,178] and DDC [19].

Manual approaches clearly produce better qualisylts, but hardly scale in case
of very large Knowledge Organization Systems, agchCSH and DDC. On the oth-
er hand, automatic procedures can be very effechive tend to fail when domain
specific background knowledge is needed [3, 20jvaxtheless, semantic matching
techniques are nowadays considered a fundamertetiqge in many applications and
many automatic tools are offered. A good survegsesented by [1].

Despite the progress on this topic, a lot of wdilk Isas to be done [13]. A recent
study [6] has underlined that current matchinggasfer poor support to users for the
process of creation, validation and maintenanddeftorrespondences. In fact, given
two schemas in input, most of the tools limit tr&ipport to the suggestion of an ini-
tial set of correspondences, called mapping ornalgnt, which is automatically
computed by the system. In addition, when a grapliiderface is provided, it typi-
cally has scalability problems as the number ofesoahd correspondences grows [5].
It is rather difficult to visualize even a singlatology. Current visualization tools do
not scale to more than 10,000 nodes, and only asfestems support more than 1,000
nodes [8]. The problem becomes even more challgngith matching, because it is

1 http://www.bibliothek.uni-regensburg.de/projectsfnan12/index.html




necessary to visualize two ontologies, called thece and target ontologies, and the
(potentially very big) set of semantic corresporaeEnbetween them. The number of
potential correspondences grows quadratically indize of the ontologies, e.g. two
ontologies with 18 nodes may have up to ®l6orrespondences. As a consequence,
handling them turns out to be a very complex, shomt error prone task.

In this paper we present MinSMat¢cla semantic matching tool that takes two
lightweight ontologies [2], and computes the minimaapping between them. The
minimal mapping is that minimal subset of corregfmtes such that all the others
can be efficiently computed from them, and aredfwe said to be redundant. Ex-
periments demonstrate a substantial improvemeitt inotun-time and total number
of discovered correspondences. They also showthieabhumber of correspondences
in the minimal mapping is typically a very smallrpon of the overall set of corre-
spondences between the two ontologies, up to 998Hemj12]. Therefore, they have
clear advantages in visualization and user intemacAs we explain in this paper, this
is particularly important to reduce the effort impping validation. Being aware that
the matching process cannot be completely autonatddeveraging on the proper-
ties of minimal mappings, we propose the specificator a new tool to interactively
assist the user in the process of mapping creatidnvalidation.

The rest of the paper is organized as follows.€dctien 2 we analyze the weak-
nesses of the current tools which intend to suppapping creation, validation and
maintenance. In section 3 we present MinSMatctseletion 4 we provide a detailed
description of the user interaction issues in tlaping validation phase. Evaluation
results are given in section 5. The last sectiamckmes the paper by drawing some
conclusions and outlining future directions.

2 Limitations of current matching tools

Many automatic tools are currently available whidbntify the set of semantic corre-
spondences between two different schemas [1]. Hewes underlined in [13] there
are still several challenges to address. In thisie we focus on the problems for
which we provide a substantial improvement:

» Low performance. Identifying semantic correspondences is a contiouia
expensive task. In fact, tools leveraging on seiognincluding MinSMatch,
typically require logical reasoning support thancamount to exponential
computation in the worst case [22]. It is thereffanedamental to develop tech-
niques that limit as much as possible the callsg@al reasoners.

» Lack of background knowledge. Automatic tools tend to fail when domain
specific background knowledge is needed [3, 20pefiments show that re-
sults are very precise when syntactic techniquas &ring comparison) are
used, while recall rapidly degrades when semamticgarison is needed.

Lack of support for validation. The problem of finding semantic correspon-
dences between two schemas cannot be completalsnated [12]. Thus, it is
fundamental to provide a tool which assists ther usahe task of creating,

2 A more detailed description of MinSMatch can berfd in [4]. MinSMatch is part of the se-
mantic matching open source suite availabletat//semanticmatching.org/




validating and maintaining a mapping in time. Téli®uld be done taking into
account the interaction of the user with the curregrtomplete and transitory
set of established correspondences. Most of this tagrently available pro-
vide an initial set of automatically created cop@sdences. Unfortunately,
none of them, including those offering a graphicsgr interface, provide an ef-
fective support for validation and maintenance [6].

« Inadequate interaction. Current tools are cognitively demanding. Theydten
to show information which is irrelevant for the dons to take. To reduce the
cognitive load, the tool should reduce the numbétemns that the user must at
each step internally (i.e. in memory) track andcpss, allowing the user to
concentrate on important parts of the task [6]sTdain be achieved by focusing
on the relevant parts of the two schemas [7], nartiet subset of objects
which have to be considered to take a decisionmpkes of objects which in-
fluence a decision are node labels, contextualrimétion (i.e. the path from
the root to the node) and domain knowledge.

« Scalability. Current tools hardly scale in the number of nagles links. Mini-
mizing the amount of information to visualize i®tonly viable way to solve
scalability problems. In fact, as described in 8, tool designed to visualize
ontologies scales up to 10,000 nodes. Many of thawe rendering problems
and object overlap (in terms of node labels ankklimetween the nodes).

3 Computing minimal mappings

Semantic matching techniques establish a set o&stiencorrespondences between
the nodes of two vocabularies (e.g. thesauri, iflea8ons, formal ontologies). This
set is called mapping or alignment. We suggestatteption of MinSMatch. It pro-
duces the minimal mapping between two tree-likeicstires that are beforehand
translated into lightweight ontologies.

3.1 Lightweight ontologies

There are different kinds of ontologies, accordinghe degree of formality and ex-
pressivity of the language used to describe thed). [MinSMatch works on light-

weight ontologies [2]. They are tree-like formaltangies in which nodes are con-
nected through subsumption in classification seioartll]. This means that the
extension of each concept is the set of documdrdstahe label of the node and the
arcs between nodes represent subset relationgngtance, the extension of the con-
cept “animal” is the set of documents about reatldvanimals. Note that this is the
semantics implicitly used in libraries. Many typgfscommonly used ontologies (such
as on-line catalogs, file systems, web directoded library classifications) can be
translated into lightweight ontologies. For instanfl2] describes how this can be
done for LCSH and NALT. Each node label is tramslainto a logic formula repre-

senting the meaning of the node taking into accdardontext, i.e. the path from the
root to the node. Each atomic concept appearingdrformulas is taken from a con-
trolled vocabulary, such as WordNet. A formal diiiom of lightweight ontology can

be found in [4], while further information aboutethranslation procedure can be
found in [2]. Fig. 1 shows an example taken fror@][1t shows two classifications



that are translated into lightweight ontologieddwing the procedure described in
[2]. Natural language labels are shown in bold.iEBirmula is reported under the
corresponding label. Each atomic concept (e.g.6jds represented by a string fol-
lowed by a number representing the sense takendrévordNet synset.
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Fig. 1. Two lightweight ontologies

3.2 Minimal and redundant mappings

MinSMatch computes a set of semantic corresponderuzadled mapping elements,
between two lightweight ontologies.mapping element is defined as follows:

Definition 1 (Mapping element). Given two lightweight ontologies Oand Q, a
mapping element m between them is a triple 15 R>, where:

a) n;[ON; is a node in  called the source node;

b) n,OON, is a node in @ called the target node;

c¢) RO{., =, c, =} is the strongest semantic relation holding betweeand n.

The strength of a semantic relation is establishecbrding to the partial order
where disjointness precedes equivalence and moréeas specific are unordered and
follow equivalence. Under this ordering, MinSMatahvays computes the strongest
semantic relation holding between two nodes. Ini@sar, it computes theninimal
mapping, i.e. the minimal subset of mapping elements betwihe two ontologies
such that all the others can be efficiently com@gdtem them, and are therefore said
to be redundant. The fundamental idea is that apmgpelementm’ is redundant
w.r.t. another mapping element if the existence ofm’ can be asserted simply by
looking at the positions of its nodes w.r.t. thel@® ofm in their respective ontolo-
gies. The four redundancy patterns in Fig. 2, mmeebch semantic relation, cover all
possible cases. A proof is given in [4]. The blaslited elements are redundant w.r.t.
the solid blue ones. The red solid curves show a@emantic relation propagates.

For instance, in pattern (1), the element <CzBjs redundant w.r.t. <A, B:>. In
fact, the chain of subsumptions=CA = B = D holds and therefore by transitivity we
can conclude that € D. Notice that this still holds in case we subs$titA = B with
A = B. Taking any two paths in the two ontologies, aimal subsumption mapping
element is an element with the highest node inpata whose formula is subsumed
by the formula of the lowest node in the other path

8 This is because nodes in lightweight ontologi@scamnected through subsumption relations.
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\ Redundancy propagation

Fig. 2. Redundancy detection patterns

This can be codified in the following redundancydition:

Definition 2 (Redundant mapping element). Given two lightweight ontologies 10
and Q, a mapping M and a mapping elementid with m’ = <C, D, R’> between
them, we say that m’ is redundant in M iff one leé following holds:
(1) f R is =, dmOM with m = <A, B, R> and n¥ m’ such that RJ {c, =}, A
O path(C) and D1 path(B);
(2) If R"is 2, AmOM with m = <A, B, R> and n¥ m’ such that R0 {3, =}, C
O path(A) and B path(D);
3) If R is 1, AmOM with m = <A, B, 1> and m# m’ such that A0 path(C)
and BO path(D);
(4) If R"is =, conditions (1) and (2) must be satisfied.

Here path(n) is the path from the root to the noddote that we enforam# m’ to
exclude the trivial situation in which a mappingrakent is compared with itself. We
prove in [4] that it captures all and only the cae€logical redundancy (of a mapping
element w.r.t. another one). This definition allcalsstacting from logical inference to
computing the redundant elements just by lookinthatpositions of the nodes in the
two trees. The notion of redundancy given abovéuiglamental to minimize the
amount of calls to the logical reasoners and tacedhe problem of lack of back-
ground knowledge. Given a mapping elemant <A, B, 2>, by looking for instance
at pattern (2) in Fig. 2, we can observe that itdsnecessary to compute the semantic
relation holding between A and any descendant thérsub-tree of B since we know
in advance that it is. The minimal mapping is then defined as follows:

Definition 3 (Minimal mapping). Given two lightweight ontologies and Q, we
say that a mapping M between them is minimal iff:

a) AmOM such that m is redundant (minimality condition);
b) AM' DM satisfying condition a) above (maximality condit).
A mapping element is minimal if it belongs to thenimal mapping.




Note that the conditions (a) and (b) ensure thatnimimal set is the set of maxi-
mum size with no redundant elements. We also ptoae for any two given light-
weight ontologies, the minimal mapping always ex&td it is unique [4].

Minimal mappings provide clear usability advantagésnsider the example in
Fig. 3 taken from [12]. It provides the minimal npépy (the solid arrows) and the
maximum number of mapping elements, that we calhthpping of maximum size,
between the two lightweight ontologies given in.Fig Note that only the two solid
ones are minimal, because all the others (the dashes) can be entailed from them.
For instance, Ao E follows from Az D for pattern (2). As we will show, the valida-
tion phase can be faster if we concentrate on thémal mapping. The key intuition
is that, if the user accepts as correct an elembith is in the minimal set then all the
inferred ones will be automatically validated asrect.
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Fig. 3. The minimal and redundant mapping between twowgight ontologies

3.3 TheMinSMatch algorithm

At the top level the algorithm is organized asdolé:

e Step 1, computing the minimal mapping modulo equivalence: compute the
set of disjointness and subsumption mapping elesneiitich areminimal
modulo equivalenceBy this we mean that they are minimal modulo aymst
ing, whenever possible, two subsumption relatidnspposite direction into a
single equivalence mapping element;

e Step 2, computing the minimal mapping: collapse all the pairs of subsump-
tion elements (of opposite direction) between e two nodes into a single
equivalence element. This will result in timénimal mapping

e Step 3, computing the mapping of maximum size: Compute the mapping of
maximum size (including minimal and redundant magptlements). During
this step the existence of a (redundant) elemesurizputed as the result of the
propagation of the elements in the minimal mapping.

The first two steps are performed at matching timieile the third is activated on
user request. Due to space limitations here we thiggpseudo-code only for the first
step. The pseudo-code of the other two steps tegetith an extended description of
the algorithm is in [4]. The minimal mapping is coated by a functiofreeMatch
whose pseudo-code is given in Fig. 4. The minimapping M is represented as a list



of elements. Each element is characterized by ecemode, a target node and a se-
mantic relation between them. T1 and T2 are thatiightweight ontologies.

10 node: struct of {cnode: wff; children: node[];}

20 T1,T2: tree of (node);

30 relationin {&, =, = 1},

40 elenent: struct of {source: node; target: node; rel: relation;};
50 M list of (elenent);

60 bool ean direction;

70 function TreeMatch(tree T1, tree T2)
80 {TreeDisjoint(root(T1l),root(T2));

90 direction := true;
100 TreeSubsunedBy(root (T1), root(T2));
110 direction := fal se;

120 TreeSubsunedBy(root (T2), root (T1));
130 TreeEqui v();
140 };

150 function bool ean TreeSubsunedBy(node nl, node n2)
160 {cl1,c2: node; LastNodeFound: bool ean;

170 if (<nl,n2, 1> 0 M then return fal se;
180 i f (!NodeSubsunedBy(nl, n2)) then

190 foreach cl in GetChildren(nl) do TreeSubsunedBy(cl, n2);

200 el se

210 {Last NodeFound : = fal se;

220 foreach c2 in GetChildren(n2) do

230 i f (TreeSubsunmedBy(nl,c2)) then Last NodeFound := true;

240 if (!LastNodeFound) then AddSubsunpti onMappi ngEl enent (nl, n2);
250 return true;

260 ;

270 return false;

280 };

Fig. 4. Pseudo-code for the tree matching function

TreeMatch is crucially dependent on two basic nhode matcHiimgtions (given in
[4]) that take two nodes nl and n2 and return digesanswer in case of disjointness
and subsumption, or a negative answer if it isthetcase or they are not able to es-
tablish a relation. Notice that these tfunctions hide the heaviest computational cost
that is exponential in the worst case [22]. Thel gib@refore, is to compute the mini-
mal mapping by minimizing the calls to the node chatg functions. We achieve this
purpose by processing both trees top down. To magitme performance of the sys-
tem, TreeM atch has therefore been built as the sequence of thretién calls: the
first call to TreeDigoint (line 80) computes the minimal set of disjointnesgpping
elements, i.e. it enforces pattern (3); the secamd the third call tol'reeSubsum-
edBy compute the minimal set of subsumption elementkéntwo directions modulo
equivalence (lines 90-120), i.e. they enforce past€1) and (2). Notice that in the
second call, TreeSubsumedBYy is called with the input ontologies with swapped
roles. The variablalirection is used to change the direction of the subsumption
TreeSubsumedBYy assumes that the minimal disjointness elementsilaeady com-
puted. Once a subsumption is found, it basicalbk$ofor the deepest target node for
which subsumption holds. These three calls cormdgo the Step 1 abové@ree-
Equiv at the line 130 implements the Step 2, i.e. ibez¥s pattern (4). This sequence
of calls also enforces the partial order over refet given in the previous sub-section.



4 Mapping validation

Validating means taking a decision about the céness of the correspondences sug-
gested by the system [6]. We say that the pesitively validates correspondence ,
or simply accepts it, if he accepts it as corrattile we say that the useegatively
validatesa correspondence, or simply rejects it, if he doesaccept it as correct.
Both rejected and accepted correspondences hdeertarked to record the decision.
We use MinSMatch to compute the initial minimal rpegy. Focusing on the ele-
ments in this set minimizes the work load of therut fact, they represent the mini-
mum amount of information which has to be validadsdt consequently results in the
validation of the rest of the (redundant) elements.

4.1 Validation sequence

The system has to suggest step by step the ordmrdspondences to be validated.
In particular, this order must follow the partialder over the mapping elements de-
fined in [4]. As also described in [12], the intait is that if an elememhis judged as
correct during validation, all mapping elementsivdedt by m are consequently cor-
rect. Conversely, ifnis judged as incorrect we need to include in tih@mal set the
maximal elements from the set of mapping elemeatsveld bym, that we call the
sub-minimal elementsf m, and ask the user to validate them.

For instance, for the mapping in Fig. 3, in theeca#, D, => is rejected, we need
to validate the maximal elements in the set {<A=&, <B, D,c>, <C, D,c>} of
elements derived by. They are <A, Ez> and <B, D,=>. The element <C, D;>
needs to be validated only in the case when <BgB,is further rejected. Sub-
minimal elements can be efficiently computed (sext section).

Note that, for a better understanding of the cwasdences, it is important to
show to the user the strongest semantic relatiddingpbetween the nodes, even if it
is not in the minimal set. For example, showingiegjence where only a direction of
the subsumption is minimal.

4.2 User interaction during validation

The validation process is illustrated in Fig. 5eTininimal mapping M between the
two lightweight ontologies T1 and T2 is computedthg TreeMatch (line 10) de-
scribed in the previous section and validated kyftimctionValidate (line 20). At the
end of the process, M will contain only the mappélgments accepted by the user.
TheValidate function is given at lines 30-90. The validatiagess is carried out in
a top-down fashion (lines 40-50). This is to evedum sequence the elements that
share as much contextual information as possildé i turn reduces the cognitive
load requested to the user to take individual d@tss The presence of an elememt
between two nodes nl1 and n2 in M is tested byuhetionGetElement (line 60). In
positive case the function returns it, otherwiseLNUs returned. Each element is
then validated using the functiorfalidateElement (line 70), whose pseudo-code is
given in Fig. 6. The process ends when all the sadé¢he two trees have been proc-
essed. A possible optimization consists in stoppiregprocess when all the elements
in M have been processed.



10 M:= TreeMatch(Tl, T2);
20 Validate(M;

30 function void Validate(list of (elenent) M
40 { foreach nl in T1 do

50 foreach n2 in T2 do {

60 m:= CGetEl enent(M nl, n2);

70 if (m!= NULL) ValidateE enment(n;
80 }

90 };

Fig. 5. The validation process of the minimal mapping M

10 function void ValidateEl enent (el enent m
20 { S list of (elenent);

30 if Isvalid(n) AddElenent(m M;

40 el se {

50 RenoveEl enent(m M;

60 S := CGet Submninals(m;

70 foreach min Sdo { if (!lIsRedundant(m) ValidateEl enent(m; }
80 }

90 };

Fig. 6. The validation process of a single element m

The validation of a single element is embedded in th¥alidateElement func-
tion. The correctness af is established through a call to the functiewalid (line
30), that takes care of the communication withuker. The user can accept or reject
m. If mis acceptedn is added to the set M using the functteddElement (line 30).
Note that this is necessary when tfalidateElement is called on a sub-minimal
element at line 70. Otherwise,rif is rejected, it is removed from M using the func-
tion RemoveElement (line 50) and its sub-minimal elements, computgdhe func-
tion GetSubminimals (line 60), are recursively validated (line 70).eTpseudo-code
for the GetSubminimals function is in Fig. 7. It applies the rules foropagation
suggested in [4] to identify the elements thatdwllan elementn in the partial order.

Two observations are needed. The first is thatbansmimal element can be re-
dundant w.r.t. more than one element in M. In themges we postpone their valida-
tion to the validation of the elements for whicleyrare redundant. For instance, <A,
E, => is redundant w.r.t. both <A, ;> and <C, Ez=> in Fig. 3. Therefore, the vali-
dation of <A, E,=> is postponed to the validation of <C,%£;. In other words, if <C,
E, => is positively validated, then it will be supeidius asking the user to validate
<A, E, =>. We use the functiohsRedundant described in [4] (line 70) for this. This
also avoids validating the same element more thmee.oThe second is that, in order
to keep the strongest relation between two notiesallowing rules are enforced:

(a) if we add to M two subsumptions of opposite dires for the same pair of
nodes, we collapse them into equivalence;

(b) if we add an equivalence between two nodes, ittgutes any subsumption
previously inserted between the same nodes, hsitignored if we already
have in M a disjointness between these nodes;

(c) if we add a disjointness between two nodes, it tiulbss any other relation
previously inserted in M between the same nodes.



10 function list of (element) Get Subni nimal s(el enent <nl, n2, R>)

20 { S list of (elenent);
30 if (R==1c || == =
40 c2 := GetParent(n2);
50 if (c2 != NULL) AddEl enment (S, <nl,c2,c>);
60 el se foreach cl1 in GetChildren(nl) do AddEl enent (S, <cl,n2,c>);
70 }
80 if (R==2]] == =
90 cl := GetParent(nl);
100 if (cl != NULL) AddElerent(S, <cl,n2,32>);
110 el se foreach c2 in GetChildren(n2) do AddEl enent (S, <nl,c2, 3>);
120
130 if (R== 1) {
140 foreach c2 in GetChildren(n2) do AddEl enent (S, <nl,c2, 1>);
150 foreach ¢l in GetChildren(nl) do AddEl enment (S, <cl,n2, 1>);
160
170 return S;
180 };
Fig. 7. The function for the identification of the sub-miral elements
5 Evaluation

We have tested MinSMatch on datasets commonly tsealuate matching tools
[21]. Their short description is in [4]. Table Insonarizes their characteristics.

# Dat aset pair Node count Max dept h Aver age
branchi ng factor

1 Cor nel | / Washi ngt on 34/ 39 3/3 5.50/4.75

2 Topi a/ I con 542/ 999 2/9 8.19/3.66

3 Sour ce/ Tar get 2857/ 6628 11/15 2.04/1.94

4 Ecl ass/ Unspsc 3358/ 5293 4/ 4 3.18/9.09

Table 1. Complexity of the datasets

Table 2 shows the percentage of reduction in thebmu of elements contained in
the minimal mapping w.r.t. the mapping of maximuizes The reduction is calcu-
lated as (1-m/t), where m is the number of elementse minimal set and t is the to-
tal number of elements in the mapping of maximuee.sWe have a significant re-
duction, in the range 68-96%.

M nSwhat ch
# Mappi ng of maxi mum M ni mal nappi ng, Reduction, %
size, elenments (t) elenents (m
1 223 36 83. 86
2 5491 243 95. 57
3 282648 30956 89. 05
4 39818 12754 67.97

Table 2. Mapping sizes and percentage of reduction on atandatasets

As described in [12], we have also conducted expemis with NALT and LCSH.
As reported in Table 3, these experiments showtti@teduction in the number of
correspondences can reach 99%. In other wordsptééns that by concentrating on



minimal mappings we can save up to 99% of the machecks required for mapping
validation.

I d | Sour ce |Branch

A NALT Cheni stry and Physics

B NALT Nat ural Resources, Earth and Environnental Sciences

C LCSH Cheni cal Elenents

D LCSH Chemical s

E LCSH Managenent

F LCSH Nat ural resources

Branches Mappi ng of maxi mum M ni mal nmappi ng, Reduction, %
size, elenments (t) elenments (m

Avs. C 17716 7541 57, 43

Avs. D 139121 994 99, 29

Avs. E 9579 1254 86, 91

Bvs. F 27191 1232 95, 47

Table 3. Mapping sizes and percentage of reduction on NALd lBCSH

Finally, we have compared MinSMatch w.r.t. theestat the art matcher S-Match
[22]. Table 4 shows the reduction in computationetiand calls to the logical reason-
ers. As it can be noticed, the reductions are aulist.

Run Tinme, ns Calls to | ogical reasoners (SAT)
# | S-Match | M nSMat ch Reduct i on, S-Mat ch M nSMwat ch | Reducti on,
% %
1 472 397 15. 88 3978 2273 42. 86
2 141040 67125 52.40 1624374 616371 62. 05
3 3593058 1847252 48. 58 56808588 19246095 66. 12
4 6440952 2642064 58. 98 53321682 17961866 66. 31
Table 4. Run time and SAT problems
6 Conclusionsand futurework

We have discussed limitations of existing matchiogls. We have observed that,
once the initial mapping has been computed by yktem, current tools provide poor
support (or no support at all) for its validatiomdamaintenance in time. In addition,
current visualization tools are cognitively demangglihardly scale with the increasing
number of nodes and the resulting visualizatioesrather messy. We have proposed
the use of MinSMatch for the computation of the im&l mapping and showed that,
by concentrating on the correspondences in thenmainget, the amount of manual
checks necessary for validation can be reducedupad orders of magnitude. We
have also showed that by minimizing the number afscto logical reasoners, the
MinSMatch algorithm is significantly faster w.rdtate of the art semantic matching
tools and reduces the problem of lack of backgrdumaiviedge.

Yet, maintaining a mapping in time is an extrenmynplex and still largely unex-
plored task. Even a trivial change of a node labal have an enormous impact on the
correspondences starting or terminating in thisenawd all the nodes in their respec-
tive subtrees. In future we plan to further expltrese problems and develop a user
interface which follows the specifications providadhis paper.
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